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Abstract. Reliability analysis is an integral part of system 

design and operation. The study of maintenance based 
on the reliability requires prior modeling of the 
degradation of the considered system. This is a difficult 
task when the system becomes complex. The first step 
consists in exploiting the Return EXperience (REX) 
databases and the experts knowledge and advice to 
estimate the parameters of the model of degradation of 
the chosen system. The model of degradation is then, 
enriched taking into account maintenance operations. 
Once the system and its maintenance are properly 
formalized, a utility function   is established in order to 
evaluate a given maintenance strategy according to one 
or more given criteria. 

Keywords. Dynamic probabilistic graphical models 
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1 Introduction 

Nowadays, productivity is the major objective for 
the industrial world to keep competitive in an even-
increasing market. So, increasing the productivity 
can be realized through increasing the availability 
of the production capacity. To improve the 
performance of the parks of the electrical energy, 

it is essential to develop methods and evaluation 
tools of the residual reliability of the materials to 
optimize from a technico-economic point of view, 
the investments of maintenance to be realized. The 
major difficulty in establishing the Probability laws 
for the occurrence of components’ failures in the 
hydraulic system is that” each equipment should 
be considered as a prototype”, with specificities 
which limit the relevance of the only use of the 
statistical approach based on the hypothesis of 
similar data. 

One possible way to overcome this obstacle 
would be to aggregate the knowledge of different 
but complementary natures in terms of information 
on the equipment, by statistical techniques and 
physical approaches based on models or digital 
codes characterizing the behavior of the 
equipment. The statistical approach would make it 
possible to efficiently identify an ”average generic” 
reliability law that will be representative of all the 
components, a law that would then be 
individualized to each material thanks to the results 
of the calculations resulting from the physical 
approach and The historical useful life of 
each component. 
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This explains the many recent studies, both 
academic and industrial, on the reliability of the 
systems and their maintenance optimization. The 
maintenance concept has gradually emerged. The 
benefit of this approach is today recognized by the 
vast majority of industrialists. However, this 
recognition is still theoretical because of the 
underlying practical difficulties in the application of 
this method.  

The available knowledge on the reliability of the 
system is used to organize its maintenance. This 
approach is known as ʻʻReliability Centered 
Maintenance” (RCM) [1], maintenance based on 
reliability. The goal of this approach is to optimize 
the parameters of a maintenance strategy by 
defining the best compromise between the cost of 
maintenance of the system and its availability. To 
realize a study of maintenance based on the 
reliability requires prior modeling the degradation 
of considered system, which is difficult task when 
the system becomes complex. 

The first step consists in exploiting the REX 
database and the expert’s knowledge and advices 
to estimate the parameters of the model of 
degradation of the chosen system. The model of 
degradation is then enriched taking into account 
maintenance operations. Once the system and its 
maintenance are properly formalized, a utility 
function is established in order to evaluate a given 
maintenance strategy according to one or more 
given criteria. The objective of the RCM approach 
is then to maximize the utility function by adjusting 
the parameters of maintenance to realize the best 
compromise between maintenance costs and 
availability of the system. A large number of studies 
have already focused on the modeling of 
degradation processes and propose a set of tools 
or methodologies for modeling the degradation of 
discrete or continuous states systems. Two main 
modeling classes are generally considered. 

The first proposes methods for developing 
analytical models describing the evolution of 
degradation [2]. These approaches concern the 
mechanical community studying the evolution of 
fatigue defects. The second modeling class relies 
on stochastic methods. We are interested in the 
second class. Indeed, this category is decomposed 
into static stochastic approaches and dynamic 
stochastic approaches. In fact, the static stochastic 
modeling aims to define the end of life moments of 

the system without being really interested in the 
dynamics of the degradation. 

These approaches present a major interest 
because of their simplicity of implementation. The 
most used static stochastic models [3] are: the 
Exponential model, the Weibull model and the 
Berthoron model. However, these static 
approaches are not perfectly adapted to model the 
dynamics of a system and the dynamic stochastic 
approaches such as: dynamic stochastic 
processes, Markov Chains (MC) and more 
generally all Probabilistic Graphical Models (PGM) 
are preferred. We are interested in the second 
class. Indeed, this category is decomposed into 
static stochastic approaches and dynamic 
stochastic approaches. In fact, the static stochastic 
modeling aims to define the end of life moments of 
the system without being really interested in the 
dynamics of the degradation. 

