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Abstract. It does not surprise us that a bank can be a 

financial institution as well as a piece of land. Quite often 
one word is used with different meanings. But 
sometimes the opposite happens: we choose different 
words to express the same idea. For example, to give a 
smile means ‘to smile’, and to lend support means ‘to 
support’ (Longman Dictionary of Contemporary English, 
1995). These two collocations convey the same idea: to 
smile is to ‘perform’, or ‘do’ a smile, and to support is to 
‘do’ support, so that both verb-noun collocations share 
the same semantics: to do what is denoted by the noun. 
Likewise, we find that to acquire popularity and to sink 
into despair both mean ‘to begin to experience the 
<noun>’, and to establish a relation and to find a solution 
mean ‘to create the <noun>’. Such semantic patterns or 
classes are called lexical functions. In this article, we 
explain the concept of lexical functions, give a summary 
of state-of-the-art research on automatic detection of 
lexical functions, and present the framework and results 
of our experiments on supervised learning of lexical 
functions fulfilled on the material of Spanish verb-
noun collocations.

Keywords. Verb-noun collocations, lexical functions, 

semantic classification, supervised machine learning. 

1 Introduction 

Collocations, or recurrent word combinations often 
used together in a language, present a challenge 
to natural language analysis and natural language 
generation due to their limited compositionality and 
idiomatic nature [10].  Knowledge of collocation 
should be integrated into natural language systems 

to avoid incorrect interpretation and production of 
texts. First, collocations are to be distinguished 
from free word combinations because these two 
groups of language phenomena are handled 
differently. A number of collocation extraction tools 
and methods have been developed so far [5, 15, 
19]. Secondly, it is useful to annotate collocations 
with grammatical and semantic information and 
store them in databases and machine readable 
dictionaries which then can be incorporated in 
various applications [3, 18]. 

It is typical for collocation inventories to include 
such grammatical information as part-of-speech of 
collocation constituents. A good example is Oxford 
Collocations Dictionary for Students of English 
[12], the most widely used English collocation 
dictionary.  However, collocational databases are 
still in need of semantic information markup to 
represent the opaque meaning of collocations 
explicitly. One possible solution is to define 
collocations in the way a common monolingual 
dictionary does it, i.e. providing definitions and 
usage examples. However, such approach 
requires a lot of manual work, time, and financial 
resources. Another way is to retrieve semantic 
information automatically.  

This is followed by a question: What type of 
semantic information can be retrieved and how? In 
this work, we suggest that the semantics of 
collocations (in particular, we study verb-noun 
collocations) can be generalized and presented as 
abstract meanings found in collocational groups. 
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Each group is then characterized by a single and 
distinct abstract meaning, thus forming a semantic 
class. We use the formalism of lexical functions 
explained in Section 2 to encode the generalized 
semantics of collocations and apply supervised 
machine learning methods to detect lexical 
functions automatically. 

As it has just been mentioned, Section 2 
presents the concept of lexical function by giving 
its definition, explaining its notation, and illustrating 
these with examples. By way of introduction, we 
will only note here that lexical functions capture 
similar semantic features of groups of collocations. 
In addition, here we give some anticipative insight 
into the concept via examples in the paragraph 
that follows. 

The fact that one word can have many senses 
is well known in linguistics. However, sometimes 
the opposite happens: we choose different words 
to express the same idea, but the choice is purely 
lexical and not semantically motivated. For 
example, to give a smile means ‘to smile’ or 
‘perform a smile’. When we want to say ‘to perform’ 
support, we can also use the verb to give: to give 
support. The verb to lend is also used with support 
in the same meaning: to lend support is to give 
support.  

These collocations share the same semantics: 
to do what is denoted by the noun. Likewise, we 
find that to acquire popularity and to sink into 
despair both mean ‘to begin to experience the 
<noun>’, and to establish a relation and to find a 
solution mean ‘to create the <noun>’.  

