
Multiobjective Optimization of Chemical Processes
with Complete Models using MATLAB and Aspen Plus

Abel Briones-Ramírez1, Claudia Gutiérrez-Antonio2

1 Exxerpro Solutions, Querétaro,
Mexico

2 Universidad Autónoma de Querétaro, Facultad de Química, Querétaro,
Mexico

abel.briones@exxerpro.com, claudia.gutierrez@uaq.mx

Abstract. The design of chemical processes has to

consider the delivery of products with high quality,
minimum energy requirements and minimum impact to
the environment. In order to design chemical processes
with the minimum energy requirements several
researchers have been focus their efforts in the
development of optimization strategies. Regardless the
optimization technique used, it is necessary a model of
the chemical process. Some works consider the use of
reduced models, which are more simple and easy to
implement. Another studies employ complete models,
usually linking the optimization strategies to chemical
processes simulators through Excel®; however, the
information to make this link directly between the
chemical process simulator and the optimization
strategy neither is nor reported yet. Thus, in this work we
propose a procedure to perform the link between
MATLAB® and Aspen Plus® processes simulator. We
present the information requirements, information flows
and the communication commands. Also, instructions to
generate automatically the bkp files of the optimal
designs are described. It is worth to mention that with
this procedure any optimization strategy can be used.

Keywords. MATLAB®, Aspen Plus®, linking procedure.

1 Introduction

Nowadays, the design of chemical processes must
to consider not just delivering products of high
quality, but also performing this task with minimum
both energy requirements and environmental
impact. According to Yue et al. [30], “concerns
about climate change, waste pollution, energy
security, and resource depletion are driving society
to explore a more sustainable way for development

and manufacturing” [30]. In order to design
chemical processes with the minimum energy
requirements several researches have been focus
their efforts in the development of optimization
strategies; these strategies include mathematical
programming [1, 26, 19, 5, 22, 9, 31] or stochastic
techniques [18, 20, 28, 24, 32, 23]. Regardless the
optimization technique used, it is necessary a
model of the chemical process. Some works
employ reduced models, which are more simple
and easy to implement; another strategies
consider complete models, usually linking the
optimization strategies to chemical processes
simulators. Next, we give a brief review of some
works that consider the last approach, for
different purposes.

Lababidi et al. [17] developed a prototype
design support system for process engineering, in
order to analyze the controllability and dynamics of
process during the conceptual design stage. They
integrated MATLAB® with Omola®, through
object-oriented message passing to get
this objective.

Later, Ramzan & Witt [25] proposed a
methodology for decision support among
conflicting objectives; for this, they used a
multiobjective optimization layer based on goal
programming using Aspen Plus® and the
optimization tool for MATLAB®.

In 2008, Tona Vásquez et al. [27] presented an
approach to realize multiscale modeling for the
production of perfume microcapsules.

Their strategy connects modules developed in
MATLAB® with the operation models developed in

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

ISSN 2007-9737

Aspen Plus®. Gutiérrez-Antonio and Briones-
Ramírez [12] proposed the use of a multiobjective
genetic algorithm with constraints handling for the
optimization of Petlyuk sequences. The
optimization tool, developed in MATLAB®, is
coupled to Aspen Plus® in order to get the
information of the objectives and constraints
required. In 2011, Khodadoost and Sadegui [15]
reported a dynamic simulation study of distillation
column sequences in a Gas Refinery. They linked
the module Dynamics of Aspen Plus® and
MATLAB® Simulink® software to perform their
work. In the same year, Eslick and Miller [8]
reported a work where the freshwater consumption
was minimized; the study case was a pulverized
coal power plant with a capacity of 550 MW. Their
framework uses an optimization scheduler, based
on NSGA-II [7], which is linked to Aspen Plus® by
means of Excel®. In addition, Alabdulkarem et al.
[2] optimized the propane pre-cooled mixed
refrigerant of a liquefied natural gas plant. In order
to realize the optimization, they used a genetic
algorithm, taken from the MATLAB® optimization
toolbox, along with a computer model in Aspen
HYSYS®. Bhattacharyya et al. [3] made a study of
the control performance during load, following in a
coal-fed integrated gasification combined cycle
power plant. They developed a steady-state
model, which was exported to the module
Dynamics of Aspen Plus®, and integrated with
MATLAB®. In the same year, Kiss et al. [16]
proposed a novel biodiesel process based on a
reactive dividing wall column. As a design tool,
they used simulated annealing as optimization
technique, which was coupled to Aspen Plus®
through Excel®.

From the previous works, it is clear that the
linkage of a processes simulator is very useful;
since it allows considering the complete model of
the chemical processes, taking advantage of the
complete thermodynamic properties data base of
the processes simulator. Nevertheless, none of the
above works have presented detailed information
on how to make the link of MATLAB® with the
process simulator directly, Aspen Plus®. The
availability of this procedure allows the use of
complete models for the chemical processes,
taking advantage of all the modeling capabilities of
the process simulators, no matter the kind of
optimization technique used.

Thereby, in this work we propose a procedure
to perform the link between MATLAB® and Aspen
Plus® processes simulator. We present the
information requirements, information flows and
the communication commands. Also, instructions
to generate automatically the bkp files of the
optimal designs are presented.

2 Selection of the Chemical Process

In this section, we present the first step required to
perform the optimization rigorously, which is the
selection of the chemical process. For the selected
chemical process, we have to choose the
objectives to optimize, and the constraints
involved, if they are any. The objectives and/or
constraints are the information that guides the
optimization process, and also it is the information
that is generated in the simulation of the chemical
process in Aspen Plus®.

In addition, we must to list the process variables
required for the simulation; with this information
objectives and/or constraints can be calculated in
the simulation. These variables are manipulated in
the optimization strategy. It is desirable to record
variables, objectives and constraints as vectors in
a database; this will allow having all the required
information of the optimal solution.

