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Abstract. Nowadays, the development of new
technology is strongly based on nanomaterials study,
such as vertically aligned nanotubes, which are widely
used in different fields of industry. Properties of
these materials depend on the features of nanotubes.
Measurement of these characteristics is performed by
a nanotechnologist on images obtained by techniques
such as scanning electron microscopy (SEM), however
this process is mostly performed manually. When
the characterization of a large sample of images is
necessary, this task can become slow, laborious and
subjective. This paper reviews standard methods in
image analysis for the characterization of vertically
aligned nanotubes without the use of specialized
software. The methods have been grouped into
four categories: SEM image restoration, nanotubes
segmentation, feature extraction and validation; these
correspond to the image analysis stages. Results
of applying these methods on images acquired with
scanning electron microscopy are also shown.

Keywords. Image analysis, nanotubes characterization,
scanning electron microscopy.

1 Introduction

Technological advances strongly depend on the
selection and use of specific materials, for
example, the uses of steel in the first and second
industrial revolution and the role of silicon in
electronic applications.

The study of suitable materials for the de-
velopment of new technology has triggered the

uprising of fields such as materials science
and engineering, whose goal is to gather basic
knowledge of the materials internal structure,
the relationship between their properties and
the design and applications [6]. Today this
science pays special attention to nanomaterials,
such as nanotubes. This paper focuses on
these structures, particularly in vertically aligned
nanotubes (VANT).

There are different techniques for studying
VANT, among these it is found the microscopy. It
uses optical, scanning electron (SEM) and atomic
force microscopes to make these structures visible,
see Fig. 1. Image acquisition of VANT is carried
out by digital cameras connected to microscopes
that have increased their quality and reduced costs
in recent years.

In addition, with the development of increasingly
powerful computers, a great interest in image
analysis for automatic extraction of quantitative
characteristics, e.g., to count nanotubes in an
image, calculate their size and describe its shape,
as come to scene.

VANT characterization is traditionally performed
by semiautomatic routines that work on images in
the computer, which brings certain disadvantages.
Counting these structures manually is a laborious,
boring and slow activity, which limits the number
of images that can be analyzed. Additionally,
measurement of other characteristics, e.g., their
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Fig. 1. SEM image example. Vertically aligned TiO2

nanotubes for characterization

Fig. 2. Bulk material and nanomaterials. Classification
based on the dimensions

diameter may be not representative because only a
fraction of nanotubes is considered for calculation.

Finally, since the image characterization is
performed by human observers, the process is
exposed to subjectivity and might have variability in
the measurements when is performed by different
people or even by the same specialist.

Automatic image analysis has the potential to
overcome the disadvantages mentioned above.
First, it is performed using computer resources,
which reduces the time and effort required for
VANT characterization. Second, it does not
require observer’s intervention; therefore the
subjectivity problem is overcome because the
same parameters and algorithms are used in each
image. And thirdly, it can help create versatile tools
to work on images acquired by any microscope, not
like specialized programs that currently exist.

The aim of this paper is to review recent
methods in the image analysis field applied to
the automatic characterization of VANT, and serve
as a basis for researchers in the developing of
computer systems in this specific domain. The
methods have been divided into four classes:
SEM image restoration, nanotubes segmentation,
feature extraction and validation.

2 Nanotubes

First Nanotubes experiments can be trace back to
1952 with carbon nanotubes.

Nowadays, nanotubes are made of a variety of
elements and its uses are promising in remarkable
fields such as health science and electronic
industry, to name a few.

2.1 Definition and Properties

A nanotube is an element of 1D nanomaterial,
category in which nanowires and nanofibers
belong. Nanomaterials are classified as 3D, 2D, 1D
and 0D; it means how many dimensions are above
100 nm (Fig. 2).

Nanotubes can be modified in many ways,
associating a foreign element by physical and
chemical techniques; resulting nanotubes are
called meta-nanotubes. Five different types of
association are listed below [15].

Doped nanotubes: nanotubes are associated
with electron donor or acceptor elements.

Functionalized nanotubes: where various
individual chemical functions are grafted.

Decorated (Coated) nanotubes: the foreign
component is a genuine phase, from the point of
view of chemistry and structure.

Filled nanotubes: the inner cavity is fully
or partially filled with foreign atoms, molecules,
or compounds.

Heterogeneous nanotubes: carbon nanotubes
whose carbon atoms from the hexagonal graphene
lattice are partially or even totally substituted with
hetero-atoms.
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2.2 Applications

The exceptional electrical, chemical, and mechani-
cal properties made carbon nanotubes (CNT) used
widely in the construction of chemical sensors and
biosensors, especially in the field of supporting
materials [24]. Inorganic nanotubes (especially
metal sulfides or oxides) are mostly fabricated to
exploit other material-specific properties, and the
focus of interest is on biomedical, photochemical,
electrical and environmental applications [21,25].