Such semantic patterns or classes are called 
lexical functions. The latter can serve as an 
instrument to generalize the meaning of 
collocations and to construct a semantic 
classification of collocations. A database where 
collocations are annotated with lexical functions 
will be a valuable resource for natural language 
applications. 

The rest of the paper is organized as follows. 
Section 2 explains the concept of lexical function, 
Section 3 reviews state-of-the-art results in 
automatic detection of lexical functions. Section 4 
describes the setting of our experiments including 
data, data representation, and methods. It also 
gives results we achieved and discusses them. 
Section 5 presents conclusions. 

2 Lexical Functions 

2.1 Definition, Notation, and Examples 

Lexical function (LF) is a concept developed by 
Mel’čuk [11] as a part of the Meaning-Text Theory 
to capture lexical relations among words. (A brief 
description of the Meaning-Text Theory can be 
found in [7]). Lexical function is a mapping from 
one word called the keyword to another it 
collocates with in corpora called the lexical 
function value. For example, in to make an 
announcement, the keyword is announcement, 
and the lexical function value is to make. This 
mapping is further characterized by its meaning 
encoded by an abbreviated Latin word with the 
semantics similar to the lexical function meaning. 

The collocation given above represents the 
lexical function named Oper1. ‘Oper’ is from Latin 
operari, to ‘do’, ‘perform’, ‘carry out’ (what is 
denoted by the noun). That is, to express the 
meaning ‘to perform an announcement’, one says 
in English to make an announcement. Other 
examples of Oper1 are to break the news, to 
narrate a story, to deliver a message, to perform a 
drama, to give a smile, to lend support, to mount 
resistance, to have authority, to exercise power. All 
these collocations share the common semantic 
pattern ‘to do the <noun>’.  

The LF name is followed by a subscript 
representing syntactic functions of words or 
phrases which lexicalize semantic roles: 1 stands 
for the agent, 2, for recipient/patient, etc. The 
subscript 1 in Oper1 means that the agent of 
announcement in the above collocation is the 
grammatical subject: He (agent) has made an 
announcement. Using the notation of lexical 
function, to make announcement is re-written as 
Oper1(announcement) = make, to execute a 
program as Oper1(program) = to execute, to run a 
risk as  Oper1(risk) = to run.  

However, to receive treatment is represented 
as Oper2(treatment) = to receive, the subscript 2 
signifies that the recipient/patient is the subject:  

He has received an effective treatment and feels 
well now. Another example is Oper2(attention) = to 
gain: The author gained the attention of the 
audience. The subscript 0 means that the keyword 
itself funcitons as the subject: Func0(snow) = to fall, 
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Snow was falling all day long, Func is from Lat. 
functionare, to function. 

More details on LF notation is given by Mel’čuk 
[11]. He describes 64 LFs identified in collocations 
of various syntactic structures (adjective-noun, 
noun-noun, verb-noun, verb-adverb, etc.) and 
illustrates them with abundant English material. 
Since our work is done on verb-noun collocations, 
we concentrate on verb-noun lexical functions and 
use examples of such functions and collocations.  

Besides Oper1, Oper2, and Func0 mentioned 
above, we give another two examples of verb-noun 
LFs. The first is Func01(joy) = to fill [somebody]; 
here 0 says that the keyword is the subject and 1 
means that the agent of the keyword (joy) is the 
verb’s object: When she saw her friend, a sudden 
joy filled her.  

The second is Real1, from Lat. realis, real. Real1 
means ‘to fulfill the requirement of the <noun>’, or 
‘to do with the <noun> what one is supposed to do 
with the <noun>, and the examples are to prove an 
accusation, to drive a bus, to succumb to an 
illness  [11]. 

2.2 Simple and Complex Lexical Functions 

Lexical functions can represent single as well as 
multiple semantic features or ‘units of meaning’. 
Simple LFs represent a single semantic element: 
‘do’ (Oper), ‘function’ (Func), ‘fulfill the 
requirement’ (Real).   