Thus, the problem statement can be
established as:

Optimize (Objective_1, Objective_2,…,
Objective_i)

Subject to
Constraint_1≥a , Constraint_2≤b, … ,

Constraint_j=c
Manipulating
Variable_1, Variable_2,…,Variable_k

(1)

3 Procedure to Link MATLAB® and
Aspen Plus®

In this section, the linking procedure is presented.
In order to illustrate this procedure, we will use a
multiobjective genetic algorithm with constraints’
handling written in MATLAB® [12]; however, the
procedure can be used with any other optimization
technique, considering or not constraints.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1158

ISSN 2007-9737

The details of the multiobjective optimization
strategy can be consulted in a previous
contribution [12].

Figure 1 shows the general procedure of the
link between MATLAB® and Aspen Plus®.

According to Figure 1 we can observe that the
first step is giving the initial design parameters of

the chemical process, information that was
presented in section 2. In addition, the parameters
of the optimization strategy must be defined. With
this information the optimization strategy begins
with the generation of the initial population. The
entire population is composed of individuals, which
are sent one by one to Aspen Plus® in order to be

Fig. 1. General flowsheet of the linking procedure between MATLAB® and Aspen Plus®

Fig. 2. Design evaluation in Aspen Plus® block

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus 1159

ISSN 2007-9737

evaluated in terms of objectives and constraints.
Once all individuals are evaluated the optimization
strategy can continue with the sort, reproduction
and mutation steps. If the maximum number of
generations is reached, then the optimization
strategy reports the Pareto front; otherwise, the
procedure continues until that criterion is satisfied.

On the other hand, the Figure 2 shows the
details of the Design evaluation in Aspen Plus®
orange block. As can be seen, the first step is that
MATLAB® sends the instruction to open Aspen
Plus®; after that, MATLAB® sends to Aspen Plus®
the required information to perform the simulation,
and the instruction to perform the simulation is also
sent. Once the simulation has been performed,
MATLAB® takes back the results of the objectives
and constraints, in order to be fed to the
optimization strategy.

Finally, MATLAB® sends the instruction to
close Aspen Plus®, in order to reduce the use of
RAM memory. In the present contribution, the
details of how to perform the operations presented
in Figure 2 are given, considering a study case for
illustrative purposes. It is worth to mention that this
procedure was developed with MATLAB® 2007
and Aspen Plus® V7.1, and the code was validated
from these versions until MATLAB® 2012 and
Aspen Plus® V9.1. However, the instructions can
be applied to further versions if the main core of
instructions of both software does not change.

Before entering to the detailed instructions of
the operations showed in Figure 2, we need to
create a file with the simulation of the process of
interest in Aspen Plus®. Usually, this file is saved
with extension apw; however, the file employed in
the linking process is the one with extension bkp.
In the simulation file, it is desirable that the names
of the blocks and streams follow a logic
methodology; this is especially useful in complex
chemical processes, and also it helps to the
standardization of the optimization code for
future cases.

Also, we recommend ordering the components
according with the decreasing relative volatility. It
is important to initialize the recycled streams (if
there are any), i.e. interconnection or recycle flows;
this will help to improve the convergence of the
schemes where recycle streams are presented.

We are going to illustrate the process with a
Petlyuk sequence, which is showed in Figure 3.

We consider that we are interested in minimizing
the number of stages in prefractionator,
NSTAGE_B1, the number of stages in main
column, NSTAGE_B2, and the heat duty in main
column, DUTY. The constraints are the recoveries
of the three components presented in the
feed stream.

In order to perform this optimization, we
manipulate 12 variables which are: feed stage in
column B1 (FS_FEED_B1), number of stages in
column B1 (NSTAGE_B1), reflux ratio in column
B2 (BASIS_RR_B2), number of stages in column
B2 (NSTAGE_B2), distillate stream flow of column
B2 (BASIS_D_B2), side stream flow of column B2
(BASIS_S_B2), product stage of liquid
interconnection flow FL1 in column B2
(FS_FL1_B2), feed stage of vapor interconnection
flow FV1 in column B2 (FS_FV1_B2), vapor
interconnection flow (PF_FV2), feed stage of liquid
interconnection flow FL2 in column B2
(FS_FL2_B2), product stage of vapor
interconnection flow FV2 from column B2
(FS_FV2_B2), and the liquid interconnection flow
(PF_FL1).

As was mentioned before, we have to identify
the objectives and/or constraints of the
optimization problem, along with all involved
variables, manipulated and required for the
simulation.

The objectives, constraints and manipulated
variables are vectors, as described next.

Fig. 3. Petlyuk sequence and its variables

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1160

ISSN 2007-9737

Algorithm 1. Definition of objectives,
constraints and variables

1: Objectives(1)= NSTAGE_B1
2: Objectives(2)= NSTAGE_B2
3: Objectives(3)=DUTY
4: Constraints(1)=Rec1
5: Constraints(2)=Rec2
6: Constraints(3)=Rec3
7: Variable(1)= FS_FEED_B1
8: Variable(2)= NSTAGE_B1
9: Variable(3)= BASIS_RR_B2
10: ⁞
11: Variable(12)= PF_FL1

The variables presented in Algorithm 1
represent the initial values for the optimization
strategy. Nevertheless, in all optimization
strategies, new values have to be generated for all
variables that are manipulated and fed to Aspen
Plus® to perform the simulation.

These variables must be declared in the
optimization code, and they will be used to assign
the values from MATLAB® into the simulation file
in Aspen Plus®:

Algorithm 2. Assignation of names for the
variables

1: NameVar1=Variable(1)
2: NameVar2=Variable(2)
3: NameVar3=Variable(3)
4: ⁞
5: NameVark=Variable(12)

It is worth to mention that NameVark represents
the vector of variables that are manipulated during
the optimization strategy.

At this point, we have identified objectives,
constraints, manipulated variables and required
variables for the simulation in Aspen Plus®, which
file has already been created; also, the values
generated by the algorithm are declared and
stored for its posterior use. Now, the following step
is opening Aspen Plus® from MATLAB®.