2.3 TiO2 Nanotubes

In materials science, TiO2 nanotubes are one of
the most studied compounds because of their
wide potential use in photocatalysis, dye-sensitized
solar cells, and biomedical devices; reason
why they were chosen for this work. These
1D nanoestructures provide highly stable unique
electronic properties, such as high electron
mobility or quantum confinememnt effects, a very
high specific surface area, and even show a very
high mechanical strength.

Self-organized oxide tube arrays or pore arrays
can be obtained by an anodization process of a
suitable metal. When metals are exposed to a
sufficiently anodic voltage in an electrochemical
configuration, an oxidation reaction will be initiated.
The first self-organized anodic oxides on titanium
were reported for anodization in chromic acid
electrolytes containing hydrofluoric acid by [33].
This work showed that organized nanotube layers
(although the author called the structure porous) of
up to about 500 nm in thickness. The tube structure
was not highly organized and the tubes showed
considerable sidewall in homogeneity [22].

3 Scanning Electron Microscope

Since the scanning electron microscope (SEM)
was commercialized, material characterization by
SEM has shown a remarkable progress. Now,
many types of SEMs are being used, and their
performance and capabilities are greatly different
from each other. Their general use is to
obtain high magnification images of conductive
or semiconducting samples from different fields

of sciences and industry areas. However,
implementation of new technological advances
allows to obtain images from non-conductive
materials, and also the posibility to use the SEM as
both, characterization and fabrication technique.

3.1 Working Principles

To be able to use a SEM, it is essential to
recognize their features, as well as to understand
the reasons for the contrast of SEM images.
The scanning electron microscope is used for
observation of specimen surfaces. When the
specimen is irradiated with a fine electron beam
(called an electron probe), secondary electrons are
emitted from the specimen surface. Topography of
the surfaces can be observed by two-dimensional
scanning of the electron probe over the surface
and acquisition of an image from the detected
secondary electrons [12]. To form the electron
probe, the SEM requires basically an electron gun,
a condenser lens, and an objective lens. Other
components are necessary to, but it could vary
because of design, and applications.

3.2 Electron Matter Interactions

Since the interaction electron matter release
different types of electrons and signals (see Fig.
3), there are different types of electron and
signal detectors for image acquisition in materials
science, some of the most commonly used in
SEM are the SE (secondary electron), BSE
(backscattered electron), in-beam SE, and the
EDX detector.

There are two main issues involved in image
acquisition, the material composition and the
information we want to obtain. For example,
non-conductive materials limit the quality of
image because of the material charging and
the low signal, and the selected signal detector
depends on the electron emitted from the
sample, secondary electrons are sensitive to the
morphology and give information near to the
surface, while the back-scattered electrons comes
deeper from the sample and give information of the
atomic mass. Other photonic signals are emitted
from the sample, for example, characteristic x-rays
and continuum bremsstrahlung, the x-rays are
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Fig. 3. Scheme of emission. Various electrons and
electromagnetic waves from the specimen [12]

used to know qualitative elemental composition of
the sample.

3.3 Image Processing Mechanism

All the electronic or photonic signals resulting
of the electron matter interaction can be used
to produce an image according to the detector
mechanisms, but the most common is the SE
image. The called “raster image” begins in the
scan of the specimen by means of a very thin
electron beam (a few nanometers of diameter)
controlled by electrostatic lens, the magnification
depends on the scanned area and the screen
resolution, smaller scanned area achieves larger
magnification. Once the secondary electrons
are emitted from the specimen, a grid whit a
low positive voltage attract them, and then are
accelerated to reaches the scintillator with enough
energy to emit photons, a photomultiplier amplify
the signal, the brightness of the image depends
on how many electrons reaches the detector
and the contrast can be modifying changing the
photomultiplier voltage.

3.4 Nanotubes SEM Characterization

In nanotubes characterization, is necessary
to define general properties as the chemical
composition, random or aligned growth orientation.

Fig. 4. Nanotubes characterization. Features extraction
of vertically aligned TIO2 nanotubes sample

Specific features are obtained in individual
nanotubes as the length, inner and external
diameter, wall thickness, gap between nanotubes,
and crystalline structure are the most commonly
used fixtures to define the nanotubes (see Fig. 4)
[11,28,32].

Above mentioned features are normally obtained
by means of several characterization technics;
FESEM (field emission scanning electron mi-
croscopy), XRD (x-ray diffraction), TEM (transmis-
sion electron microscopy), EDX (energy dispersive
x-ray spectroscopy), PL (photoluminescence),
BET (Brunauer-Emmet-Teller) and XPS (x-ray
photoelectron spectroscopy) are the most used
[27,29].