Other examples of simple LFs are: Incep, from 
Lat. incipere, to begin; Cont, from Lat. continuare, 
to continue; Fin, from Lat. finire, to cease; Caus, 
from Lat. causare, to cause. Complex LFs are 
combinations of simple LFs. 

IncepOper1 means ‘to begin to do the <noun>’ 
in to enter into marriage, to acquire a right, to 
assume a role, to reach the age, to fall into a 
trance, to develop ability.  

ContOper1 means ‘to continue to do the 
<noun>’ in to cultivate a relationship, to develop 
cooperation, to nourish friendship, to nurture an 
attitude, to maintain the balance.  

CausFunc01 means ‘to cause that the <noun> 
functions’ in to stir up interest, to raise hope, to 
inspire love, to assign a rank, to bring luck, to 
impose a fine. 

2.3 Lexical Functions for Verb-Noun 
Collocations 

As it is said in Section 2.1, 64 LFs have been 
defined to represent a wide range of collocations 
of different structure: adjective-noun, noun-noun, 
verb-noun, verb-adverb, etc. These LFs are 
simple. Our experiments on automatic detection of 
lexical functions has been done for Spanish verb-
noun collocations.  

Due to data we have at our disposal (see 
Section 4.1), we have got a sufficient number of 
verb-noun collocations only for eight lexical 
funcitons listed in Table 1. Therefore, these LFs 
were chosen for machine learning experiments. 

2.4 Lexical Functions as Semantic Classes of 
Collocations 

It was mentioned in Section 1 that lexical functions 
may be applied to build a semantic typology of 
collocations. This typology will be rather fine-
grained and include at least 64 classes equal to the 
number of simple LFs as indicated in Section 2.2, 
not to mention complex LFs. Each class can be 
characterized by the semantics of its 
corresponding LF and a semantic pattern (like ‘to 
do the <noun>) which also stores syntactic 
information. The latter gives quite a 
comprehensive description of a group of 
collocations which desambiguates them and 
distinguishes them from any other class since such 
description is unique for each class.  

3 Automatic Detection of Lexical 
Functions: State-of-the-Art 

Wanner (2004) suggested to regard the task of LF 
automatic detection as classifying collocations 
according to LF typology and applied nearest 
neighbor technique to resolve it. Experiments were 
done on two groups of Spanish verb-noun 
collocations: one with emotion nouns and the other 
with field-independent nouns. LF learning was 
performed using hypernym information from the 
Spanish part of EuroWordNet [22].The maximum 
F1-measure achieved for field-independent 
collocations was 0.76 on CausFunc0. The average 
F1-measure was about 0.70.  
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The same average result was shown on more 
data in [23] over four learning methods: nearest 
neighbor, Naïve Bayes, tree-augmented network, 
and ID3-algorithm. This time the best F1-measure 
on field-independent verb-noun collocations (0.76) 
was achieved by ID3-algorithm. 

Archer [2] performed experiments on extracting 
collocations of the adjectival/adverbial lexical 
function Magn, from Lat. magnus, big, great, using 
Conceptual Vectors [14]. Magn values are 
intensifiers, for example: Magn(rain) = heavy, 
Magn(temperature) = high, Magn(storm) = sever, 
Magn(to weep) = bitterly. The research was done 
on French material. The reported result is a 
precision of 83%. However, the process of 
extracting Magn collocations was semi-automatic 
and included human intervention, which improved 
the result significantly. 

Alonso Ramos et al. [1] proposed an algorithm 
to retrieve collocations of the type ‘support verb + 
object’ from the semantically annotated FrameNet 
corpus of examples [13]. Their interest was to see 
whether the collocations they extracted were of 
Opern. The authors assumed that certain syntactic, 
semantic, and collocation annotations in the 
FrameNet corpus could signal that a particular 
collocation belonged to Opern. The proposed 
algorithm was tested on 208 instances and showed 
an accuracy of 76%.  

In [4] it is discussed how to use dictionary 
definitions for extracting actants, which is very 
similar to LF and can be used in our future work. 