We initiate this process by giving to MATLAB®
the route where the bkp file, that contains the
process is located, and also we give some
instructions to delete all files that Aspen Plus®
could generated in a previous simulation.

This procedure is shown in Algorithm 3.

Algorithm 3. Location of the Aspen Plus® file
and delete previous files

1: strFileAspenOr = [fileStr
'Folder1\Folder2\' strColType '\' strMezcla '\'
strColType ' ' strMezcla '.bkp'];
2: strFileAspen = ['Y:' '\' strColType ' '
strMezcla '.bkp'];
3: try
4: fileattrib(strFileAspenOr);
5: catch
6: err = lasterror;
7: rethrow(err) ;
8: end
9: try
10: fileattrib('Y:\')
11: % Delete files generated in previous
simulations in virtual disk Y
12: delete('Y:*.*')
13: delete(strFileAspen)
14: copyfile(strFileAspenOr,strFileAspen)
15: catch
16: strFileAspen=strFileAspenOr;
17: end

The code instructions shown in Algorithm 3
assign the route to a string type variable. We use a
virtual disk where the old files are deleted in order
to avoid conflicts; nevertheless, you must to use
your personals options in drive letters and routes.

Thus, the file of name ' strColType ' ' strMezcla
'.bkp' is located in the Folder strMezcla, inside the
Folder strColType, inside the Folder 2, which is
located in Folder 1.

The information after the sign % are comments,
while the rest are the code lines. In this work, we
are going to use Aspen Plus® as a local OLE
automation server [6]; in other words, we are going
to manage Aspen Plus as an external subroutine
that allows to generate the values of objectives and
constraints required in the optimization strategy.

In this case 'Apwn.Document' is the
programmatic identifier of an OLE-compliant COM
server, and h is the handle of the server's default
interface.

It is worth to mention that in MATLAB® a handle
is a reference to an object. Then, the following
instruction (Algorithm 4) opens Aspen Plus® from
MATLAB® along with the simulation of interest.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus 1161

ISSN 2007-9737

In the previous instructions, in Algorithm 4,
ihAPsim variable is the handle of the server. Also,
the instruction refers to opens strFileAspen, which
is the file specified in Algorithm 3.

In this routine, we use a variable from the class
ihNode from the automation server; in this object,
Aspen Plus® expose the problem input a result
data as a tree structure composed of ihnode
objects. The used subroutine navigate across the
tree structure of variables in Aspen Plus® until find
the last node of the variable name, where the
“value” method is used to recall the value; when
the last node is an array, the subroutine recall the
value of the element in the array. Also, the
subroutine performs some validation, but for the
complexity of the tree of Aspen Plus® the user
must to be sure that the names are correct;
otherwise the subroutine ends with an
error message.

Once the simulation is open, the names of the
compounds used in the simulation are retrieved
along with the flow of the main stream of the
process in the flowsheet (see Algorithm 5).

In Aspen Plus®, every simulation flowsheet has
different names thereby we need to program
separated functions for each process. In order to
make the code more generic we use a handle to
change the unit operations of the process.

The handle for each type of process flowsheet
is generated with the code showed in Algorithm 6.
The instructions to modify the processes variable
are contained in this handle, and it will be
presented later. At this point, we can make a
simulation with the instructions included in
Algorithm 6. Each one of the functions for different
process has the next structure. The input
arguments are: Solution: an array with the values
of the manipulated variables in Aspen Plus®, like
number of stages, stream flows, among others;
ihAPsim: is the handle of the Aspen Plus® server,
with the corresponding bkp file opened. And the
output arguments are: SolutionFactibility: return
true if the solution is feasible (for instance that the
total number of stages is greater than the number
of the feed stage); SolConstraints: returns the
value of the variables defined as constraints
(recoveries in this example); Objectives return the
value of the variables defined as objectives
(number of stages and heat duty in this example).
When the simulation is finished and the interested

Algorithm 4. Open Aspen Plus® from
MATLAB®

1: % Open connection to Aspen Plus
2: ihAPsim = actxserver('Apwn.Document');
3: % Open Aspen Plus file
4: ihAPsim.InitFromArchive2(strFileAspen);
5: % Makes visible the interface to the user
6: ihAPsim.Visible = true;
7: % Suppress messages to the user
8: % This is done to avoid popup messages to
the user in Aspen Plus during the optimization
process.
9: ihAPsim.SuppressDialogs = true;

Algorithm 5. Retrieve names of the
compounds and main stream in the simulation

1: % Retrieving the name of the compounds in
the simulation used in the stream FEED1 (the
main stream in the flowsheet)
2: ihNode_MIXED_Elements =
GetValueAspenVariable(
'Application.Tree.Data.Streams.FEED1.Input.
FLOW.MIXED.Elements',ihAPsim);
3: for
4: j=
0:(ihNode_MIXED_Elements.RowCount(0)-1)
5: Comps{j+1}=
ihNode_MIXED_Elements.ItemName(j);
6: TotFlow(j+1)=
ihNode_MIXED_Elements.Item(j).value;
7: end
8: % Retrieving the flow of the main stream in
the flowsheet (named FEED1)
9: TotFlowInput= GetValueAspenVariable(
'Application.Tree.Data.Streams.FEED1.Input.
TOTFLOW.MIXED',ihAPsim);
10: TotFlow=TotFlow*TotFlowInput;

Algorithm 6. Generates Handle of the function
for the process

1: % Generates Handle of the function for the
process
2: fhandleCall= str2func(['CallProyectName'
strProcessType]);

3: [SolutionFactibility SolConstraints
Objectives]=feval(fhandleCall,SolIni(1,:),ihAPsi
m);
4: ihAPsim.Close;
5: ihAPsim.release;
6: clear ihAPsim;

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1162

ISSN 2007-9737

values are retrieved, we can Close Aspen Plus®
and it releases the resources in MATLAB®.