In SEM, when a specimen is well known,
extract sample features becomes easier. However,
this rarely happens and the task begins to be
tough. Each analyzed sample has its own image
processing issues, but in general, get the optimum
contrast and focus is critical to precisely define
the edges. Edges are very important in feature
measurements. In NT, it is all about edges, since
a well-defined edge allows to measure distances,
diameters, heights, etc.

In nanoscale, at very high magnification,
SEM measurements are very susceptible to
electromagnetic and mechanical noise, to avoid
this, scan speed is increased and image quality
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Fig. 5. Nanotubes density. Example of manual method
to estimate the nanotubes density in a SEM image 
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Fig. 6. Image analysis process. Stages of the image
analysis for VANT characterization

is decreased, losing sharpness and getting
inaccurate measurements. Also, acquirable
statistics, as average diameter or density, may
be a tedious, tired and very slow task, and are
susceptible to the issues treated above.

However, depending on the tools at hand,
strategies to separate by reduced areas, and
manual counting could be used (see Fig. 5).

Actually, SEM’s software offers a wide variety of
tools which could be useful in general applications
areas, however, the mentioned tools have low
performance in specific areas due to its not
specialized development.

To overcome this problematic, it is necessary to
buy an specialized expensive software or perform
a post-processing image analysis procedure.

4 Image Analysis

Image analysis process for the characterization of
VANT involves useful information extraction from
SEM image database by means of automatic
methods (see Fig. 6). According to literature, in
order to achieve this, a series of main stages could
be followed as SEM image restoration, nanotubes
segmentation, feature extraction, validation and
data analysis. Some of these are described in
detail below. A good example of image analysis
to characterize nanotubes can be seen in [2].

4.1 SEM Image Restoration

The main objective of restoration techniques is
to recover a SEM image of VANT that has been
degraded. To achieve this, it is necessary to
know the degradation phenomenon that produced
this result.

The principal sources of degradation in SEM im-
ages are generated during the acquisition process
which is affected by a variety of factors such as:
external influences, the fluctuation of temperature
in the room and mechanical vibrations; equipment
quality, defects and malfunctions of the sensing
elements; and operation, the operator’s lack of
experience and improper specimen preparation.
The factors above listed are attributed to the
followings types of image disturbances: noises,
blurring, poor quality, low contrast, among others.

Practically, restoration techniques attempt to
model the degradation and apply the inverse
process, to recover an original SEM image of VANT
with good quality. According to [3] this restoration
process can be modeled as in Fig. 7, an input SEM
image f(x, y) is modified by a degradation function
H and additive noise η(x, y) to produce a degraded
SEM image g(x, y). With some knowledge about
the degradation function and the additive noise,
a restoration filter is created and applied on the
degraded SEM image to get an approximation
f̂(x, y), which is desired to be as close as possible
to the original SEM image.

There are exist two types of SEM image
restoration techniques, some work in spatial
domain and others in frequency domain.
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Fig. 7. Image restoration. Model of the SEM image
restoration process
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1 1 2 1 1
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Fig. 8. Mode filtering. Example of mode filtering on
a matrix

The first operate directly on SEM image pixels
and are applicable when degradation is additive
noise produced by random processes in the
microscope, and the others on the SEM image’s
Fourier transform and are chosen to work with
degradations such as SEM image blur due to
lack of resolution. Below are some of these
techniques as long as results generated on
degraded SEM images of VANT. For spatial
domain, statistic filters and adaptive filters are
presented; and for frequency domain, inverse
filtering and Wiener filtering.

4.1.1 Linear Filtering

These filters transform a pixel value of noisy SEM
image given some neighboring pixels values. This
transformation is carry out by statistical operations
such as mean, median and mode filtering. In the
case of mean filtering, the technique is applied
directly in spatial domain that given a noisy SEM
image g(x, y) obtains a filtered SEM image f̂(x, y)
whose values for each pixel are calculated by
averaging pixel values from neighborhoods of the
noisy image. The operation can be represented
with the following equation:

f̂(x, y) =
1

mn

∑
(s,t)∈Sxy

g(s, t), (1)

where Sxy is the set of coordinates in a
neighborhood of size mxn, centered at point (x, y).
For others filters, the pixel values of filtered SEM
image are calculated by obtaining the median and
mode of noisy image neighborhoods. The following
example serves to explain this concept. It has a
SEM image region with pixel values 1 and 2, and
there is a noise pixel 8 (see Fig. 8). When applying
a mode filtering, the noise pixel is transformed to
a more representative value of its neighborhood, in
this case is 1 because it is more frequently. In [31]
an example of the use of median filtering to remove
SEM image noise is presented.

In plain words, statistic filters are actually a SEM
image smoothing to mitigate or eliminate pixels
with very different values in image’s homogeneous
regions such as noise and borders. In the case of
noise, the desired effect is the elimination of this
in the SEM image; and in the case of borders, the
result is an attenuation of them [19].