4 Our Experiments on Supervised 
Learning of Lexical Functions 

4.1 Data 

Spanish verb-noun collocations were extracted 
automatically from the Spanish Web Corpus via 
SketchEngine [8], web-based software for 
automatic text processing. The Spanish Web 
Corpus is compiled of texts found in the Internet. 
The texts are not limited to particular themes so the 
corpus represents the general Spanish lexis, 
therefore its lexical data can be considered field-

                                                      
1 http://148.204.58.221/okolesnikova/index.php?id=lex/ or 

http://www.gelbukh.com/lexical-functions 

independent. The collocations were manually 
annotated with LFs and Spanish WordNet senses 
[21]. Our data is available on the web1.  

We found that in our data eight LFs were 
represented by the number of collocations 
sufficient for machine learning experiments, as it 
was mentioned in Section 2.3. Table 1 presents 
these LFs together with the number of their 
instances, corresponding semantic patterns, and 
Spanish examples followed by 
English translations. 

4.2 Data Representation 

Hypernyms of all words in collocations were used 
as features for LF learning. The source of 
hypernym information was the Spanish WordNet 
[21]. It is an online lexical resource and is used 
widely in the natural language processing 
community. We used a vector space model with 
binary representation of features assigning each 
feature the value of 1 if a hypernym was present 
among hypernyms of the verb or the noun in a 
collocation, and the value of 0 if it was absent. 

Thus, every collocation was represented as a 
vector of binary values having the size equal to the 
number of all hypernyms extracted for all words in 
all LF samples. Each of eight lexical functions was 
assigned its training set. All eight training sets 
included the same collocations, with the difference 
of marking collocations belonging to the LF in 
question as positive examples (class “yes”) and the 
collocations belonging to the other seven LFs as 
negative examples (class “no”). 

4.3 Methodology 

WEKA 3-6-2 toolkit [6] was used for experimenting 
with many supervised learning algorithms. We 
supplied the training sets of eight LF to 68 
classifiers and evaluated predictions of the positive 
class on the same sets applying 10-fold cross-
validation technique and F1-measure. Below all 
classifiers tested for LF prediction are listed. The 
classifiers are grouped according to their classes. 

Class bayes: AODE, AODEsr, 

BayesianLogisticRegression, BayesNet, HNB, 
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NaiveBayes, NaiveBayesSimple, 
NaiveBayesUpdateable, WAODE.  

Class functions: LibSVM, Logistic, 

RBFNetwork, SimpleLogistic, SMO, 
VotedPerceptron, Winnow.     

Class lazy: IB1, IBk, KStar, LWL.  

Class meta: AdaBoostM1, 

AttributeSelectedClassifier, Bagging, 
ClassificationViaClustering, 
ClassificationViaRegression, 
CVParameterSelection, Dagging, Decorate, END, 
EnsembleSelection, FilteredClassifier, Grading, 
LogitBoost, MultiBoostAB, MultiClassClassifier, 
MultiScheme, OrdinalClassClassifier, 
RacedIncrementalLogitBoost, 

RandomCommittee, RandomSubSpace, 
RotationForest, Stacking, StackingC, 
ThresholdSelector, Vote.  

Class misc: HyperPipes, VFI.  

Class rules: ConjunctiveRule, DecisionTable, 

JRip, NNge, OneR, PART, Prism, Ridor, ZeroR.  

Class trees: ADTree, BFTree, 

DecisionStump, FT, Id3, J48, J48graft, LADTree, 
RandomForest, RandomTree, REPTree, 
SimpleCart. 