On the other hand, the handle subroutine
allows modifying the values of the variables
required to perform the simulation in Aspen Plus®.
Thereby, we start the process of assigning names
for all variables in Petlyuk sequence:
prefractionator, main column, product and
interconnection stream flows, along with some
string assignations required to retrieve the values
of composition in each product stream (see
Algorithm 7).

Before sending these values to Aspen Plus®,
we suggest to perform a feasibility verification of
the values of the variables; this verification is
focused in the physical meaning of the variables.
In this way, the variables sent to Aspen Plus® are
consistent or physically feasible.

For instance, in the prefractionator the feed
stage number must be minor or equal to the total
number of stages, but never bigger, and also
greater to zero. This can be expressed as is shown
in Algorithm 8. The next step is reinitiating the
simulation before the values are changed in Aspen
Plus®; this is required to have reliable results on
the convergence of the simulation (see
Algorithm 9).

Once that the values are assigned to the
variables, these must be sending to Aspen Plus®
to perform the simulation. In order to do this, we
have created other subroutines to simplify the
connection to Aspen Plus®. The subroutine
SetValueAspenVariable is used to write a value to
a variable in Aspen Plus®. The function to call this
subroutine is shown in Algorithm 10.

Where the input arguments are: strVariable:
string with the name of the variable to read, as
appear in the Variable Explorer option, inside the
Tools Menu of Aspen Plus®; ValAspen: value to be
written in the strVariable of Aspen Plus®; ihAPsim:
object of type ‘Apwn.Document’ successfully
initialized with a valid Aspen Plus® bkp file. And
the output arguments are: Varargout: funOk
MsgAspen; funOk: boolean value indicating a
succesfully read; MsgAspen: error message
displayed from Aspen Plus® when a variable
cannot be read.

In this routine, we use a variable from the class
ihNode from the automation server; in this object,
Aspen Plus® expose the problem input a result

Algorithm 7. Assignation of names of all variables in
Petlyuk sequence

1: % Column B1 (Prefractionator)
2: % Number of stages in column B1
3: NSTAGE_B1=floor(Variable(1));
4: % Feed stage of stream flow FEED1
5: FS_FEED1_B1=floor(Variable(2));

6: % Column B2 (main column)
7: % Reflux ratio in column B2
8: BASIS_RR_B2=Variable(3);
9: % Number of stages in column B2
10: NSTAGE_B2=floor(Variable(4));
11: % Feed stage of FV1 interconnection stream in column
B2
12: FS_FV1_B2=floor(Variable(5));
13: % Feed stage of FL2 interconnection stream in column
B2
14: FS_FL2_B2=floor(Variable(6));
15: % Product stage of FL1 interconnection stream in
column B2
16: FS_FL1_B2=floor(Variable(7));
17: % Product stage of FV2 interconnection stream in
column B2
18: FS_FV2_B2=floor(Variable(8));
19: % Product stage of SIDE2 product stream in column B2
20: FS_SIDE2_B2=floor(Variable(9));

21: % Product and interconnection stream flows
22: % FL1 interconnection stream flow
23: PF_FL1=Variable(10);
24: % FV2 interconnection stream flow
25: PF_FV2=Variable(11);
26: % Stream flow where component A (light component)
is obtained in column B2
27: F_A=Variable(12);
28: % Stream flow where component B (intermediate
component) is obtained in column B2
29: F_B=Variable(13);
30: % Distillate stream flow in column B2
31: BASIS_D_B2=F_A;
32: % Side stream flow in column B2
33: BASIS_S_B2=F_B;
34: %% Assigning variables to the number of stage of
distillate and bottoms in the columns. These variables are
going to be used to retrieving the values of compositions in
each product stream.
35: % String with the number of stage of the distillate in
column B1
36: strNS_B1_D=int2str(1);
37: % String with the number of stage of the bottoms stream
in column B1
38: strNS_B1_B=int2str(NSTAGE_B1);
39: % String with the number of stage of the distillate
stream in column B2
40: strNS_B2_D=int2str(1);
41: % String with the number of stage of the side stream in
column B2
42: strNS_B2_S=int2str(FS_SIDE2_B2);
43: % String with the number of stage of the bottoms stream
in column B2
44: strNS_B2_B=int2str(NSTAGE_B2);

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus 1163

ISSN 2007-9737

data as a tree structure composed of ihnode
objects.

The used subroutine navigate across the tree
structure until find the last node of the variable
name, where the “value” method is used to recall
the value; when the last node is an array, the
subroutine recall the value of the element in the
array. Also, the subroutine performs some
validation, but for the complexity of the tree of
Aspen Plus® the user must to be sure that the
names are correct; otherwise the subroutine ends
with an error message.

Next, we have to set the value of all
manipulated and required variables inside Aspen
Plus® file to perform the simulation. All route
variables can be found in the Variable Explorer
option, inside the Tools Menu of Aspen Plus®.
Then, we begin changing values of variables in the
prefractionator, main column, along with product
flows (see Algorithm 11).

Algorithm 11. Change the values of variables
in the simulation

1: %% Column B1
2: % Changing values of variables of column B1
3: try
4: % Number of stages in column B1
5:SetValueAspenVariable('Application.Tree.D
ata.Blocks.B1.Input.NSTAGE',NSTAGE_B1,ih
APsim)
6: % Feed stage FEED1 in column B1
7:SetValueAspenVariable('Application.Tree.D
ata.Blocks.B1.Input.FEED_STAGE.FEED',FS
_FEED1_B1,ihAPsim)
8: % Feed stage FV2 in column B1