These approaches present a major interest 
because of their simplicity of implementation. The 
most used static stochastic models [3] are: the 
Exponential model, the Weibull model and the 
Berthoron model. However, these static 
approaches are not perfectly adapted to model the 
dynamics of a system and the dynamic stochastic 
approaches such as: dynamic stochastic 
processes, Markov Chains (MC) and more 
generally all Probabilistic Graphical Models (PGM) 
are preferred. In our study, we are interested in the 
dynamic stochastic approaches. 

The present paper is structured as follows: the 
next part, introduces the general concepts of 
dependability analysis, maintenance strategies 
and the organization of maintenance based on 
reliability (RCM). The third section deals with a 
review on stochastic modeling degradation in the 
case of maintenance based on reliability. The 
fourth part details our proposed approach. Then, 
we conclude and present future work prospects. 

2 General Concepts  

2.1 Dependability 

Nowadays, dependability, presented as the 
science of failure, is omnipresent in all industrial 
areas. The objective is to respond to regulatory 
constraints or competitiveness requirements 
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(productivity, profitability...) and security of goods 
and people [4]. 

2.1.1 Definition 

Zio in [4] defines dependability as: All the 
capacities of an item which allow it to perform its 
function at the appropriate time for the intended 
duration without damage for itself and its 
environment. The dependability attributes are 
generally grouped under the acronym RMAS 
(Reliability: measures continuity of service, 
Maintainability: is the aptitude for repairs and 
evolutions, Availability: which is the fact of being 
ready to use; for a non-repairable system, 
availability   is equivalent to reliability, Safety: 
which is the absence of catastrophic or critical 
consequences for the environment.). 

2.2 Maintenance Modelling 

2.2.1 Definition 

Deloux in[5] defines maintenance as: The set of all 
technical, administrative and management actions 
during the life cycle of an item , intended to 
maintain or restore it to a state in which it can 
perform a required function”. Maintenance has 
some objectives. On the one hand, it aims    to limit 
the effects of disturbances( industrial installations 
are disrupted throughout their operation by 
malfunctions which affect production costs, the 
quality of products and services, availability, safety 
and security of persons) in order to achieve the 
required performance. On the other hand, 
maintenance aims to increase the availability of the 
system, reduce main tenance costs, improve 
security, or increase the quality of production. 

2.2.2 Maintenance Methods 

Figure 1 shows the different types of maintenance 
actions of a system generally grouped into two 
categories [6]. 

2.2.2.1 Corrective Maintenance  

It is the simplest maintenance strategy to 
implement. It consists in performing a maintenance 
action whenever a fault occurs on the system. The 
operations of maintenance are not planned. 

According to whether the intervention is final or 
not, two subcategories of corrective maintenance 
are defined. The first approach called palliative is 
provisional. It is often activated in an emergency, 
when a quick restart of the system is required. In 
this approach, the system is returned to the 
operating state as soon as possible without being 
repaired. The second approach named curative in 
which the system is refurbished before reboot. In 
both cases, we wait to undergo the failure of the 
system and its consequences before taking action. 

2.2.2.2 Preventive Maintenance 

Unlike the corrective maintenance, preventive 
maintenance is performed before failure occurs, in 
order to reduce the risk of failure. The interventions 
are either programmed in advance according to a 
timeline, or conditioned by the state of system 
degradation. The preventive maintenance action 
can be systematic, conditional, or predictive. The 
first approach is based on timeline defining the 
moments (periodic or not)  on  which  the  system 
must  be refurbished, whatever its state. The other 
two approaches require an instrumentation 
(permanent or punctual) to estimate the state of 
degradation of the system. Indeed, the conditional 
maintenance consists in activating maintenance 
actions conditionally to the current state of 
the system. 

It requires the implementation of a device for 
monitoring the degradation of the system, called 
diagnosis. The result of a diagnosis method can be 
a direct information on the state of the system or 
information on the Remaining Useful Life (RUL) 
(case of predictive maintenance). 

 

Fig. 1. Classification of system maintenance actions 
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Indeed, Predictive maintenance consists in 
activating maintenance actions based on an 
estimate of the remaining operating time before 
failure occurs (Remaining Useful Life (RUL). This 
type of maintenance can be assimilated to 
conditional maintenance; the difference is that for 
predictive maintenance it is necessary to 
extrapolate and predict the evolution of the state of 
system degradation to predict an intervention. This 
approach based on prognostics requires a model 
of degradation of the system. Maintenance 
strategies are used to define decision rules and 
determine the information context that determines 
a maintenance decision space. 