4.1.2 Adaptive Filters

While statistic filters work on SEM images regard-
less of the change of characteristics and noise
from one region to another, adaptive filters modify
their operation according to statistical information
of the filtering region (neighborhood). For this
reason adaptive filters have better performance
than statistic filters, greater computational cost
and complexity [17]. It is important to remember
that these are applied only when the SEM image
degradation is additive noise.

Adaptive filters are based on two simple
parameters of the SEM image, mean and variance.
These measures have a strong relationship with
the SEM image appearance, on the one hand
the mean represents the average pixel value or
intensity in a determined SEM image region, and
on the other hand the variance a measure of
contrast in that region.

Desired operation of the adaptive filters is to
transform a noisy SEM image g(x, y) into a
filtered SEM image f̂(x, y) close to the original
SEM image whose pixel values are computed as
follows: If a pixel g(x, y) is located in a relatively
uniform neighborhood, that is, with little noise, the
filtering result for this pixel is a close value to its

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1429–1444
doi: 10.13053/CyS-24-4-3117

Jesús Caro Gutiérrez, Oscar M. Peréz Landeros, Félix F. González Navarro, Mario A. Curiel Álvarez, et al.1434

ISSN 2007-9737



(a) (b)

(c) (d)

Fig. 9. Spatial domain filters. (a) Original image of
vertically aligned TiO2 nanotubes, (b) degraded image
by salt-and-pepper noise, (c) result of 9x9 median
filtering and (d) result of adaptive median filtering with
maximum neighborhood size of 9x9

neighborhood. If noise is present, it is expected
that the filter output is a weighted average of the
pixels in the neighborhood. Finally, if the pixel
belongs to the SEM image edges, its value should
be preserved to avoid blurring in the resulting
SEM image. According to literature, the operation
described above can be expressed as:

f̂(x, y) = g(x, y)−
σ2
η

σ2
L

[g(x, y)−mL], (2)

where σ2
η is the variance of the noise that has

corrupted the original SEM image. σ2
L and mL are

the local variance and mean of the neighborhood
pixels, respectively.

A comparison between a statistic filter and an
adaptive filter is seen in Fig. 9. Filters were
applied to a SEM image of vertically aligned
TiO2 nanotubes with simulated noise. Results
(Fig. 9c and Fig. 9d) clearly show that the
adaptive filter has a better performance to reduce
noise and improve the edges of nanotubes, and
therefore it gets a good approximation of the
original SEM image.

4.1.3 Inverse Filtering

As already mentioned, a degraded SEM image is
the result of modifying an original SEM image by a
degradation function and additive noise. The filters
seen above, namely, statistic filters and adaptive
filters work on degraded SEM images only by
additive noise.

Contrary to these, inverse filtering tries to restore
corrupted SEM images mainly considering the
degradation function and not the noise, reason for
which it doesn’t have a good performance in noisy
SEM images [23].

Inverse filtering works in frequency domain so it
operates on the SEM image’s Fourier transform.
Basically its definition arises from the following
equation for a degraded SEM image:

G(u, v) = H(u, v)F (u, v) +N(u, v), (3)

where if the noise N(u, v) is despised, it can be
obtained an approximation of the original SEM
image transform F̂ (u, v) by dividing the degraded
SEM image transform G(u, v) by the degradation
function H(u, v):

F̂ (u, v) =
G(u, v)

H(u, v)
. (4)

There is a problem with this definition since a
ratio is computed. If the degradation function has
zero or very small values, an error may occur in the
process and affect the filtered SEM image. One
way for avoiding this problem is to assign small
values for the filter when this tends to diverge.

Inverse filtering has the advantage of requiring
only the degradation function, which can be
experimentally determined.

Finally, it is recommended to use this filter
on blurred SEM images with very little noise for
improving their edges and sharp details, in the
presence of noise is better a Wiener filter.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1429–1444
doi: 10.13053/CyS-24-4-3117

Review of Image Analysis for the Characterization of Vertically Aligned Nanotubes 1435

ISSN 2007-9737



4.1.4 Wiener Filtering

Unlike inverse filtering, Wiener filtering takes
into account both the degradation function and
statistical information of the noise when trying
to restore a degraded SEM image. It reduces
the additive noise and inverts the blurring
simultaneously. The main idea of the filter is to find
a filtered SEM image f̂ from the degraded SEM
image such that the mean square error e2 between
it and the original SEM image f is minimized. This
measure is given by:

e2 = E
{
(f − f̂)2

}
. (5)

In addition to the above minimum error criterion,
it is assumed that the degradation function and
noise are uncorrelated and that the filtered SEM
image has a linear relationship with the degraded
SEM image. According to these assumptions and
others, it can be found the following expression for
Wiener filtering in the frequency domain:

F̂ (u, v) =

 1

H(u, v)

|H(u, v)|2

|H(u, v)|2 + Sη(u,v)
Sf (u,v)

G(u, v),
(6)

where F̂ (u, v) is the filtered SEM image, H(u, v)
the degradation function, G(u, v) the degraded
SEM image, Sη(u, v) and Sf (u, v) are the power
spectrum of the noise and of the original SEM
image, respectively. There are two important
observations about this expression: first, no
filtering errors occurs if the degradation function
has zero values; and secondly, if the noise
is not present its power spectrum is discarded
and Wiener filtering is reduced to an inverse
filtering [13].