9:SetValueAspenVariable('Application.Tree.D
ata.Blocks.B1.Input.FEED_STAGE.FV2',NST
AGE_B1,ihAPsim)
10: % Product stage FL2 in column B1
11:SetValueAspenVariable('Application.Tree.
Data.Blocks.B1.Input.PROD_STAGE.FL2',NS
TAGE_B1,ihAPsim)
12: catch %% Warning message of error to
set data in column B1
13: warning('An error occurs during assigning
variables in column B1'); %#ok<WNTAG>
14: end %% column B1
15: %% Column B2
16: % Changing values of variables of column
B2
17: try
18: % Column B2
19: % Reflux ratio in column B2
20:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.BASIS_RR',BASIS_RR_
B2,ihAPsim)
21: % Number of stages in column B2
22:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.NSTAGE',NSTAGE_B2,i
hAPsim)
23: % Feed stage FV1 in B2
24:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.FEED_STAGE.FV1',FS_
FV1_B2,ihAPsim)
25: % Feed stage FL2 in B2
26:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.FEED_STAGE.FL2',FS_
FL2_B2,ihAPsim)
27: % Product stage FL1 in B2
28:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.PROD_STAGE.FL1',FS
_FL1_B2,ihAPsim)
29: % Product stage FV2 in B2
30:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.PROD_STAGE.FV2',FS
_FV2_B2,ihAPsim)
31: % Product stage SIDE2 in B2
32:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.PROD_STAGE.SIDE2',
FS_SIDE2_B2,ihAPsim)
33: % Product flow FL1 in B2
34: % This instruction sets the value of the
interconnection flow required
35:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.PROD_FLOW.FL1',PF_

Algorithm 8. Verification of the feasibility of
the initial solution

1: FS_FEED1_B1≤NSTAGE_B1
2: FS_FEED1_B1>0

Algorithm 9. Reinitiate the simulation in
Aspen Plus®

1: %% Reinitiate the simulation in Aspen Plus
2: try
3: ihAPsim.Engine.Reinit(4)
%4=IAP_REINIT_SIMULATION
4: catch
5: end

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1164

ISSN 2007-9737

FL1,ihAPsim)
36: % This instruction updates the initial value
of the interconnection flow to improve the
convergence
37:SetValueAspenVariable('Application.Tree.
Data.Streams.FL1.Input.TOTFLOW.MIXED',P
F_FL1,ihAPsim)
38: %Product flow FV2 in B2
39: % This instruction sets the value of the
interconnection flow required
40:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.PROD_FLOW.FV2',PF_
FV2,ihAPsim)
41: % This instruction updates the initial value
of the interconnection flow to improve the
convergence
42:SetValueAspenVariable('Application.Tree.
Data.Streams.FV2.Input.TOTFLOW.MIXED',P
F_FV2,ihAPsim)
43: catch
44: warning('An error occurs during
assigning variables in column B2');
45: end

46: %% Product stream flows
47: % Changing values of product stream flows
of column B2
48: try
49: % Distillate stream flow in column B2,
BASIS_D
50:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.BASIS_D',BASIS_D_B2,
ihAPsim)
51: %Side stream product flow in column B2,
BASIS_S
52:SetValueAspenVariable('Application.Tree.
Data.Blocks.B2.Input.PROD_FLOW.SIDE2',B
ASIS_S_B2,ihAPsim)
53: catch
54: warning('An error occurs during assigning
product stream flows in column B2');
55: end

Once all required and manipulated variables
are sent to Aspen Plus®, then the simulation is
performed with the following instructions
(Algorithm 12).

Another subroutine developed to simplify the
code is VerifyRunStatusError, which is executed
as follows (Algorithm 13).

Algorithm 12. Perform a simulation in Aspen
Plus®

1: %% Performs the simulation
2: % Starts the simulation
3: try
4: ihAPsim.Run2;
5: catch
6: end

Algorithm 13. Verify the status error in the
simulation

1: function RunStatusError=
VerifyRunStatusError(ihAPsim)

In this function, we read the error matrix of
Aspen Plus® in case that it exists, which is located
in the following path: 'Application.Tree.Data.
ResultsSummary.Run-Status.Output.
PER_ERROR.Elements'. If this matrix does not
exist, then the simulation has a successfully end,
and we accept to the results of the performed
simulation.

As was mentioned before, we have created
several subroutines in order to simplify the
connection to Aspen Plus®. For instance,
GetValueAspenVariable is used to read a variable
from Aspen Plus® simulation file, and it is used as
follows (Algorithm 14):

Algorithm 14. Verify the status error in the
simulation

1: function [valAspen,varargout]=
GetValueAspenVariable(strVariable,ihAPsim)

Where the input arguments are: strVariable:
string with the name of the variable to read, as
appear in the Variable explorer menu from Aspen
Plus®; ihAPsim: object of type ‘Apwn.Document’
successfully initialized with a valid Aspen Plus®
bkp file. The output arguments are: ValAspen:
value of the requested variable; Varargout: funOk
MsgAspen; funOk: boolean value indicating a
succesfully read; MsgAspen: error message
displayed from Aspen Plus® when a variable
cannot be read. This subroutine is very useful to
take back the information from Aspen Plus®
to MATLAB®.

At this point, Aspen Plus® has simulated the
process, and we have three possible scenarios
with respect to the convergence: convergence

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus 1165

ISSN 2007-9737

without warnings, convergence with warnings and
no convergence due to errors. If the simulation
converges and there are available results, with or
without warnings, then the values of objectives and
constraints of interest are taken back to
MATLAB®, using these commands (Algorithm 15).

