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Abstract. Chatbots aim at automatically offering
a conversation between a human and a computer.
While there is a long track of research in rule-based
and retrieval-based approaches, the generation-based
approaches are promisingly emerging solving issues
like responding to queries in inference that were not
previously seen in development or training time. In
this paper, we offer an experimental view of how recent
advances in close areas as machine translation can be
adopted for chatbots. In particular, we compare how
alternative encoder-decoder deep learning architectures
perform in the context of chatbots. Our research
concludes that a fully attention-based architecture is
able to outperform the recurrent neural network baseline
system.
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1 Introduction

A chatbot stands for the short version of chat plus
robot and it is a computer program that conducts a
human-machine conversation in any topic.

One of the very first chatbots was rule-based. It
was proposed in 1966 by Joseph Weizenbaum’s
program ELIZA [13]. Input sentences were
analyzed using several predefined decomposition
rules, and after that key words were used to
generate responses to them. The Artificial
Intelligence Markup Language (AIML) is an
evolution of these first rule-based chatbots. This
AIML follows the idea of defining written patterns

and the corresponding templates which are
responses to the patterns. Then, in inference, if the
robot identifies a pattern in a sentence from a user,
the robot is able to reply taking the corresponding
template [11].

To reduce the amount of work that developing
these patterns and templates requires, alternative
chatbots, no longer rule-based, but retrieval-based
were proposed. These systems use different
dialogue databases to train an information retrieval
system [2]. The big advantage of these
retrieval-based systems is that their training
requires little human dedication. However, these
systems still rely on giving the most appropriate
response from a set of sentences, which limits their
performance in the case of unseen events.

Thanks to the emergent deep learning techni-
ques, the novel generative-based approaches have
arisen offering chatbots that are capable, for the
first time, to respond to non-predefined sentences.
The first successful approach is based on the
popular encoder-decoder architecture, which has
been effectively used in quite a few natural
language applications, and, moreover, it has
been extended to image and speech processing
[10, 12]. One successful implementation of this
encoder-decoder architecture in natural language
processing has been the recent concatenation
of recurrent neural networks [7, 3]. In fact,
this architecture builds on top of recurrent neural
language models [6] by adding an encoder
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step and a decoder step. In the encoder
step, a recurrent neural network converts an
input sequence into a fixed representation (called
thought vector). This representation is fed in the
recurrent neural network from the decoder step
which allows the decoder model to output more
intelligent predictions given the context from the
encoding. While this implementation has shown
some results in chatbots [10], the main drawback
is that long sequences are not well codified into a
single vector. This challenge is faced through the
recent attention-based mechanisms [1, 9] recently
proposed for machine translation.

The main contribution of this paper is the
application of the experimentation of these
attention-based mechanisms [1, 9] to chatbots.
Taking [10] as starting point, we compare the
encoder-decoder architecture with attention [1]
and the transformer [9]. A manually performed
evaluation shows that the latter is able to
outperform the encoder-decoder with attention
which is already better than the encoder-decoder
baseline architecture.

The rest of the paper is organized as
follows. Section 2 briefly introduces the
deep learning architectures used in this work,
which basically are encoder-decoder based on
recurrent neural networks (with or without attention
mechanism) and the transformer which uses
a fully attention-based encoder-decoder without
recurrent neural networks. Section 3 details
the experimental framework, particularly, data
statistics and parameters from systems. Section
4 describes the manual evaluation. Section 5
discusses insights of results and contributions of
this study.

2 Encoder-Decoder Architectures and
Attention-based Mechanisms

An autoencoder is a type of neural network that
aims at learning a representation of the input while
allowing for a decoding of this representation by
minimizing the recovering error. A generalization
of this architecture is the encoder-decoder which
allows for inputs and outputs to be different. This
architecture, see a diagram of it in Figure 1
(left), has emerged as an effective paradigm for

dealing with variable-length inputs and outputs.
Although this effectiveness, its simplicity limits their
performance. For example, it seems unrealistic
that the input information has to fit in a fixed
length vector of the internal representation. It
seems more reasonable to take input information
gradually while we are generating the output. That
is why, attention-based mechanisms have arisen
as a solution to this matter.

In this section, we briefly provide a high-level
description of this encoder-decoder with recurrent
neural networks plus two successful encoder-
decoder implementations that use attention-based
mechanisms. Among these two architectures
we first describe the encoder-decoder based on
recurrent neural networks with attention based on
multi-layer perceptron. And, we second describe
the transformer encoder-decoder architecture that
uses only a combination of feed-forward neural
networks with more sophisticated attention based
on multiple heads.

2.1 Encoder-Decoder with Recurrent Neural
Networks

Given an input sentence, the encoder iteratively
computes for each word a hidden state vector
using the word and previous hidden state of
the recurrent neural network (RNN). Once the
whole sentence has been analyzed, the relevant
information of the input sentence is contained in
the last hidden state of the RNN, known as context
or thought vector. The decoder computes, word by
word, an output in the original representation space
using the information contained in the context
vector and previous decoded words.

