
Automatic Detection of Semantic Classes of Verb-Noun Collocations

Olga Kolesnikova1, Alexander Gelbukh2, Liliana Chanona-Hernández3

1 Instituto Politécnico Nacional, Escuela Superior de Cómputo,
Mexico

2 Instituto Politécnico Nacional, Centro de Investigación en Computación,
Mexico

3 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica,
Mexico

gelbukh@gelbukh.com, {kolesolga, lchanona} @gmail.com

Abstract. It does not surprise us that a bank can be a

financial institution as well as a piece of land. Quite often
one word is used with different meanings. But
sometimes the opposite happens: we choose different
words to express the same idea. For example, to give a
smile means ‘to smile’, and to lend support means ‘to
support’ (Longman Dictionary of Contemporary English,
1995). These two collocations convey the same idea: to
smile is to ‘perform’, or ‘do’ a smile, and to support is to
‘do’ support, so that both verb-noun collocations share
the same semantics: to do what is denoted by the noun.
Likewise, we find that to acquire popularity and to sink
into despair both mean ‘to begin to experience the
<noun>’, and to establish a relation and to find a solution
mean ‘to create the <noun>’. Such semantic patterns or
classes are called lexical functions. In this article, we
explain the concept of lexical functions, give a summary
of state-of-the-art research on automatic detection of
lexical functions, and present the framework and results
of our experiments on supervised learning of lexical
functions fulfilled on the material of Spanish verb-
noun collocations.

Keywords. Verb-noun collocations, lexical functions,

semantic classification, supervised machine learning.

1 Introduction

Collocations, or recurrent word combinations often
used together in a language, present a challenge
to natural language analysis and natural language
generation due to their limited compositionality and
idiomatic nature [10]. Knowledge of collocation
should be integrated into natural language systems

to avoid incorrect interpretation and production of
texts. First, collocations are to be distinguished
from free word combinations because these two
groups of language phenomena are handled
differently. A number of collocation extraction tools
and methods have been developed so far [5, 15,
19]. Secondly, it is useful to annotate collocations
with grammatical and semantic information and
store them in databases and machine readable
dictionaries which then can be incorporated in
various applications [3, 18].

It is typical for collocation inventories to include
such grammatical information as part-of-speech of
collocation constituents. A good example is Oxford
Collocations Dictionary for Students of English
[12], the most widely used English collocation
dictionary. However, collocational databases are
still in need of semantic information markup to
represent the opaque meaning of collocations
explicitly. One possible solution is to define
collocations in the way a common monolingual
dictionary does it, i.e. providing definitions and
usage examples. However, such approach
requires a lot of manual work, time, and financial
resources. Another way is to retrieve semantic
information automatically.

This is followed by a question: What type of
semantic information can be retrieved and how? In
this work, we suggest that the semantics of
collocations (in particular, we study verb-noun
collocations) can be generalized and presented as
abstract meanings found in collocational groups.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

ISSN 2007-9737

mailto:gelbukh@gelbukh.com

Each group is then characterized by a single and
distinct abstract meaning, thus forming a semantic
class. We use the formalism of lexical functions
explained in Section 2 to encode the generalized
semantics of collocations and apply supervised
machine learning methods to detect lexical
functions automatically.

As it has just been mentioned, Section 2
presents the concept of lexical function by giving
its definition, explaining its notation, and illustrating
these with examples. By way of introduction, we
will only note here that lexical functions capture
similar semantic features of groups of collocations.
In addition, here we give some anticipative insight
into the concept via examples in the paragraph
that follows.

The fact that one word can have many senses
is well known in linguistics. However, sometimes
the opposite happens: we choose different words
to express the same idea, but the choice is purely
lexical and not semantically motivated. For
example, to give a smile means ‘to smile’ or
‘perform a smile’. When we want to say ‘to perform’
support, we can also use the verb to give: to give
support. The verb to lend is also used with support
in the same meaning: to lend support is to give
support.

These collocations share the same semantics:
to do what is denoted by the noun. Likewise, we
find that to acquire popularity and to sink into
despair both mean ‘to begin to experience the
<noun>’, and to establish a relation and to find a
solution mean ‘to create the <noun>’.

Such semantic patterns or classes are called
lexical functions. The latter can serve as an
instrument to generalize the meaning of
collocations and to construct a semantic
classification of collocations. A database where
collocations are annotated with lexical functions
will be a valuable resource for natural language
applications.