Algorithm 15. Retrieve values for objectives
and constraints if the simulation converges

1: %% Retrieving output data of interest
2: try
3: if ~VerifyRunStatusError(ihAPsim)
4: % Taken back the heat duty of the column
B2
5: DUTY = GetValueAspenVariable([
'Application.Tree.Data.Blocks.B2.Output.DUT
Y.' strNS_B2_B] ,ihAPsim);
6: % Assigning values for the objectives of
interest: number of stages and heat duty
7: Objectives(1)=DUTY; % Heat duty
of the column B1
8: Objectives(2)=NSTAGE_B1; % Number
of stages in column B1
9: Objectives(3)=NSTAGE_B2; % Number
of stages in column B2
10: % Recovering the value of the composition
of the component of interest in its
corresponding product stream
11: % Composition of component 1 in the
distillate stream of column B2
12: Constraints(1)= GetValueAspenVariable([
'Application.Tree.Data.Blocks.B2.Output.X.'
strNS_B2_D '.' Comps{1}] ,ihAPsim);
13: % Composition of component 2 in the side
stream of column B2
14: Constraints(2)= GetValueAspenVariable([
'Application.Tree.Data.Blocks.B2.Output.X.'
strNS_B2_S '.' Comps{2}] ,ihAPsim);
15: % Composition of component 3 in the
bottoms stream of column B2
16: Constraints(3)= GetValueAspenVariable([
'Application.Tree.Data.Blocks.B2.Output.X.'
strNS_B2_B '.' Comps{3}] ,ihAPsim);
17: %Calculation of the recoveries of each
component
18: % Recovery of component 1 in the distillate
stream of column B2.
19:
Constraints(4)=Constraints(1)*F_A/TotFlow(1);

20: % Recovery of component 2 in the side
stream of column B2
21:
Constraints(5)=Constraints(2)*F_B/TotFlow(2);
22: % Recovery of component 3 in the bottoms
stream of column B2
23:
Constraints(6)=Constraints(3)*(TotFlowInput -
F_A - F_B)/TotFlow(3);

If the simulation does not converge, then the
algorithm allocates infinite heat duty and purities
and recoveries of zero. Once that the objectives
and/or constraints values are taken back to
MATLAB®, the optimization process can continue.
We suggest using a data base to record all the
values of manipulated variables, objectives and/or
constraints; so, all the information of the
performance of the optimization strategy and final
results are available any time.

The main advantage of using a database if
there is not storing limit, in counterpart with the
limitation in the number of cells found in Excel®.
Also, the direct relation between MATLAB® and
Aspen Plus® avoid losing information; for instance,
when the connection is through Excel®, this
software can crash and all the information will be
missing. Also, the use of database allows having
data processing tools, or even this database can
be used for data mining. It is worth to mention that
this software has been used to the study of
different types of chemical processes with
interesting results [29, 4, 13, 21, 11, 14, 10].

4 Generating bkp Files of Optimal
Solutions

Once than the optimization procedure has been
performed, we have as results a single or a set of
optimal designs; depending if we are using a mono
or multi objective strategy.

Thus, it would be desirable to generate
automatically the bkp files for all optimal solutions,
in order to analyze composition, temperature or
pressure profiles, or even use them to generate
dynamic files and performing control studies. Next,
the procedure to generate bkp files, given a set of

design variables for n optimal designs, is

presented.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1166

ISSN 2007-9737

First, we need to create a matrix in MATLAB®
where each row represents a complete design of a
given process, and the columns represent a
variable of each design:

ndesignsnndesignsndesignsndesigns

n

n

n

VarVarVarVar

VarVarVarVar

VarVarVarVar

VarVarVarVar

var,,3,2,1

1var,3,33,23,1

2var,2,32,22,1

1var,1,31,21,1

(2)

Once that the matrix is created the following
code is executed. First, the size of the matrix is
determined (30) (see Algorithm 16).

Algorithm 16. Calculate the size of the matrix

1: %Determine the size of the solutions family
2: % Row number= number of optimal designs
3: % Column number= number of variables of
each optimal design
4: [numSolutions,numVariables]=size(Sol);

Then, we initialize a counter, and the handle
function is generated according with the type of
process. This handle denotes the name of the
process or unit operations whose optimal solutions
bkp files are going to be generated (see
Algorithm 17).

Algorithm 17. Generates the handle function
according to the process type

1: % Updates the value of the actual solution
2: actualSolution=actualSolution+1;
3: SolNorm=Sol;
4: % Generates the handle function according
to the process type
5: fhandleCall= str2func(['CallProjectName'
strProcessType]

Next, Aspen Plus® is open with the following
instructions (Algorithm 18).

Algorithm 18. Open Aspen Plus®

1: % Open the connection to Aspen Plus
2: ihAPsim = actxserver('Apwn.Document');
3: % Open the Aspen Plus file
4: ihAPsim.InitFromArchive2(strFileAspen);
5: % Makes visible the application to the user
6: ihAPsim.Visible = true;
7: % Suppress the messages to the user

8: ihAPsim.SuppressDialogs = true;

Once Aspen Plus® is opened, then we use a
cycle to simulate and save each optimal design,
with the following code (Algorithm 19):

Algorithm 19. Save each optimal design

1: %% Evaluate each optimal design
2: for j=1:numSolutions
3: %Calculates the percentage progress
4: Avance= [j/numGeneraciones * 100]
5: [SolutionFactibility SolutionConstraints
SolutionsObjective]=feval(fhandleCall,SolNor
m(j,:),ihAPsim);
6: if nout >= 1
7: if j==1
8: [n,m] = size (SolutionConstraints);
9: [n1,m1] = size (SolutionsObjective);
10: res= zeros(numSolutions,m+1);
11: end
12: res(j,:)=[SolutionConstraints(1,:),
SolutionsObjective(1,1)] ;
13: else
14: strFileAspen2 = [regexprep(strFileAspen,
'.bkp', '') ' S' int2str(j) '.bkp'];
15: ihAPsim.SaveAs(strFileAspen2);
16: end
17: end
18: if nout >= 1
19: varargout(1) = res;
20: end

Finally, Aspen Plus® is closed and the
resources are released (see Algorithm 20).

Algorithm 20. Close Aspen Plus®

1: %Close Aspen Plus, releasing the resources:
2: ihAPsim.Close;
3: ihAPsim.release;
4: clear ihAPsim;

The files generated are going to be located in
the same folder where the original file for the
optimization is located. The name of the file will be
the same of the process type, plus the identification
code S1, S2, …, Sn designs, where Sn refers to
the nth solution.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus 1167

ISSN 2007-9737

5 Conclusion

A procedure to link Aspen Plus® with MATLAB®
has been presented, including the generation of
bkp files of optimal designs. The link between
these two powerful tools has great value, since it
allows using the computational capabilities of
MATLAB® along with the complete models for
chemical process of Aspen Plus®. The main
advantage of this link is the reduction in
computational resources, since just two softwares
are running, and the storage capacity of all
generated solutions is not limited, as in the case
where Excel® is used as linking software. The
availability of this code allows increasing the use of
complete models in the optimization of
chemical processes.