A drawback of this filter is the prior knowledge
of the original SEM image power spectrum
which in practice isn’t available. Moreover, its
main advantage is perform well in the noise
presence. In [14] a study about carbon nanotubes
characterization is presented which uses the
Wiener filtering to reduce noise in images and
improve their quality.

Fig. 10 shows the results of applying the
inverse and Wiener filtering on a simulated blur

(a) (b)

(c) (d)

Fig. 10. Frequency domain filters. (a) Original image of
vertically aligned TiO2 nanotubes with Pt protective layer,
(b) degraded image by motion blur, (c) result of inverse
filtering and (d) result of Wiener filtering

image of vertically aligned TiO2 nanotubes with Pt
protective layer. Remember that this disturbance
can be originated by lack of resolution and
misconfiguration of the SEM. As can be seen,
Wiener filtering (Fig. 10d) obtained a better result
than inverse filtering (Fig. 10c) in the image
restoration because it reduced noise and clearly
defined edges.

4.2 Nanotubes Segmentation

Once the SEM image of VANT is restored, the next
step in image analysis is nanotubes segmentation,
which aims to divide the SEM image into its interest
objects (nanotubes) and background. This is
the most difficult and important step because an
effective feature extraction method is required. For
example, in the characterization of VANT images
it’s very common to perform counts and measure
diameters and lengths, these features can be
extracted easily if the nanotubes segmentation is
accurate, otherwise this data may be false. In
other words, the correct VANT characterization
is strictly dependent on the accuracy of SEM
image segmentation.
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There are several nanotubes segmentation
methods but most are based on two SEM
image properties: similarity and discontinuity.
The former divides the SEM image into similar
regions according to the pixel intensity values;
and the later searches for abrupt changes in
SEM image intensity (image edges) and uses
these discontinuities to assess different regions
[18]. This section focuses on the similarity based
methods because in the image analysis area
applied to VANT characterization are the most
used, some of these methods are: thresholding,
region growing, region splitting and merging and
k-means clustering.

4.2.1 Thresholding

Thresholding is a nanotubes segmentation method
widely used for its simplicity and low computational
cost whose main idea is to partition a SEM image
as follows: Assume a SEM image in grayscale
f(x, y) with intensity values distributed into two
groups, those associated to the nanotubes and
background. To separate them it is possible to
choose a threshold value T , so that if a pixel in
the SEM image f(x, y) > T , it is classified as
a nanotube pixel, otherwise the pixel is classified
as a background pixel. This idea is used in [7]
for the automatic binarization of carbon nanotubes
images. The above is the case for a SEM image
with light objects on a dark background and can be
represented by:

g(x, y) =

{
1 if f(x, y) > T ,
0 if f(x, y) ≤ T , (7)

where g(x, y) is the binary segmented SEM image,
f(x, y) the SEM image in grayscale and T the
threshold value. The thresholding can be global,
in which the threshold value is calculated once for
the entire SEM image; or local, where different
threshold values are computed to segment the
SEM image based on statistical information of
local regions. It is often preferable to use local
thresholding because the global is not enough for
acceptable nanotubes segmentation because of
the noise and nonuniform illumination in the SEM
image [1].

4.2.2 Region Growing

Region growing finds SEM image regions directly
contrary to the thresholding method, its basic
approach is as follows: first, a set of seed
points are assigned in different positions of the
SEM image to be partitioned, these points initially
represent the SEM image regions. Then, the
neighboring pixels of each seed are compared
against their seed point using a similarity criterion
(range of intensity or color); next, if a neighboring
pixel satisfies the similarity criterion, it is added to
the region represented by its seed point, else it
is rejected. After that, a stopping rule is checked
to stop regions growth when no more pixels for
inclusion. Finally, the procedure is repeated to
grow the new SEM image regions and thus achieve
nanotubes segmentation [3]:

c =

{
True if |fs(x, y)−N8(fs)| ≤ T ,
False otherwise.

(8)

A similarity criterion used in practice is shown
in (8), where fs(x, y) is a seed point in the SEM
image to be partitioned, N8(fs) one of the eight
neighboring pixels of the seed and T a specified
threshold. Some advantages of this technique
are the good segmentation results in SEM images
with clear edges and its performance against
noise. Moreover, it has the disadvantages of
over-segmentation due to variation of intensity and
its computation is time-consuming [9].