The rest of the paper is organized as follows.
Section 2 explains the concept of lexical function,
Section 3 reviews state-of-the-art results in
automatic detection of lexical functions. Section 4
describes the setting of our experiments including
data, data representation, and methods. It also
gives results we achieved and discusses them.
Section 5 presents conclusions.

2 Lexical Functions

2.1 Definition, Notation, and Examples

Lexical function (LF) is a concept developed by
Mel’čuk [11] as a part of the Meaning-Text Theory
to capture lexical relations among words. (A brief
description of the Meaning-Text Theory can be
found in [7]). Lexical function is a mapping from
one word called the keyword to another it
collocates with in corpora called the lexical
function value. For example, in to make an
announcement, the keyword is announcement,
and the lexical function value is to make. This
mapping is further characterized by its meaning
encoded by an abbreviated Latin word with the
semantics similar to the lexical function meaning.

The collocation given above represents the
lexical function named Oper1. ‘Oper’ is from Latin
operari, to ‘do’, ‘perform’, ‘carry out’ (what is
denoted by the noun). That is, to express the
meaning ‘to perform an announcement’, one says
in English to make an announcement. Other
examples of Oper1 are to break the news, to
narrate a story, to deliver a message, to perform a
drama, to give a smile, to lend support, to mount
resistance, to have authority, to exercise power. All
these collocations share the common semantic
pattern ‘to do the <noun>’.

The LF name is followed by a subscript
representing syntactic functions of words or
phrases which lexicalize semantic roles: 1 stands
for the agent, 2, for recipient/patient, etc. The
subscript 1 in Oper1 means that the agent of
announcement in the above collocation is the
grammatical subject: He (agent) has made an
announcement. Using the notation of lexical
function, to make announcement is re-written as
Oper1(announcement) = make, to execute a
program as Oper1(program) = to execute, to run a
risk as Oper1(risk) = to run.

However, to receive treatment is represented
as Oper2(treatment) = to receive, the subscript 2
signifies that the recipient/patient is the subject:

He has received an effective treatment and feels
well now. Another example is Oper2(attention) = to
gain: The author gained the attention of the
audience. The subscript 0 means that the keyword
itself funcitons as the subject: Func0(snow) = to fall,

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Olga Kolesnikova, Alexander Gelbukh, Liliana Chanona Hernández142

ISSN 2007-9737

Snow was falling all day long, Func is from Lat.
functionare, to function.

More details on LF notation is given by Mel’čuk
[11]. He describes 64 LFs identified in collocations
of various syntactic structures (adjective-noun,
noun-noun, verb-noun, verb-adverb, etc.) and
illustrates them with abundant English material.
Since our work is done on verb-noun collocations,
we concentrate on verb-noun lexical functions and
use examples of such functions and collocations.

Besides Oper1, Oper2, and Func0 mentioned
above, we give another two examples of verb-noun
LFs. The first is Func01(joy) = to fill [somebody];
here 0 says that the keyword is the subject and 1
means that the agent of the keyword (joy) is the
verb’s object: When she saw her friend, a sudden
joy filled her.

The second is Real1, from Lat. realis, real. Real1
means ‘to fulfill the requirement of the <noun>’, or
‘to do with the <noun> what one is supposed to do
with the <noun>, and the examples are to prove an
accusation, to drive a bus, to succumb to an
illness [11].

2.2 Simple and Complex Lexical Functions

Lexical functions can represent single as well as
multiple semantic features or ‘units of meaning’.
Simple LFs represent a single semantic element:
‘do’ (Oper), ‘function’ (Func), ‘fulfill the
requirement’ (Real).

Other examples of simple LFs are: Incep, from
Lat. incipere, to begin; Cont, from Lat. continuare,
to continue; Fin, from Lat. finire, to cease; Caus,
from Lat. causare, to cause. Complex LFs are
combinations of simple LFs.

IncepOper1 means ‘to begin to do the <noun>’
in to enter into marriage, to acquire a right, to
assume a role, to reach the age, to fall into a
trance, to develop ability.

ContOper1 means ‘to continue to do the
<noun>’ in to cultivate a relationship, to develop
cooperation, to nourish friendship, to nurture an
attitude, to maintain the balance.