Acknowledgements

Financial support provided by Universidad
Autónoma de Querétaro, Exxerpro Solutions
(grant CAWS-1) and CONACyT (grants 239765
and 279753) for the development of this project is
gratefully acknowledged.

References

1. Agarwal, A. & Grossmann, I. E. (2009). Linear

coupled component automata for MILP modeling of
hybrid systems. Computers and Chemical
Engineering, Vol. 33, No. 1, pp.162–175. DOI:
10.1016/j.compchemeng.2008.07.014.

2. Alabdulkarem, A., Mortazavi, A., Hwang, Y.,
Radermacher, R., & Rogers, P. (2011).

Optimization of propane pre-cooled mixed
refrigerant LNG plant. Applied Thermal
Engineering, Vol. 31, No. 6-7, pp. 1091–1098. DOI:
10.1016/j.applthermaleng.2010.12.003.

3. Bhattacharyya, D., Turton, R., & Zitney, S. (2012).

Dynamic simulation and load-following control of an
integrated gasification combined cycle (IGCC)
power plant with CO2 capture. AIChE Annual
Meeting, Report Number NETL-PUB-390.

4. Bravo-Bravo, C., Segovia-Hernández, J. G.,
Gutiérrez-Antonio, C., Durán, A. L., Bonilla-
Petriciolet, A., & Briones-Ramírez, A. (2010).

Extractive Dividing Wall Column: Design and
Optimization. Industrial and Engineering Chemistry

Research, Vol. 49, No. 8, pp. 3672–3688. DOI:
10.1021/ie9006936.

5. Brunet, R., Guillén-Gosálbez, G., Pérez-Correa,
J. R., Caballero, J. A., & Jiménez, L. (2012).

Hybrid simulation-optimization based approach for
the optimal design of single-product
biotechnological processes. Computers and
Chemical Engineering, Vol. 37, No. 10, pp. 125–
135. DOI: 10.1016/j.compchemeng.2011.07.013.

6. Cowell, J. (1996). Object Linking and Embedding
(OLE). Essential Visual Basic 4.0 Fast. Essential

Series (Everything you need to know to develop
applications in VB4). Springer, London. pp. 136–
144. DOI: 10.1007/978-1-4471-3093-2_18.

7. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.
(2002). A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, Vol. 6, No. 2, pp. 182–
197. DOI: 10.1109/4235.996017.

8. Eslick, J. C. & Miller, D. C. (2011). A multi-

objective analysis for the retrofit of a pulverized coal
power plant with a CO2 capture and compression
process. Computers and Chemical Engineering,

Vol. 35, No. 8, pp. 1488–1500. DOI:
10.1016/j.compchemeng.2011.03.020.

9. Getu, M., Mahadzir, S., & Lee, M. (2013). Profit

optimization for chemical process plant based on a
probabilistic approach by incorporating material flow
uncertainties. Computers and Chemical
Engineering, Vol. 59, pp. 186–196. DOI:
10.1016/j.compchemeng.2013.05.026.

10. Gómez-Castro, F. I., Segovia-Hernández, J. G.,
Hernández, S., Gutiérrez-Antonio, C., Briones-
Ramírez, A., & Garmiño-Arroyo, Z. (2015). Design

of non-equilibrium stage separation systems by a
stochastic optimization approach for a class of
mixtures. Chemical Engineering and Processing:
Process Intensification, Vol. 88, pp. 58–69. DOI:
10.1016/j.cep.2014.11.001.

11. Gómez-Castro, F. I., Rodríguez-Ángeles, M. A.,
Segovia-Hernández, J. G., Gutiérrez-Antonio, C.,
& Briones-Ramírez, A. (2011). Optimal designs of
multiple dividing wall columns. Chemical
Engineering and Technology, Vol. 34, No. 12, pp.
2051–2058. DOI: 10.1002/ceat.201100176.

12. Gutiérrez-Antonio, C. & Briones-Ramírez, A.
(2009). Pareto front of ideal Petlyuk sequences

using a multiobjective genetic algorithm with
constraints. Computers and Chemical Engineering,
Vol. 33, No. 2, pp. 454–464. DOI:
10.1016/j.compchemeng.2008.11.004.

13. Gutiérrez-Antonio, C., Briones-Ramírez, A., &
Jiménez-Gutiérrez, A. (2011). Optimization of

Petlyuk sequences using a multi objective genetic

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1168

ISSN 2007-9737

algorithm with constraints. Computers and
Chemical Engineering, Vol. 35, No. 2, pp. 236–244.
DOI: 10.1016/j.compchemeng.2010.10.007.

14. Gutiérrez-Antonio, C., Ojeda-Gasca, A., Bonilla-
Petriciolet, A., Segovia-Hernández, J. G., &
Briones-Ramírez, A. (2014). Effect of Using

Adjusted Parameters, Local and Global Optimums,
for Phase Equilibrium Prediction on the Synthesis of
Azeotropic Distillation Columns. Industrial and
Engineering Chemistry Research, Vol. 53, No. 4,
pp. 1489–1502. DOI: 10.1021/ie4019885.

15. Khodadoost, M. & Sadeghi, J. (2011). Dynamic

Simulation of distillation Sequences in Dew Pointing
unit of South Pars Gas Refinery. Journal of
Chemical and Petroleum Engineering, Vol. 45, No.
2, pp. 109–116. DOI: 10.22059/JCHPE.2011.1512.