2.3 Organization of the Maintenance based on 
the Reliability 

The study of reliability is an essential step both in 
the conception of a system and in its operational 
phases. To answer this need, since the end of the 
70s, a particular organization of the maintenance 
was proposed, based on the use of the knowledge 
that we can have from the reliability of a system. 
This particular organization of maintenance is 
known as the RCM. The objective of this approach 
is to optimize the parameters of a maintenance 
strategy by defining the best compromise between 
the maintenance costs of the system and its 
availability. For a detailed description of this 
approach, the reader may turn to [1], which gives 
the first general description of the RCM. This 
approach follows this organization: 

‒ A model of degradation of the system resulting 

from the exploitation of REX database and/ the 

expert’s knowledge and advice to estimate the 

parameters of the model. 

‒ A modeling of the maintenance actions and their 

consequences on the state of the system, based 

on the existing maintenance 

repositories (references). 

‒ A cost function (utility function) to evaluate a 

given maintenance strategy from a set of 

parameters characterizing it. 

These three models correspond to different 
blocks of the general architecture to develop 

models of maintenance. This general architecture 
is represented in the following paragraph. 

2.3.1. General Architecture 

A model of maintenance is a set of tools, of models 
allowing to answer the main questions of the heads 
of the maintenance department. Such as: is the 
maintenance policy adapted to their needs, 
constraints, and objectives? And how to optimize 
it? These are tools for evaluating, comparing and 
optimizing the maintenance strategies. 

The basis of this architecture [7] is the 
development of a degradation model to simulate 
the behavior of the system during its use. This 
initial phase is the key of any model of 
maintenance based on the reliability. Indeed, 
considering an approach based on the reliability, 
the precision and accuracy of indicators provided 
by this model will largely depend on the quality of 
degradation modeling. The next step concerns the 
modeling of diagnosis and prognosis. Indeed, 
advanced maintenance strategies integrate 
monitoring systems that provide information on the 
state of the system components.  These sensors 
provide information on emerging faults and the 
generated diagnosis can lead to the release of the 
maintenance actions. 

The “diagnosis modeling” block corresponds to 
the location of the causes of the anomalies or 
failures observed on the system. It is based on a 
thorough knowledge of the system components, 

 

Fig. 2. General architecture of maintenance model 

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1445–1459
doi: 10.13053/CyS-24-4-3099

Bechaier Zemni, Antoine Tahan, Borhen Louhichi, Mohamed Ali Mahjoub1448

ISSN 2007-9737



the interactions between the components, the 
operating and environmental conditions and the 
context in which the system evolves. The 
“prognosis modeling” block is based on the results 
of the detection and the diagnosis to predict the 
duration of operation before the failure of the 
system. This prediction requires knowledge of the 
current state of the system and its future conditions 
of use. 

Then, the diagnosis prognosis results influence 
the maintenance actions related to the estimated 
state of the system. Maintenance actions modify 
the system state (or components on which these 
actions are performed). 

Finally, the last module considered for the 
development of a model of maintenance consists 
of a set of utilities (cost, gain) associated with the 
different blocks of the model. Indeed, this model 
lists the parameters on which the optimization 
algorithms will evaluate and compare different 
configurations of maintenance strategies. 

As shown in figure 2, the main input of the 
diagnostic / prognostic process is the state of the 
system characterized by the degradation model. 
So we are interested, in the rest of this paper, in the 
modeling of the degradation process. Indeed, it   is 
essential to build the most possible faithful models 
of the system behavior and degradation. To do this, 
it is necessary to choose the modeling tools with 
care. The modeling must allow translating the 
involved physical phenomena, to represent the 
interactions between the system components, to 
take into account the used data, and the available 
ways of calculations. 

2.3.2. Optimization of Maintenance: Diagnosis 
vs. Prognosis 

The optimization of maintenance is to ensure a 

certain level of availability of the equipments of the 

system at a lower cost. In order to avoid the costs 

due to the breakdown of the system, it is better to 

anticipate potential failures of the system to avoid 

them. Indeed, an action of maintenance consists 

in replacing the equipments of the system, which 

break down and are not capable to perform 

their function. 

The decision of a maintenance action is very 
complex and requires monitoring and intelligent 
analysis of the state of the system. 

It must be reduced to the operations of 
replacing the equipment, which has actually failed. 

Longer the maintenance phase, the more 
expensive it is. Therefore, the necessity for 
diagnostic methods to detect more exactly the 
signs of a potential failure in the system and 
identify the causes of failures in terms of 
equipments to be repaired. Thus, the diagnosis 
when performed with efficiency, improves 
productivity. Based on the information supplied by 
the methods of diagnosis, prognostic methods can 
estimate and predict the effects of these failures on 
the other equipments of the system. Prognostic 
methods are also used to improve the planning and 
scheduling of maintenance activities. In order to 
understand better the field of diagnosis and 
prognosis, figure 3 illustrates the chronology of the 
progression of the failure of a system’s component. 