4.4 Experimental Results and Discussion 

As it is mentioned in Section 4.3, the performance 
of supervised learning algorithms was evaluated in 

Table 1. LFs and semantic patterns of collocations in our data 

LF 
# of 
instances 

Semantic pattern Spanish collocation English translation 

Oper1  266 
to carry out the <noun>, 

to experience the <noun> 

prestar atención 

tener una duda 

celebrar la reunión 

to pay attention 

to have doubt 

to have a meeting 

Oper2 28 
to undergo the <noun>, 

to be source of the <noun> 

obtener beneficio 

sufrir un ataque 

recibir la respuesta 

to get a benefit 

to have an attack 

to get the answer 

IncepOper1 24 
to begin to do, perform, 
experience, carry out the 
<noun>   

asumir la responsabilidad 

iniciar un proceso 

tomar la iniciativa 

to take on the 
responsibility 

to start a process 

to take the initiative  

ContOper1 16 
to continue to do, perform, 
experience, carry out the 
<noun> 

mantener el contacto 

seguir el curso 

guardar silencio 

to keep in contact 

to follow the course 

to keep silent 

Func0 16 
the <noun> exists, takes 
place, occurs  

la posibilidad existe  

el día pasa 

la duda cabe 

the possibility exists  

the day passes by  

a doubt arises 

CausFunc0 109 
the agent of the <noun> 
causes the <noun> to occur  

poner un ejemplo 

dar explicación 

provocar la reacción 

to give an example 

to give an explanation 

to provoke a reaction 

CausFunc01 89 

a person/object, different 
from the agent of the 
<noun>, causes the 
<noun> to occur  

dar importancia 

abrir paso  

producir daño 

to give importance  

to make way 

to inflict damage 

Real1 60 
to fulfill the requirement of 
the <noun>, to act 
according to the <noun> 

utilizar la herramienta  

corregir el error 

alcanzar el nivel 

to use a tool 

to correct an error 

to reach a level 
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terms of F1-measure using 10-fold cross-validation 
technique. Table 2 presents the results of three 
best classifiers for each LF, # stands for the 
number of LF positive instances, F1 stands for F1-
measure, and the highest F1-measure for each LF 
is in boldface.  

Usually, in machine learning experiments, 
ZeroR is chosen as the baseline. ZeroR is a trivial 
classifier that assigns the majority class to all 
examples. In our experiments, the majority class is 
always “no” since the number of negative 
examples for each lexical function is bigger than 
the number of its positive examples. For example, 
the number of positive examples for Oper1 is 266 

and the number of its negative examples is 608 – 
266 = 342. The number of positive examples for 
the rest seven lexical functions is even less than 
for Oper1 as it is seen from Table 2, therefore, 
ZeroR has no sense as the baseline. 

However, the baseline can be a random choice 
of a positive or a negative answer to the question 
“Is this collocation of this particular lexical 
function?” In such a case we deal with the 
probability of a positive and negative response. 
Since we are interested in only assigning the 
positive answer to a collocation, we calculate the 
probability of “yes” class for eight lexical functions 
in the experiments according to the formula: 

Table 2. Best classifiers on LF detection 

LF # Baseline Classifier F1 

Oper1 266 0.437 

BayesianLogisticRegression 0.873 

Id3 0.870 

SMO 0.864 

Oper2 28 0.046 

J48 0.706 

LogitBoost 0.686 

LADTree 0.667  

IncepOper1 24 0.040 

Prism 0.774 

NNge 0.727 

SMO 0.722 

ContOper1 16 0.026 

DecisionTable 0.833  

FilteredClassifier 0.800 

Ridor  0.783 

Func0 

 
16 0.026 

BFTree  0.696  

HyperPipes 0.636 

AttributeSelectedClassifier 0.636 

CausFunc0 109 0.179 

JRip 0.725      

EnsembleSelection 0.699     

REPTree 0.695       

CausFunc01 89 0.146 

END 0.762  

LogitBoost    0.756 

AttributeSelectedClassifier 0.733 

Real1 60 0.099 

FT 0.598  

NNge   0.593 

Id3    0.587 

Total # 608  Average best                   0.746 
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probability of “yes” = (the number of positive 
examples of a given lexical function) / (the number 
of all examples). These probabilities will be results 
of a classifier that assigns the class “yes” to 
collocations at random assuming a uniform 
probability distribution. Since we will compare the 
probabilities of the random choice with the results 
obtained in our experiments, we present the former 
as numbers within the range from 0 to 1 in Table 2.  