4.2.3 Region Splitting and Merging

Similar to region growing method, it starts with
an entire SEM image and divides it into more
homogeneous regions. This splitting alone affects
the shape of regions and doesn’t produce a good
nanotubes segmentation. To solve this problem, it
is necessary to perform a merging phase after the
splitting. According to [8], the region splitting and
merging algorithm is as follows:

1. Let R represent the entire SEM image
or initial region. Select a predicate P
(similarity criterion).

2. If the predicate P is false for any region Ri, split
it into four smaller quadrants.
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3. Merge any adjacent regions Rj and Rk that are
similar enough.

4. Repeat steps (2) and (3) successively until no
more splitting or merging is possible.

Some advantages of region splitting and
merging are: it has a better performance than other
nanotubes segmentation methods, allows to select
between automatic and interactive techniques to
partition an SEM image and is flexible when
selecting the segmentation resolution and the
similarity criterion. However, this method has
the disadvantage that the formulation of stopping
rule for nanotubes segmentation is a tedious task
and the computation time increases with high
segmentation resolution [10].

4.2.4 K-means Clustering

The nanotubes segmentation stage can be seen
as a classification process of pixels in two or
more classes, foreground and background in the
simplest case. This organization of pixels into
clusters is known as clustering and it is based
on intensity similarity. The well known k-means
clustering algorithm is given below [10]:

1. Determine the number of desired clusters K
and randomly assign to each cluster a pixel
intensity from the SEM image as its center ck.

2. Group every pixel to the cluster whose center
is closest. The closest normally mean the
intensity value is similar.

3. Recompute the cluster centers. The cluster
center is obtained by averaging the intensity
values of the pixels belonging to the cluster:

ck = 1
Nk

∑
p∈K p.

4. Repeat step 2 and 3 until no reassignment
of pixels or a convergence criterion is met as
certain number of iterations.

The algorithm implementation is easy and it
has a lower computational cost compared with
other clustering methods. K-means is also flexible
because it allows to use one or more pixel features
unlike other methods such as thresholding that
only focus on the intensity, generally it gives a
better nanotubes segmentation.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Segmentation methods. (a) Original image of an
exposed intermediate cross section of TiO2 nanotubes,
(b) ground truth segmentation, (c) segmentation results
by thresholding, (d) region growing, (e) region splitting
and merging and (f) k-means clustering

Some drawbacks of the algorithm is that the
clusters number is fixed and the sensitivity of
the result depends on the random assignment
of the clusters’ initial centers. A use of the
k-means clustering algorithm to segment images
of nanoparticles is found in [16].

4.2.5 Experimental Results of Segmentation
Methods

The different segmentation methods were tested
on an image of a cross section of TiO2 nanotubes,
see Fig. 11. A comparison of these against
the ground truth (Fig. 11b) show that k-means
clustering achieved the best segmentation result
because it has well defined objects (nanotubes
are not merged) and a low rate of false positives
(background’s pixels labeled as object’s pixels).

4.3 Feature Extraction

At this stage, the features of the detected objects
in the previous segmentation are extracted. In our
case the objects are nanotubes, thus the features
of interest could be: counts, areas, diameters,
lengths, density, among others.

Counting nanotubes and their geometric fea-
tures are simple features extracted directly from
the pixels labeling; others such as density
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(a) (b)

Fig. 12. Connected components labeling. (a)
Binary image with three objects and (b) result of the
labeling algorithm

(nanotubes number per square unit) and diameter
are derived features because are calculated
from simple features. Finally there are also
higher level features like type of nanotube that
require further processing. Some of the methods
proposed in literature for calculating these features
are presented.

4.3.1 Nanotubes Counting

In order to extract this feature it is necessary
the connected components labeling in the binary
image of segmentation. The labeling groups
the object pixels in components based on pixel
connectivity (similar intensity). So all the pixels that
belong to the same connected component have
equal label, while the pixels that belong to others
components get different labels. Generally the
labels used are integer numbers, being zero the
label for background pixels.

For more information, see [26] for a complete
description of the algorithm. Fig. 12 shows
experimental results of this method.

As described above, counting nanotubes can
be performed as follows: select an original image
of nanotubes as that of Fig. 11a, execute some
segmentation method to obtain a binary image as
shown in Fig. 11b, apply a labeling algorithm to

this binary image and get the number of labels
corresponding to the total number of nanotubes,
which in this example would be 30. Performing
automatic counts on images with hundreds or
thousands of nanotubes is an advantage of image
analysis compared to manual methods because
reduce effort and time.

4.3.2 Inner Area

Regarding the area, it can be extracted individually
for each object (nanotube) or jointly for all the
objects in the labeled image. In the first case,
are counted only pixels with a determined label;
and in the second case, all pixels except those
with zero label. Calculate the area in this way
gives a measure in terms of pixels Ap that must
be converted to derived units such as square
nanometers or micrometers. To achieve this, it
is necessary to divide this area in pixels by the
number of pixels per square unit N , namely:

A =
Ap
N

, (9)

where N can be obtained from the information
provided at the bottom of a SEM image, in which
there is a scale bar showing the relationship
between unit length and pixels for that image.
With this method it is possible to simultaneously
obtain the area of a large number of nanotubes in
the image, thus achieving a more representative
measurement of this feature and others.