The architecture implementation can vary de-
pending on the type of RNN cell used (genuine
RNN cell, a LSTM cell [4] or a GRU cell [3]),
number of cells per layer or the number of hidden
layers among other parameters. Figure 1 (left)
shows a diagram of this architecture.

One of the main drawbacks of this architecture
resides in the fact that as the size of the
input sentence increases, the encoder needs to
compress a large quantity of information into a
fixed-length vector.
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This is lousy compressing process that may yield
to a poor performance of the chatbot.

2.2 Encoder-Decoder with Recurrent Neural
Networks with Attention

To overcome the aforementioned drawback of the
basic RNN-based encoder-decoder approach, an
attention mechanism is commonly used in the
decoder [1]. In this case, for each generated word,
the decoder computes a context vector composed
of the weighted sum of all hidden state vectors
of the encoder instead of relying on the ability of
the encoder to compress the whole input sequence
into the thought vector.

Fig. 1. (Left) Encoder-decoder with RNNs; (Right)
Encoder-decoder with RNNS and attention

Weights are computed by an alignment model
and normalized over all values to get a percentage
of how relevant the word from the input sentence
is, in relation to the word to be decoded, see figure
1 (right) showing the diagram of this architecture.
For further technical explanation of how weights
are computed see [1].

2.3 Transformer

While previous architecture has been successfully
applied to machine translation, there are still some
issues to solve. The architecture in practice
can be really slow to train and given the way
RNNs deal with sequences, it is not easy to
parallelize the algorithm and take advantage of
recent computational resources such as Tensor
Processing Units (TPUs). Motivated by this issue,
the Transformer model [9] has been proposed and
it has been proven to be competitive in the task
of machine translation. The Transformer model
is able to improve state-of-the-art results in a
couple of academic benchmarks while speeding up
training by an order of magnitude in comparison to
RNN-based encoder-decoder with attention shown
in previous section.

The Transformer architecture is basically an
encoder-decoder which concatenates attention-
based mechanisms allowing to model relationships
between words without requiring recurrence. More
specifically, there are three main stages in the
encoder (see Figure 2). The first one is where input
words are projected into a vector representation
space by an embedding matrix and then, given that
there is no information of the order and position of
words in the input sentence, a positional encoding
is added to the embedded input vectors. Note that
in previous RNN encoder/decoder models, due to
their sequential nature, no positional information is
required.

The second stage is a multi-head attention
block (of Self-Attention in this first case) that
linearly projects the input information into different
space representations and performs attention over
all of them. This method allows the model
to identify different semantic, morphological and
lexical characteristics of the input sequence and
attend them separately at the decoding process.
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Fig. 2. Transformer

Finally, a position-wise feed-forward network is
used, which applies two linear transformations to
each position separately.

The decoder has five stages, the first two only
used at the training phase: an output embedding
and positional encoding (similar to the one used in
the encoder but for target sentences in the training
phase), a masked multi-head attention (also Self-
Attention), a multi-head attention, a feed forward
network and finally a softmax layer to compute the
output probabilities.

Given that at the decoding process we can not
know the future words, the attention can only
be applied to previous ones. This is what the
masked multi-head attention does, which is a
multi-head attention block with a mask that restricts
the attention only to past words. For a deeper
technical explanation of the architecture see [9].

3 Experimental Framework

This section reports the data, preprocessing and
parameters that we used to build our chatbot
systems.

3.1 Data and Preprocessing

Models were tested on the OpenSubtitles dataset
[8]. The Open Subtitles Corpus is composed
by a wide range of movie and TV series scripts
translated to multiple languages. It is generally
used by video platforms to show subtitles of their
movies/TV series.

The subtitles do not contain identity nor turn
information. Therefore, similarly to [10], we
assumed that consecutive sentences were uttered
by different characters. We constructed a dataset
consisting of pairs of consecutive utterances, using
every sentence twice as context and as target.
Due to computing and memory constrains, we
extracted a subset of the first 10 million sentences
for training.

Preprocessing of the database consisted on
removing XML tags, limiting the sentence size
and removing strange symbols (i.e., #, ”, *, -,
musical notes, etc.). For evaluation we used the
same 200 sentences that were used in [10], which
covers different styles of conversation (i.e. basic,
philosophical, personality and general knowledge).
Details on training and evaluation split are reported
on Table 1.

3.2 Parameters

At the experiments in [10], the architectures
had 4096 unit cells for the entire OpenSubtitles
database. Due to computational limitations, our
model had to be simpler both by limiting the
database (as we explained) and also by using a
two layered LSTM model with 512 unit cells per
layer. Additionally, the model with attention uses a
sampled softmax loss function with 512 samples.
All three models have a 64 dense size for the
embedding matrix. To ensure that we cover the
99% of the dataset, we have limited the vocabulary
size to 72,827 words and the length of sentences
to 24 words. All words that are used only once are
discarded.
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Table 1. Size of the training database

Set Role Segments Words Vocab
Training Context 20,000,000 64,192,197 180,368

Target 48,174,044 182,404
Evaluation Context 200 1,446 399

For training, we used ADAM [5] with a learning
rate of 0.002, an exponential decay rate for the first
moment estimates (β1) equal to 0.9, an exponential
decay rate for the second moment estimates (β2)
equal to 0.999 and ε = 10−8 (offset to prevent any
division by zero); a batch size of 256 and a dropout
rate of 0.1.