At the beginning of the service life of the 
component, it is considered as being in good 
condition. After a certain time of operation, a state 
of incipient fault develops. Therefore, the severity 
of default increases until the component finally 
fails. If the system is allowed to continue operating, 
it is likely that other damage may be caused to 
other secondary components or systems. 

According to [8, 9], the field of application of the 
diagnosis generally takes place at the time of the 
failure of the component, or on the interval between 
the failure of the component and the possible 
failure of the whole system. However, if a condition 
of defect can be detected in an early stage, actions 
of maintenance can be delayed until the defect 

 

Fig. 3. Chronology of progress of failure [8] 
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≥ 

progresses in a more advanced state, but always 
before the failure. At this interval between the 
detection of an incipient fault condition and the 
occurrence of a failure, the prognostic domain 
appears. A sufficient interval between fault 
detection and system failure allows a range of 
operational functions and corrective maintenance 
work that can be planned in advance, with the 
necessary resources and personnel. In the next 
section, we present a review of the literature on the 
various modeling tools used in modeling the 
degradation process. 

3 A Review on Dynamic Stochastic 
Modeling of the Degradation Process 

The main characteristics to be modeled in a 
degradation process model for assessing reliability 
and maintenance aspects for dynamic system are: 
the complexity and the size of the system [10], the 
nature of multi-state components [11], 
uncertainties on the parameter estimation [10], the 
dependence between events such as failure [12], 
the temporal aspects [13], the integration of 
qualitative information with quantitative knowledge 
on different abstraction levels [14]. 

For modeling these requirements, many works 
are available and they are divided into two 
categories [9]. The first category is that of the 
models with continuous degradation, whereas the 
second category defines the models with space of 
finite states (also called multi-state model). 

3.1 Continuous Time Degradation Models 

In the case of a representation of a degradation 
process by a continuous model, the state of the 
system can be determined by a numerical value at 
each instant. In general, the evolution of the 
degradation is represented by a series of 

increasing values (Zt), (Zt >= 0). 

Thus, the states of the system are the results 
on the stochastic realizations on a process with 
increasing monotonous trajectories. For a relevant 
estimate, it is necessary to know the law of 
increasing degradation between two consecutive 
instants in order to estimate the level of 
degradation at any time [15]. According to [16], 
degradation is assumed to be a Markov process. 

The degradation at a given instant t depends only 
on the level of degradation at the precedent instant 
t-t and the time interval between the two instants. 
This is justified if the only information available on 
the state of the system is the increase in the 
degradation of the system between these two 
instants [17]. The class of Levy processes, which 
are stochastic processes with stationary and 
independent increases, is particularly well adapted 
to the modeling of continuous degradation of 
systems to estimate and optimize their 
maintenance strategy. Indeed, Levy processes 
include processes widely used in literature such as 
Gamma processes [18], the Poisson processes 
[19], and the deterministic Markov processes [20]. 

Among the many authors using Levy processes 
to model degradation, for example [21] was the first 
to propose using a Gamma process to model a 
random failure literature such as Gamma  
processes [18], the Poisson processes [19], and 
the deterministic Markov processes [20]. Among 
the many authors using Levy processes to model 
degradation, for example [21] was the first to 
propose using a Gamma process to model a 
random failure. 

In [18], the author proposes a more recent 
application of Gamma processes for maintenance. 
In addition, Gamma processes have been used for 
the prevention of track geometry defects (railway 
applications) [22, 23]. In [24], the authors also use 
two different non-homogeneous Poisson 
processes for the arrival of repairable and non-
repairable failures. Based on this model, 
preventive maintenance is established. In [25], the 
author considers that degradation follows a 
stochastic jump-type process. The occurrences of 
the jumps form a homogeneous or inhomogeneous 
Poisson process. Moreover, the authors suppose 
that the time of failure obeys a probability law, 
which is a function of the level of current 
degradation of the system and therefore is not 
defined by a threshold. 

3.2 Discrete Time Degradation Models 

Discrete time dynamic system refers to a set of 
each components, which may be in a state, which 
evolves as a function of a parameter t introducing 
a notion of order. The parameter t may for example 
represent a discrete time, a position. [3]. 
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In fact, the dynamic term does not concern the 
structure of the system, which remains unchanged, 
but rather reflects changes in the states of the 
system components over time. The discrete and 
finite qualifiers reflect the fact that the state space 
is a countable and a finite set. Figure 4 gives an 
example of a three-state dynamic system evolution 
over a discrete time. 

The aim is to model a multi-state system and 
therefore to capture how the system state changes 
over time. Indeed, a good modeling of the 
degradation process must take into account, at 
best, all the information contained in the observed 
trajectories of the system (transitions and sojourn 
time in each state). 