4.3.3 Diameter and Density

As mentioned, diameter and density are examples
of derived features, which means they can be
obtained from measurements of simple features
such as counts and area. One of the most used
methods to measure the diameter of a nanotube
with irregular shape is to assign it to the diameter of
a circle with the same area. This procedure allows
to use the formula:

d =

√
4A

π
, (10)

where d is the diameter of a nanotube and A
its area.
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Others equivalent diameters of a nanotube
commonly used in practice are Martin’s diameter
and Feret’s diameter [5]. On the other hand, if
density is defined as the number of nanotubes
per square unit, either square nanometer or
micrometer, this can be calculated dividing the
counting nanotubes in a region of interest C by
the area in square units of that region A, in
other words:

D =
C

A
. (11)

Density is a feature useful for characterization
of nanotube forests. Finally, remember that these
two features (diameter and density) can also be
extracted globally in images as Fig. 4, bringing the
advantages mentioned above.

4.3.4 Gap between Nanotubes

This feature refers to the average distance between
nanotubes in an image. For its measurement it is
necessary to get for each nanotube the distances
with its N neighboring nanotubes. According to
the literature the choice of ”N” is regularly 6, but
also can be made based on the visual perception
of the image and choose a higher or lower number.
Next, an algorithm for obtaining this feature is
presented [4]:

1. Get the centroid coordinates (x, y) of each
nanotube.

2. Fit on each nanotube a circle of radius r with
center (x, y).

3. Calculate the distance between two
nanotubes as:

d =
√

(Y2 − Y1)2 − (X2 −X1)2 − (r1 + r2).

4. Store the N distances of each nanotube with
its neighnors.

5. Calculate the average gap between nanotubes.

The algorithm implementation has the ad-
vantage of automatically providing an average
measure of the gap between all nanotubes in an
image without the need to calculate it individually
as in Fig. 4.

A disadvantage is that the algorithm can perform
an imprecise estimation of the distances when the
nanotubes are too close.

4.4 Validation

After the nanotube’s features have been extracted,
the next and last step in image analysis is to
validate that these are correct. To perform this,
it is necessary to have an images dataset whose
correct features are well known and compare them
against the results obtained by the image analysis
methods. In literature, the images dataset is known
as ground truth and it is assambled mainly in
two ways, by manual inspection of samples under
microscope or by computer and using simulated
images [18].

In the first way, a group of experts select a set
of samples (e.g., nanotubes) and characterizes
them either directly under microscope or by using
semiautomatic computer programs on their digital
images. It is recommended to repeat this manual
characterization several times for reducing effects
such as the subjectivity of experts on the results
[30]. In the second way, the ground truth is
obtained by simulation software that generates
images based on parameters specified. For
example, it could simulate an image whose number
of nanotubes and areas are known. Here there
is not subjectivity problem because the images
are always created with the same algorithms;
however, these may not be sufficiently similar to
real experimental images.

After obtaining the ground truth data, the
following is to use its images as input of the
image analysis system and to compare the
correct characteristics with those obtained by
the feature extraction procedures. If there is
similarity between both characterizations, it is
said that implementations of the methods perform
satisfactory; on the contrary, the methods that
provided incorrect measurements of the features
must be implemented again, and this is based on
an error tolerance defined by experts. Finally, it is
recommended to test the system with real images
which could represent cases that will be found
later and with important challenges such as noise,
blurring and lighting changes.
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Table 1. Characterization results of the two images with
the applied methodology

Image in Fig. 13a
Feature extracted Approximation Ground Truth

Count 29 NTs 28 NTs
Diameter 70.28 nm 70.08 nm

GBN 27.95 nm 28.25 nm
Area 3879.30 nm2 3857.26 nm2

Density 90.62 NTs/µm2 87.50 NTs/µm2

Image in Fig. 13d
Feature extracted Approximation Ground Truth

Count 61 NTs 69 NTs
Diameter 90.70 nm 115.91 nm

GBN 21.79 nm 18.81 nm
Area 6461.08 nm2 10551.94 nm2

Density 32.44 NTs/µm2 36.70 NTs/µm2

(a) (b) (c)

(d) (e) (f)

Fig. 13. Nanotubes detection. Segmentation results
over two images to visualize the nanotubes detected

This effectively to ensure robustness and good
performance of the system.

4.5 Characterization of VANT

Next it is presented an example of automatic
characterization of VANT by image analysis. Two
images of vertically aligned TiO2 nanotubes were
used and the following methodology was applied to
these: for the image restoration stage an adaptive
median filtering was performed, the segmentation
was carried out by the k-means clustering
algorithm, and finally the feature extraction was
made with the formulas mentioned above.