As it is seen from Table 2, no single classifier is 
the best one for detecting all LFs. For each LF, the 
highest result is achieved by a different classifier. 
The maximum F1-measure of 0.873 is achieved by 
BayesianLogisticRegression classifier for Oper1. 
The lowest best F1-measure of 0.598 is shown by 
FT for Real1. The average best F1-measure 
(calculated over only the eight best results, one for 
each LF) is 0.746. 

No correlation was observed between the 
number of instances in the training set and the 
results obtained from the classifiers. For example, 
a low result of 0.598 is shown for Real1 which has 
more positive instances (60) than ContOper1 (only 
16), but for ContOper1 a high result of 0.833 was 
attained. At the same time, Func0 with the equal 
number of positive instances as ContOper1 (16) 
was detected with an F1-measure of 0.696 which 
is low. Similar results were showed for CausFunc01 
(F1-measure of 0.762) and IncepOper1 (F1-
measure of 0.774), though CausFunc01 has 89 
positive instances and IncepOper1, only 24.   

It is also seen from Table 2 that the best 
classifiers for all LFs except for Oper1 are based on 

symbolic, not statistical, learning. J48, the best 

method for detecting Oper2, is a rule-based 
classifier algorithm that generates C4.5 decision 
trees, which in their turn implement ID3 algorithm. 

Prism, the best classifier for IncepOper1, is based 

on the inductive rule learning and uses separate-
and-conquer strategy.  

DecisionTable, the best for ContOper1, is an 

induction algorithm whose task is to find the 
optimal list of attributes such that the decision table 
created from this list will have the lowest possible 

error on the training data. BFTree, the best 

method for Func0, is a best-first decision tree 
learner – an alternative approach to standard 
decision tree techniques such as C4.5 algorithm 
since they expand nodes in best-first order instead 

of a fixed depth-first order. JRip, the best 

algorithm for CausFunc0, implements a 

propositional rule learner RIPPER. END, the best 

for CausFunc01, is a meta-classifier for handling 
multi-class datasets with two-class classifiers by 

building an ensemble of nested dichotomies. FT, 

the best for Real1, is a classifier for building 
functional trees, which are classification trees that 
could have logistic regression functions at the inner 
nodes and/or leaves. More details on classifiers 
can be found in [23].  

Since almost all best classifiers for LF detection 
are symbolic, we can suppose that collocational 
semantics is better distinguished by rules and 
decision-making procedures than based on 
probabilistic knowledge learned from the training 
data. Statistical methods are limited by the 
assumption that all features in data are equally 
important in contributing to the decision of 
assigning a particular class to an example and as 
well independent of one another. This is a rather 
simplified view of data, because in many cases, 
data features are not equally important or 
independent and this is certainly true for linguistic 
data, especially for such a language phenomenon 
as hypernyms. Graphically, hypernyms form a tree, 
a hierarchic structure where every hypernym has 
its ancestor (except for the hypernym at the root of 
the tree) and a child or children (except for 
hypernyms in the leaf nodes of the tree).  

Table 3 presents some of the best results 
reported in [22, 23], and our best results. No 
comparison is fair because the experiments were 
not run on the same dataset though in all cases 
verb-noun collocations were dealt with. In Table 3, 
W04 stands for [22], W06 stands for [23], F1 stands 
for F1-measure, # signifies the number of 
instances for a given LF, NB is the nearest 
neighbor technique, NB is Naïve Bayesian 
network, BLR is BayesianLogisticRegression 

Table 4 shows performance of classifiers 
commonly used for natural language processing: 
Naive Bayes, C4.5 decision tree learner, nearest-
neighbor instance-based learner, and support 
vector machine. In this table, W06 stands for [23], 
BLR stands for BayesianLogisticRegression, and 
DT stands for DecisionTable.  

The column ‘Best’ presents the best result 
achieved in our research by classifiers specified 
after the | symbol.  
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The best values are taken from Table 2 and 
displayed here for the sake of a more 
convenient viewing.  