Several dynamic stochastic approaches 
grouped in the family of Probabilistic Graphical 
Models (PGM) and dealing with reliability analysis 
constitute tools allowing representing stochastic 
transitions between different states of a system and 
they are consequently adapted for the discrete 
modeling of degradation. 

PGMs include Stochastic Petri nets [26], which 
are powerful tools for modeling, analyzing and 
evaluating discrete event systems. They form a 
natural graphical support, which is a precious help 
for the analysis, and have analytical properties, 
which allow a simple evaluation of the behavior of 
the studied system.  

Several works on maintenance policy 
evaluation studies are based on the stochastic Petri 
nets formalism and associated with the Monte 
Carlo simulation [27, 28, 29]. 

The main drawback of using this type of tool is 
the need for high-performance simulation tools, 
which are generally very expensive. 

Hence, Markov Chains (MC) method is suitable 
for reliability studies of systems [30]. Indeed, the 
Markov Chains method allows representing 
stochastic transitions between different states of a 
multi-state and multi-component system and the 
integration of diverse kinds of knowledge. 
Therefore, the MC is well suited for the discrete 
modeling of degradation. In [31], the authors use 
the MC for the dynamic modeling of the 
degradation, in the aim to deduct estimations 
indicators of reliability and the lifetime. The 
authors, in [32], use the MC   to model the 
degradation of the geometry of a ballasted path. In 
addition, the work of [33] uses the MC to model the 
evolution of the rigidity of a bridge supporting a 
ballasted path. 

However, the use of MC has many drawbacks. 
In order to explain behavior and causalities, the 
modeling of the degradation process becomes 
more complex with a large number of variables. 
This requirement constitutes the first drawback. 
The next shortcoming of this approach comes from 
the constraint on state sojourn times which are 
necessarily exponentially (geometrically) 
distributed. Indeed, this Markovian hypothesis 
places the system directly into the maturity phase 
(zone 2 of the “Bathtub Curve” [5]) with constant 
failure rates. If some systems verify this 
hypothesis, several industrial applications 
behaviors are distant from geometric laws. In [7], 
the authors show that the MC approximation 
introduces a non-negligible bias in the modeling of 
system degradation. Therefore, an adapting model 
of maintenance with to such hypothesis can lead 
to very significant errors in the estimation of the 
optimal parameters of the maintenance. 

To overcome these limitations, on the one 
hand, semi-Markov models [34] were developed 
which allow considering any kind of sojourn time 
distributions. These tools provide powerful 
analytical tools when the studied system has 
reasonable size. On the other hand, the Cox model 
or a more general proportional hazard model [35] 
offers an interesting modeling tool when analyzing 
the effects of the contextual variables on the 
system degradation. These approaches have the 
advantage of flexibility on their conditions of use 

 

Fig. 4. Evolution of the dynamic system state over time 
(system trajectory) 
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(discrete/continuous time, discrete /continuous 
variables). However, these approaches are difficult 
to apply to large systems with a large number 
of variables. 

Moreover, recent works on reliability involving 
the use of PGMs, based on the Bayesian Networks 
(BNs) formalism, have been relevant in the context 
of complex system [36]. In [37], the RBs are used 
to analyze the reasons for the collapse of the 
railway bridge. 

Then, the authors in [38] explain how to model 
crossing dysfunction with RBs. PGMs, in particular 
RBs, allow the modeling of fault trees [39], while 
the dynamics version called Dynamic Bayesian 
Networks (DBNs) allows to model Markov Chains 
influenced by exogenous variables. In [40], the 
authors explain how to exploit DBNs to model the 
dynamic degradation system by a Markov Chain. 
Indeed, the factorization possibility of a Markov 
model by a DBN permits to reduce the model 
complexity and to model more complex system. In 
[41], the authors investigate the use of DBN for 
modeling the causal relationships between 
Degradation / cause / consequence. 

Then, utility nodes are integrated into the 
probabilistic problem. However, the analysis of 
reliability by PGMs in particular by RBDs is not 
without problems. Indeed, on the one hand, this 
type of modeling imposes to work in finite and 
discrete spaces of time and states. To overcome 
this drawback and avoid the discrete time 
modeling hypothesis, the Marko jump models [42] 
have been proposed. In [43], the authors explain 
how to deal to develop Bayesian Network in 
continuous time. However, the complexity of the 
learning and inference algorithms of these 
networks make it even more difficult to use them for 
complex applications and are mainly limited to 
academic works. 