The transformer architecture has 8 attention
heads and 6 hidden layers with 512 units. For
training, we have also used ADAM with a learning
rate of 0.2, exponential decay rates for the first and
second moment estimates β1 = 0.9 and β2 = 0.98.
and ε = 10−9; a batch size of 4096 and a drop
out and attention dropout rates of 0.1. For better
responses, we have added to the three models a
beam search algorithm with a beam size of 4 and
a penalty length factor of 0.6.

4 Evaluation

There is no automatic measure established for
chatbots. Therefore, we carried out the evaluation
manually. In order to compare our three
conversational models, we asked three evaluators
to rank chatbot responses among: good, bad or
neutral. Additionally, we annotated when the three
evaluators agreed in rankings.

Results are shown in Table 2 showing ranking
from Evaluator 1, Evaluator 2, Evaluator 3 and
agreement between them. Results show clear
improvement of both attention mechanisms over
the baseline system. In fact, all evaluators agree
that the transformer architecture is good or neutral
in 34.5% of the questions whereas the baseline
architecture is only good or neutral in 23.5% of the
questions and the baseline plus attention is good
or neutral in 24.5% of the questions.

In addition to the results, we report several
examples on different styles of conversations
present in the test set: basic, philosophical,

personality and general knowledge. These
examples show the type of improvement that
attention is capable to bring to the system which
in general include more adequate responses in the
context of the user input.

Conversation 1: Basic

Context what is your name ?
RNN Anouk.
+Attention Adriano faustino sotolongo.
Transformer i don’t know .
Context what time is it ?
RNN I do n’t know.
+Attention 6:30.
Transformer i don’t know.

Conversation 2: Philosophical

Context I think you are a machine
RNN I’m sorry
+Attention Vlanne:
Transformer I’m not a machine .
Context Life is sad .
RNN I’m not a monster.
+Attention I do n’t want to go to jail.
Transformer It’s not sad .
Context Is there a god ?
RNN No.
+Attention Surprisingly, yes.
Transformer no .

Conversation 3: Personality

Context How old were you when
you were able to speak ?

RNN Eighteen.
+Attention Seventeen.
Transformer six months.

Conversation 4: General knowledge
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Table 2. Manual Evaluation. Best results in bold

System Ranking Evaluator 1 Evaluator 2 Evaluator 3 Agreement
RNN Good 41 47 54 32
+Attention 61 51 71 43
Transformer 74 57 70 51
RNN Bad 75 123 53 46
+Attention 90 116 57 46
Transformer 25 110 25 20
RNN Neutral 84 30 93 15
+Attention 49 33 72 6
Transformer 101 33 105 18

Context ronald reagan is ...
RNN I’m not a good person.
+Attention And i’m not a spy..
Transformer he’s in the hospital.
Context Is five plus five equal to ten ?
RNN No, no.
+Attention That’s exactly what i’m gon na do.
Transformer yes .

5 Conclusions

Attention-based mechanisms are revolutionizing
natural language, speech and image processing
applications. In this paper, we are implementing a
couple of recently proposed attention mechanisms
into the chatbot application.

Experiments trained on an open-domain data-
base show that a fully attention-based architecture
performs significantly better in a variety of contexts
including basic, philosophical, personality and
general knowledge. Three evaluators agreed on
rating the responses of the fully attention-based
mechanism 34.5% of the time either good or
neutral, while the responses of the baseline
architecture with attention was rated in that terms
on a 24.5% of the time and the responses of the
baseline system were only 23.5% of the time either
good or neutral.

Taking advantage of this generic encoder-
decoder architecture, among further research, we
plan to introduce further contexts while training
the system so as to allow the system to keep
coherence in longer dialogues and to train our
system on multiple languages.
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Bahdanau, D., Bougares, F., Schwenk, H., &
Bengio, Y. (2014). Learning phrase representations
using RNN encoder-decoder for statistical machine
translation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
EMNLP, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pp. 1724–1734.

4. Hochreiter, S. & Schmidhuber, J. (1997). Long
short-term memory. Neural Comput., Vol. 9, No. 8,
pp. 1735–1780.

5. Kingma, D. P. & Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, Vol. abs/1412.6980.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1233–1239
doi: 10.13053/CyS-22-4-3060

Marta R. Costa-jussà, Álvaro Nuez, Carlos Segura1238

ISSN 2007-9737



6. Mikolov, T., Karafiát, M., Burget, L., Cernocký,
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