It can be seen from Table 4 that the value of F1-
measure averaged over four classifiers for each LF 
is significantly lower than the best result for this LF 
with the only exception of Oper1 for which the 
difference between the average result and the best 
result is not so great (0.760 vs. 0.873).  

It is rather surprising that Naive Bayes 
performed so poorly except for Oper1 (F1-measure 
of 0.711). Naive Bayes was not able to predict 
Oper2, IncepOper1, ContOper1, and Func0 at all. 
However, [23] reports better results achieved by 
Naive Bayes. Unfortunately, they cannot be 
compared for all LFs in our experiments because 
not all of them were dealt with in [23]. Better results 
for Naive Bayes may be explained by a more 
informative data representation in [23] where Basic 
Concepts and Top Concepts of EuroWordNet were 

used as features for LF learning [21] together with 
hypernym information. 

5 Conclusions 

It is widely acknowledged that collocations can be 
classified according to their structure. Oxford 
Collocations Dictionary for Students of English [12] 
groups collocations with similar syntactic patterns 
like ‘verb + noun’, ‘verb + adverb’, ‘preposition + 
noun’, etc. We have shown that collocations can 
be classified semantically according to the 
typology of lexical functions. The formalism of 
lexical functions encodes semantic information of 
collocations representing it by abstract meanings 
like ‘do’, ‘cause’, ‘begin’, ‘continue’, etc. Lexical 
functions can serve as semantic descriptions of 
collocational classes. Still a more detailed 
description of classes is given by means of 
semantic and syntactic patterns typical for each 

Table 3. Best results in [22, 23] and our best results for some LFs  

LF # in W04 
Result 

in W04,F1 
# in W06 

Result in W06 # in  
our data 

Our result 

F1 Method F1 Method 

Oper1 50 0.609 87 0.737 NB 266 0.873 BLR 

Oper2 48 0.759 48 0.662 NN 28 0.706 J48 

CausFunc0 53 0.766 53 0.676 NN 109 0.725 JRip 

Real1  52 0.741 52 0.500  NN 60 0.598 FT 

Average 0.719      0.644     0.726  

Table 4. Performance of four classifiers most frequently used in natural language processing  

on LF predicting. The numbers are F1-measure values 

LF NB in W06 NB J48 IB1 SMO Average Best 

Oper1 0.737 0.711 0.844 0.620 0.864 0.760 0.873 | BLR 

Oper2 0.304 0.000 0.706 0.327 0.595 0.407 0.706 | J48 

IncepOper1  0.000 0.571 0.357 0.722 0.413 0.774 | Prism 

ContOper1  0.000 0.800 0.333 0.750 0.471 0.833 | DT 

Func0  0.000 0.636 0.348 0.583 0.392 0.696 | BFTree 

CausFunc0 0.589 0.308 0.609 0.387 0.643 0.487 0.725 | JRip 

CausFunc01  0.077 0.762 0.462 0.681 0.496 0.762 | END 

Real1 0.452 0.040 0.533 0.364 0.627 0.391 0.598 | FT 

Average                                                                       0.477 0.746 
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class, like ‘to do the <noun>’, ‘to cause the <noun> 
to exist’, ‘to begin to do the <noun>’, etc.  

It has been demonstrated in our experiments 
that verbal lexical functions can be detected 
automatically applying supervised machine 
learning techniques on the dataset of Spanish 
verb-noun collocations. We tested 68 supervised 
learning algorithms and evaluated their 
performance on automatic detection of lexical 
functions. The maximum F1-measure of 75% was 
achieved in our experiments. The best state-of-the-
art result is 70% [22, 23].   

Our experiments have also demonstrated that 
symbolic learning methods significantly outperform 
statistical methods on the task of LF detection. 
Such a classical statistic method as Naive Bayes 
failed to distinguish four out of eight LFs in the 
experiments; the average F1-measure of statistical 
methods is 0.477.  

In future, we plan to apply the concept of 
syntactic n-grams [16, 17] for extraction of LF, i.e., 
to use additional syntactic information for this task. 
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