The same way, in [44], the authors built hybrid 
BN including discrete and continuous nodes to 
estimate the system reliability. The time sampling 
of the continuous variables is updated by taking 
account the evidence. Indeed, the authors present 
this concept as an alternative method to simulation 
methods such as Markov Chain Monte Carlo 
(MCMC). On the other hand, the main shortcoming 
of this approach comes from the constraint on state 
sojourn times which are necessarily exponentially 
(geometrically) distributed. 

In order to overcome these restrictions, a 
specific dynamic graphical model called Graphical 
Duration Model (GDM) based on the RBD 
formalism, has been proposed [45]. 

This approach aims to represent complex 
stochastic degradation process with any kind of 
state sojourn time distributions. 

In [46], the author proposes to use PGMs with 
an approach based on an engineering approach, 
ie a system modelling step precedes the transition 
to a simulation tool. The authors in [47] propose 
another approach based on PGMs. This approach 
makes it possible to calculate the probability law of 
each component and to deduce the residual 
lifetime of the system. 

In [48, 49], the authors formalized the inclusion 
of exogenous variables representing events 
(maintenance actions, environmental conditions) 
in a degradation processes by using an Input 
Output Hidden Markov Model (IO-HMM). Then, the 
model of this process is integrated in a systems 
global model formalized by an Object Oriented 
Dynamic Bayesian Networks (OODBN).  

In the same way, other authors use a classical 
Hidden Markov Model (HMM) such as the Hidden 
Markov Model (HMM) [50] or Hidden Semi Markov 
Model (HSMM) [51] to model the unobservable 
process of degradation and link it to observations of 
their consequences.  

In [52], the authors show that it is possible to 
model the level of degradation process using a 
classical HMM and thus help in the organization 
and evaluation of maintenance. 

 

Fig. 5. Modeling approach 
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In [53], the authors propose contributions for 
modeling the impact of component reliability on the 
functional levels of systems by Bayesian networks. 

Indeed, Bayesian networks present an 
inference tool with the incorporation of knowledge 
on the domain. In [54], first, the authors were 
interested in how DBN can handle epistemic and 
random uncertainties. Then, they have integrated 
the dynamic aspect in this modeling of uncertain 
processes.  

The authors in [55] extended DBN to Evidential 
Networks based on an extended Bayesian 
inference. Evidential Networks deal with multi-state 
systems for reliability and performance evaluation. 
In the next section, we present the 
proposed  approach. 

4 Proposed Approach 

4.1 General Description 

The proposed approach aims to contribute to the 

following scientific issues: 

‒ Modeling of degradation processes in the case 

of maintenance based on reliability. 

‒ Diagnosis of the state of health of a system and 

the prognosis of performance, degradation and 

residual lifetime of a system. 

Figure 5 generalizes the modeling approach. 

Indeed, the  use of a dynamic modeling tool allows, 

on the one hand, to model the causal relationships 

that exist between the various events and variables 

of the system and, on the other hand, to take into 

account the probabilistic and uncertain factor of the 

values taken by these variables. 

This step is performed offline. Then, depending 

on the models learned in the off-line phase and the 

current observations of the data available and 

provided by the sensors, estimates and / or 

predictions are made online (possibly, off-line 

through simulation data, for example) to determine 

the health state and future performance of the 

system. The results of the diagnostic / prognostic 

process are used to reduce maintenance costs, 

improve availability and reliability, and ensure the 

security of goods and people. 

4.2 First Contribution: The Proposed 
Degradation Process Model 

The literature review of classical methods for 
modeling degradation processes has revealed, to 
our knowledge, that few approaches allow 
considering several components having their own 
degradation mode, while taking into account the 
influence of context variables on the degradation 
process and without being limited to a 
Markov hypothesis. 

In fact, there are few methods that incorporate 
in the modeling of the degradation, on the one 
hand, the influence factors (such as service time, 
age, number of requests, and environmental 
conditions, etc.), the degradation symptoms, the 
relation between the degradation observation and 
the appearance of their failure modes, the effects 
of maintenance activities and the planning and 
execution of maintenance actions. In addition, on 
the other hand, the characterization, 
representation and propagation uncertainties in 
maintenance studies based on reliability. 

In the aim to cover the propagation 
uncertainties aspect the idea consists in extending 
the models of the classical HMM family to the 
Dynamic Probabilistic Graphic Models based on 
the DBN formalism to allow the modeling of the 
degradation and its impact on the performance of 
the systems. 

Thus, a temporal propagation of the 
uncertainty in the form of probability intervals is 
established in order to solve the problems of 
diagnosis and prognosis. It is in this context that 
the learning and inference algorithms are 
extended. The choice of the DBN formalism is 
justified by some properties related to the DBN. 
Indeed, in the first place, the DBN allows a 
reduction in the number of computing operations 
by using the new efficient inference algorithms.  