16. Kiss, A. A., Segovia-Hernández, J. G., Sorin
Bildea, C., Miranda-Galindo, E. Y., & Hernández,
S. (2012). Reactive DWC leading the way to FAME

and fortune. Fuel, Vol. 95, pp. 352–359. DOI:
10.1016/j.fuel.2011.12.064.

17. Lababidi, H. M. S., Alatiqi, I. M., & Bañares
Alcántara, R. (1996). Application of controllability

analysis tools during the conceptual design stage.
Computers and Chemical Engineering, Vol. 20, No.
1, pp. S207–S212. DOI: 10.1016/0098-
1354(96)00045-2.

18. Leipold, M., Gruetzmann, S., & Fieg, G. (2009).

An evolutionary approach for multi-objective
dynamic optimization applied to middle vessel batch
distillation. Computers and Chemical Engineering,

Vol. 33, No. 4, pp. 857–870. DOI:
10.1016/j.compchemeng.2008.12.010.

19. Logist, F., Vallerio, M., Houska, B., Diehl, M., &
Van Impe, J. (2012). Multi-objective optimal control

of chemical processes using ACADO toolkit.
Computers and Chemical Engineering, Vol. 37, pp.
191–199. DOI: 10.1016/j.compchemeng.2011.11.
002.

20. Martins, F., & Costa, C. A. V. (2010). Economic,

environmental and mixed objective functions in non-
linear process optimization using simulated
annealing and tabu search. Computers and
Chemical Engineering, Vol. 34, No. 3, pp. 306–317.
DOI: 10.1016/j.compchemeng.2009.10.015.

21. Miranda-Galindo, E. Y., Segovia-Hernández, J.
G., Hernández, S., Gutiérrez-Antonio, C., &
Briones-Ramírez, A. (2011). Reactive Thermally

coupled Distillation Sequences: Pareto Front.
Industrial and Engineering Chemistry Research,
Vol. 50, No. 2, pp. 926–938. DOI:
10.1021/ie101290t.

22. Navarro-Amorós, M. A., Caballero, J. A., Ruiz-
Femenia, R., & Grossmann, I. E. (2013). An

alternative disjunctive optimization model for heat
integration with variable temperatures. Computers
and Chemical Engineering, Vol. 56, No. 3, pp. 12–
26. DOI: 10.1016/j.compchemeng.2013.05.002.

23. Ochoa-Estopier, L. L. M, Jobson, M., & Smith, R.
(2013). Operational optimization of crude oil

distillation systems using artificial neural networks.
Computers and Chemical Engineering, Vol. 59, pp.
178–185. DOI: 10.1016/j.compchemeng.2013.
05.030.

24. Pham, Q. T. (2012). Using fuzzy logic to tune an

evolutionary algorithm for dynamic optimization of
chemical processes. Computers and Chemical
Engineering, Vol. 37, pp. 136–142. DOI:
10.1016/j.compchemeng.2011.08.003.

25. Ramzam, N. & Witt, W. (2006). Methodology for

decision support among conflicting objectives using
process simulators. Computer Aided Chemical
Engineering, Vol. 21, pp. 415–420.

26. Rebennack, S., Kallrath, J., & Pardalos P. M.
(2011). Optimal storage design for a multi-product
plant: A non-convex MINLP formulation. Computers
and Chemical Engineering, Vol. 35, No. 2, pp. 255–
271. DOI: 10.1016/j.compchemeng.2010.04.002.

27. Tona-Vásquez, R. V., Jiménez Esteller, L., &
Bojarski, A. D. (2008). Multiscale Modeling

Approach for production of Perfume Microcapsules.
Chemical Engineering and Technology, Vol. 31, No.
8, pp. 1216–1222. DOI: 10.1002/ceat.200800174.

28. Urselmann, M., Barkmann, S., Sand, G., &
Engell, S. (2011). Optimization-based design of

reactive distillation columns using a memetic
algorithm. Computers and Chemical Engineering,
Vol. 35, No. 5, pp. 787–805. DOI: 10.1016/j.
compchemeng.2011.01.038.

29. Vázquez-Castillo, J. A., Venegas-Sánchez, J. A.,
Segovia-Hernández, J. G., Hernández-Escoto,
H., Hernández, S., Gutiérrez-Antonio, C., &
Briones-Ramírez, A. (2009). Design and

Optimization, using Genetic Algorithms, of
Intensified Distillation Systems for a Class of
Quaternary Mixtures. Computers and Chemical
Engineering, Vol. 33, No. 11, pp. 1841–1850. DOI:
10.1016/j.compchemeng.2009.04.011.

30. Yue, D., Kim, M. A., & You, F. (2013). Design of

Sustainable Product Systems and Supply Chains
with Life Cycle Optimization Based on Functional
Unit: General Modeling Framework, Mixed-Integer
Nonlinear Programming Algorithms and Case Study
on Hydrocarbon Biofuels. Sustainable Chemistry
and Engineering, Vol. 1, No. 8, pp. 1003–1014. DOI:
10.1021/sc400080x.

31. Yue, D. & You, F. (2013). Sustainable scheduling

of batch processes under economic and

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen Plus 1169

ISSN 2007-9737

environmental criteria with MINLP models and
algorithms. Computers and Chemical Engineering,

Vol. 54, pp. 44–59. DOI: 10.1016/j.compchemeng.
2013.03.013.

32. Zhang, H. & Rangaiah, G. P. (2012). An efficient

constraint handling method with integrated
differential evolution for numerical and engineering
optimization. Computers and Chemical

Engineering, Vol. 37, pp. 74–88. DOI:
10.1016/j.compchemeng.2011.09.018.

Article received on 14/05/2018; accepted on 15/07/2018.
Corresponding author is Abel Briones-Ramírez.

Computación y Sistemas, Vol. 22, No. 4, 2018, pp. 1157–1170
doi: 10.13053/CyS-22-4-3087

Abel Briones-Ramírez, Claudia Gutiérrez-Antonio1170

ISSN 2007-9737