Fig. 13 shows the segmentation results
over the two images to visualize the nanotubes

detected and Table 1 presents the characterization
results of the two images with the applied
methodology. The extracted features were:
number of nanotubes (count), average diameter
and area, gap between nanotubes (GBN) and
density. The results obtained are presented in the
column approximation while the correct results in
the column ground truth.

As can be seen in Table 1, the approximation
obtained for the image in Fig. 13a was acceptable
compared against the ground truth. This result is
due to the good quality of the image, the small
noise and high contrast allowed a good image
segmentation (see Fig. 13b) that was crucial for
the posterior feature extraction. In the case of the
image in Fig. 13d which has a poor quality, it
was not achieved a good approximation of features.
Here, the nanotubes detection (61 NTs of 69 NTs)
and the diameter measurement (90.70 nm against
115.91 nm) were affected by the lack of contrast
and noise.

This example shows that the methodology ap-
plied produces acceptable characterization results
on good quality images, but not in the opposite
case. Some recommendations to improve these
results are include image contrast techniques and
morphological operations for a better detection
of nanotubes.

A similar example is found in [20], where an
image analysis system for properties assessment
of VANT is presented. It is provided a novel
way of a surface bioactivation in titanium dental
implants. The system is based on advanced image
processing and includes restoration, segmentation
and classification methods. It works with images
of vertically aligned TiO2 nanotubes obtained
with SEM and extracts the following essential
parameters for the nanomaterial characterization:
inner tube area, tube wall thickness and residual
space between tubes.

Fig. 14 shows the detection results of the
parameters mentioned above with the presented
system. Because of the image quality, the system
does not detect all nanotubes, but a representative
set is obtained to evaluate mean values of the
parameters as shown in Table 2.

These results are considered significant in
the samples assessment but in the paper there
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(a) (b) (c) (d)

Fig. 14. Parameters detection. (a) the original image, (b)
tube walls detection, (c) non-tube objects detection and
(d) all objects detected. Source: [20]

Table 2. Results obtained with the presented system,
source: [20]

Parameter Sample No. 1 Sample No. 2
Inner tube area ± std (nm2) 5372 ± 2164 5454 ± 2444

Wall tube thickness ± std (nm) 33 ± 4 36 ± 6
Non-tube objects (%) 23.1 22.4

Non-classified space (%) 15.7 20.2

(a) (b)

(c)

Fig. 15. Tool for image analysis. (a) SEM image of a
tubular scaffold, (b) its segmentation after using ImageJ
and (c) results table listing some extracted features.
Source: [4]

is no comparison against the ground truth
(correct measurement of parameters). Finally,
the system could be applied in nanomaterial
quality assessment.

Currently, there are tools for image processing

and analysis that can be used to characterize
VANT, e.g., ImageJ. The main usage of this
software is to calculate particle features as
average size, spacing, wall thickness and nearest
neighbors; in this case the particles could be
tubules or pores located randomly in a sample.
A use case of ImageJ is shown in [4], where the
measurement of tubule diameter and their spacing
in tubular scaffolds is performed. Fig. 15 shows
the segmentation and feature extraction results for
a SEM image of a tubular scaffold in that paper.
As can be seen, this tool provides an automatic
way to characterize tubular structures which can be
applied easily to vertically aligned nanotubes.

5 Conclusion and Future Work

In this paper the main characterization of SEM
issues oriented on the image visual inspection
methods used to extract TiO2 NT features were
presented. It was established the advantage
of using images analysis for characterization
over manually methods. Faster performance
and objective analysis are properties added to
this characterization. Improved images has
been obtained by image restoration, overcoming
some work conditions, physical limitations, and
human factors; as electromagnetic and mechanical
noise, equipment resolution and technician lack of
expertise, issues that partially or totally limit the
capacity features extracting.

The performance of a image analysis system
for VANT characterization strongly depends on the
segmentation step. The system’s ability to detect
nanotubes (interest objects) and background in
a SEM image is seriously affected when a
degraded image by noise or blurring; in this case,
segmentation is inaccurate and therefore the char-
acterization results as well. To avoid this problem,
it is recommended to pay special attention in
the image restoration and segmentation steps.
Comparative studies (quantitative and qualitative)
of different methods in each step should be made
in order to identify, select and implement the most
appropriate for the system.

Image analysis can help to develop versatile
systems that work with images taken by different
microscopes, which is an area of opportunity
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because the current professional programs to
study and characterize VANT operate only on one
type (either SEM or AFM images) and they are
expensive hardware. Image analysis can also
make possible the correlation of SEM and AFM
images to perform topography, composition and
3D studies with a single system, which could even
do other tasks such as to simulate the growth of
nanotubes.
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