This allows realizing a learning of the 
degradation model and a faster inference in the 
case of complex phenomena involving several 
states and / or observation matrices. Secondly, 
DBN facilitates the representation of complex 
models by modeling in two layers defining the 
initial model parameters and the dynamic 
(stochastic) aspect. In addition, the major 
difference between an HMM and a DBN is that, in 
the first model, the state space is described by a 
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single random variable Xt, whereas, for a DBN 
the hidden state can be represented by a group 

of random variables X1, ..., XNk . 

Thus, DBN makes it easier to manage 
complex systems or variables having 
dependencies that are difficult to represent by 
HMMs. On the other hand, the main drawback of 
standard HMMs lies in the use only of the 
geometric distribution in the modeling of its 
duration distribution. Thus, the HMM modeled 
under the DBN formalism and with integration 
explicitly the notion of duration in its distribution 
model. In this way, the obtained HMM can 
directly model any kind of distribution and 
consequently offers a significant advantage 
when used in many applications. 

Then, in the objective to cover the influence 
factors such as service time, environmental 
conditions, number of requests and the effects of 
maintenance activities and the planning 
execution on the degradation process model, a 
collection of context variables can be used to 
model the system context. So, the proposed 
approach is based on modeling tool having the 
following characteristics: 

‒ A typical HHM model represented by the DBN 

formalism. 

‒ The explicit integration of any kind of state 

sojourn time distribution. 

‒ The integration of a collection of context 

variables (co-variates). 

4.2.1 Detailed Description of the Degradation 
Process Model 

The procedure for modeling the degradation of the 
system and predicting its progression over time is 
summarized as shown in Figure 6 and described 
as follows: 

1) Define the variables of the HMM model 
represented by a RBD (number of states 
corresponding to the different states of 
degradation, number of observations 
corresponding to the characteristics used, 
duration of stays   in different states, context 
variables (covariates)) . Thus the objective is to 
manipulate the set of (Xt, St, NZt, At) where: 

‒ Xt ,(1 ≤ t ≤ T ): it is a random variable with 

values in X, representing the system 
state at time t over a sequence of length T. 
It depends on the previous system state 

X(t−1) , the previous remaining duration S(t−1) , 
on contextual  variables  NZy  and  on the 
maintenance activities At. the dependence 

with X(t−1) defines the dependencies 

between time slice (transitions from one 
state to another when arriving at the end of 
sojourn time). While the dependence with 

S(t−1) allows to activate the change of state. 

‒ St ,(1≤ t ≤T ): it is a random variable with 

values in S, representing the remaining time 
before a system state modification 
(remaining sojourn time). It depends on the 
previous duration variable S(t−1) for the 

decrementation of the sojourn time and on 
the current state Xt for the rest of sojourn 
time when a transition has taken place at 
time t-1 and, optionally, on the previous 

state X(t−1) and some contextual 

variables NZt. 

‒ NZt : it is a secondary network representing 

the influence of context variables on the 
degradation model whose objective is to 
define the distribution of a possible collection 
of context variables (covariates) 

Zt=(Z(p,t))1≤p≤P that works on variable state Xt 

and duration variable St. 

‒ At, (1 ≤ t ≤ T ): it is a random variable with 

value in A, representing the maintenance 
action selected at time t over a sequence of 
length T and their effects on the 
degradation model. 

2) Representation of the HMM (in this case, we 
choose the factorial HMM with two hidden 
nodes X and S and 1 observed node O) model 
by an RBD (elaboration of the structure and 
representation of dependencies between time 
slices and variables) (Figure7). 

3) Learning phase (Off-line): The training data, 
which are delivered by the installed sensors to 
monitor the system, representing the 
degradation history. The characteristics, 
presented in each  historical at the t time, are 
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used to estimate the parameters of the models 
obtained as well as their temporal parameters 
(sojourn time in each state). These parameters, 
which represent system degradation, are 
obtained through a well-adapted learning 
Expectation Maximization (EM) algorithm of 
Baum-Welch, generalized to the DBNs. 

4) Exploitation phase (On-line): after the 

estimation of the parameters of these models, 

they can be used On-line on new observations 

to know the health state of the system using 

the (exact or approximate) inferences 

algorithms. To do this, the characteristics 

extracted from monitoring system are 

conditionally injected into the learned models 

in order to select the one that represents the 

best current observation. The selection 

process is based on the calculation of the 

probabilities of the different models in relation 

with the current observation. Thus, the 

selected model is then used to detect, 

diagnose the current state of the system and 

estimate the future performance of system. 