CausFunc01 means ‘to cause that the <noun>
functions’ in to stir up interest, to raise hope, to
inspire love, to assign a rank, to bring luck, to
impose a fine.

2.3 Lexical Functions for Verb-Noun
Collocations

As it is said in Section 2.1, 64 LFs have been
defined to represent a wide range of collocations
of different structure: adjective-noun, noun-noun,
verb-noun, verb-adverb, etc. These LFs are
simple. Our experiments on automatic detection of
lexical functions has been done for Spanish verb-
noun collocations.

Due to data we have at our disposal (see
Section 4.1), we have got a sufficient number of
verb-noun collocations only for eight lexical
funcitons listed in Table 1. Therefore, these LFs
were chosen for machine learning experiments.

2.4 Lexical Functions as Semantic Classes of
Collocations

It was mentioned in Section 1 that lexical functions
may be applied to build a semantic typology of
collocations. This typology will be rather fine-
grained and include at least 64 classes equal to the
number of simple LFs as indicated in Section 2.2,
not to mention complex LFs. Each class can be
characterized by the semantics of its
corresponding LF and a semantic pattern (like ‘to
do the <noun>) which also stores syntactic
information. The latter gives quite a
comprehensive description of a group of
collocations which desambiguates them and
distinguishes them from any other class since such
description is unique for each class.

3 Automatic Detection of Lexical
Functions: State-of-the-Art

Wanner (2004) suggested to regard the task of LF
automatic detection as classifying collocations
according to LF typology and applied nearest
neighbor technique to resolve it. Experiments were
done on two groups of Spanish verb-noun
collocations: one with emotion nouns and the other
with field-independent nouns. LF learning was
performed using hypernym information from the
Spanish part of EuroWordNet [22].The maximum
F1-measure achieved for field-independent
collocations was 0.76 on CausFunc0. The average
F1-measure was about 0.70.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Automatic Detection of Semantic Classes of Verb-Noun Collocations 143

ISSN 2007-9737

The same average result was shown on more
data in [23] over four learning methods: nearest
neighbor, Naïve Bayes, tree-augmented network,
and ID3-algorithm. This time the best F1-measure
on field-independent verb-noun collocations (0.76)
was achieved by ID3-algorithm.

Archer [2] performed experiments on extracting
collocations of the adjectival/adverbial lexical
function Magn, from Lat. magnus, big, great, using
Conceptual Vectors [14]. Magn values are
intensifiers, for example: Magn(rain) = heavy,
Magn(temperature) = high, Magn(storm) = sever,
Magn(to weep) = bitterly. The research was done
on French material. The reported result is a
precision of 83%. However, the process of
extracting Magn collocations was semi-automatic
and included human intervention, which improved
the result significantly.

Alonso Ramos et al. [1] proposed an algorithm
to retrieve collocations of the type ‘support verb +
object’ from the semantically annotated FrameNet
corpus of examples [13]. Their interest was to see
whether the collocations they extracted were of
Opern. The authors assumed that certain syntactic,
semantic, and collocation annotations in the
FrameNet corpus could signal that a particular
collocation belonged to Opern. The proposed
algorithm was tested on 208 instances and showed
an accuracy of 76%.

In [4] it is discussed how to use dictionary
definitions for extracting actants, which is very
similar to LF and can be used in our future work.

4 Our Experiments on Supervised
Learning of Lexical Functions

4.1 Data

Spanish verb-noun collocations were extracted
automatically from the Spanish Web Corpus via
SketchEngine [8], web-based software for
automatic text processing. The Spanish Web
Corpus is compiled of texts found in the Internet.
The texts are not limited to particular themes so the
corpus represents the general Spanish lexis,
therefore its lexical data can be considered field-

1 http://148.204.58.221/okolesnikova/index.php?id=lex/ or

http://www.gelbukh.com/lexical-functions

independent. The collocations were manually
annotated with LFs and Spanish WordNet senses
[21]. Our data is available on the web1.

We found that in our data eight LFs were
represented by the number of collocations
sufficient for machine learning experiments, as it
was mentioned in Section 2.3. Table 1 presents
these LFs together with the number of their
instances, corresponding semantic patterns, and
Spanish examples followed by
English translations.