4.3 Second Contribution: Towards the 
Identification of New Features of Prognosis 

The objectives of prognosis are to anticipate the 
occurrence of a phenomenon, which has just 
occurred and thus allows   the operator to avoid the 
consequence failures, to increase the availability of 
the system, to improve their security and to reduce 
the costs of maintenance. 

Because prognostic algorithms based on 
degradation follow the tendency of some measure 
of degradation, called a prognostic feature, the 
identification of an appropriate prognostic feature 
is essential for the performance of the prognostic 
model. In fact, a good prognostic feature must well 
capture the trend of the fault progression through 
the system’s entire lifetime. It is difficult to make an 
accurate prediction if the trend of the health 
indicator is not evident throughout the entire life 
cycle of the system or if the trend is shown just 
before a failure occurs. 

Thus, the scientific issue concerns obtaining 
the characteristic and monotonic indicators which 
allow, on the one hand, to detect the first signs of 
degradation and on the other hand to predict with 
early enough the failures of the system. Several 
feature selection methods have been developed. 
At first, the identification of the prognostic 
characteristics is left to the analysis and judgments 
of the experts. Prognostic feature are usually 
chosen by a visual inspection of the available data 
which is time consuming and expensive. 

Then, many approaches using Artificial 
Intelligence approaches have been developed [56, 
57, 58]. In [59], the authors develop two new 
defect characteristics called TALAF and THIKAT, 
which combined with classical characteristics, in 
the aim to improve diagnosis up to the point where 
the ultimate signs of catastrophic failures are 
observed and to diagnose the severity of the 
degradation of the ball bearings. It is also possible 

 

Fig. 6. Phases of the Modeling Process 

 

Fig. 7. HMM in the form of a DBN representing the state 

system, the sojourn time, the influence of 
context variables 
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to merge several characteristics into a single health 
indicator, which is then used to predict the 
performance using an automated approach, which 
results in an optimal or near-optimal feature. 

As automated approach [60] proposed a 
method based on the genetic algorithm to identify 
an optimal set of prognostic features from a 
population of characteristics and also proposed a 
set of fitness measures (prognostic suitability 
metrics) namely, monotonicity, prognosability, and 
trendability to evaluate the goodness of the 
identified feature. These measures can be used 
with any traditional optimization algorithm to 
identify the appropriate prognostic feature. 

The authors in [57] propose to use a metric 
based on the separability: measure of consecutive 
time segments in order to evaluate the quality of 
the extracted feature from the raw signals for 
the  prediction.  

An approach based on Genetic Programming 
(GP) has also been proposed by [61] to identify 
advanced features with a strong correlation  to the 
defect progression in order to achieve 
better  prediction.  

However, it is very difficult to determine a failure 
threshold of the identified feature especially when 
different features are involved in the GP. Therefore, 
keeping the original feature is crucial to 
determining this threshold failure. 

4.3.1 Problem Statement and Description 
Approach 

In a situation where fault-to-failure data is rare and 
the development of degradation models proves 
difficult, the problem is whether it is possible to 
make a good prediction in the absence of 
prognostic characteristics, which can be identified 
to represent the fault progression.  

We have focused on the identification of new 
prognostic features possessing the above 
mentioned qualities. The approach of the proposed 
prognosis methodology is described in Figure 8. 

Indeed, we propose a Guided Swarm 
Intelligence advanced extraction technique based 
on Particle Swarm Optimization (PSO) Meta-
heuristic to reveal the correlation between the 
prognostic features and the degradation of the 
system using the set of metrics proposed in [60] 
and the proposed model in the first contribution 
(HMM model represented by an RBD and 
integrating the distribution of the sojourn time 
durations) as a prognostic algorithm for the 
prediction of future system performances. 

5 Conclusion 

In this paper, firstly, the general concepts of 

dependability analysis, maintenance strategies 

and the organization of the RCM have been 

presented. Then, a bibliographical review has 

been presented on stochastic modeling 

degradation in the case of maintenance based on 

reliability. Next, we have detailed our proposed 

approach, which is based on two contributions.  

On the one hand, we have proposed a 

degradation process model based on tools having 

the following characteristics: a typical HHM model 

represented by the DBN formalism, the explicit 

integration of any kind of state sojourn time 

distribution and the integration of a collection of 

context variables (covariates).  

On the other hand, we have addressed an 

identification of   new features of prognosis. Finally, 

in the future work, we will address an 

implementation and a simulation of the proposed 

approach. 

 

Fig. 8. Proposed methodology for prognosis with the 
identification of new prognostics features 
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