4.2 Data Representation

Hypernyms of all words in collocations were used
as features for LF learning. The source of
hypernym information was the Spanish WordNet
[21]. It is an online lexical resource and is used
widely in the natural language processing
community. We used a vector space model with
binary representation of features assigning each
feature the value of 1 if a hypernym was present
among hypernyms of the verb or the noun in a
collocation, and the value of 0 if it was absent.

Thus, every collocation was represented as a
vector of binary values having the size equal to the
number of all hypernyms extracted for all words in
all LF samples. Each of eight lexical functions was
assigned its training set. All eight training sets
included the same collocations, with the difference
of marking collocations belonging to the LF in
question as positive examples (class “yes”) and the
collocations belonging to the other seven LFs as
negative examples (class “no”).

4.3 Methodology

WEKA 3-6-2 toolkit [6] was used for experimenting
with many supervised learning algorithms. We
supplied the training sets of eight LF to 68
classifiers and evaluated predictions of the positive
class on the same sets applying 10-fold cross-
validation technique and F1-measure. Below all
classifiers tested for LF prediction are listed. The
classifiers are grouped according to their classes.

Class bayes: AODE, AODEsr,

BayesianLogisticRegression, BayesNet, HNB,

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Olga Kolesnikova, Alexander Gelbukh, Liliana Chanona Hernández144

ISSN 2007-9737

NaiveBayes, NaiveBayesSimple,
NaiveBayesUpdateable, WAODE.

Class functions: LibSVM, Logistic,

RBFNetwork, SimpleLogistic, SMO,
VotedPerceptron, Winnow.

Class lazy: IB1, IBk, KStar, LWL.

Class meta: AdaBoostM1,

AttributeSelectedClassifier, Bagging,
ClassificationViaClustering,
ClassificationViaRegression,
CVParameterSelection, Dagging, Decorate, END,
EnsembleSelection, FilteredClassifier, Grading,
LogitBoost, MultiBoostAB, MultiClassClassifier,
MultiScheme, OrdinalClassClassifier,
RacedIncrementalLogitBoost,

RandomCommittee, RandomSubSpace,
RotationForest, Stacking, StackingC,
ThresholdSelector, Vote.

Class misc: HyperPipes, VFI.

Class rules: ConjunctiveRule, DecisionTable,

JRip, NNge, OneR, PART, Prism, Ridor, ZeroR.

Class trees: ADTree, BFTree,

DecisionStump, FT, Id3, J48, J48graft, LADTree,
RandomForest, RandomTree, REPTree,
SimpleCart.

4.4 Experimental Results and Discussion

As it is mentioned in Section 4.3, the performance
of supervised learning algorithms was evaluated in

Table 1. LFs and semantic patterns of collocations in our data

LF
of
instances

Semantic pattern Spanish collocation English translation

Oper1 266
to carry out the <noun>,

to experience the <noun>

prestar atención

tener una duda

celebrar la reunión

to pay attention

to have doubt

to have a meeting

Oper2 28
to undergo the <noun>,

to be source of the <noun>

obtener beneficio

sufrir un ataque

recibir la respuesta

to get a benefit

to have an attack

to get the answer

IncepOper1 24
to begin to do, perform,
experience, carry out the
<noun>

asumir la responsabilidad

iniciar un proceso

tomar la iniciativa

to take on the
responsibility

to start a process

to take the initiative

ContOper1 16
to continue to do, perform,
experience, carry out the
<noun>

mantener el contacto

seguir el curso

guardar silencio

to keep in contact

to follow the course

to keep silent

Func0 16
the <noun> exists, takes
place, occurs

la posibilidad existe

el día pasa

la duda cabe

the possibility exists

the day passes by

a doubt arises

CausFunc0 109
the agent of the <noun>
causes the <noun> to occur

poner un ejemplo

dar explicación

provocar la reacción

to give an example

to give an explanation

to provoke a reaction

CausFunc01 89

a person/object, different
from the agent of the
<noun>, causes the
<noun> to occur

dar importancia

abrir paso

producir daño

to give importance

to make way

to inflict damage

Real1 60
to fulfill the requirement of
the <noun>, to act
according to the <noun>

utilizar la herramienta

corregir el error

alcanzar el nivel

to use a tool

to correct an error

to reach a level

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Automatic Detection of Semantic Classes of Verb-Noun Collocations 145

ISSN 2007-9737

terms of F1-measure using 10-fold cross-validation
technique. Table 2 presents the results of three
best classifiers for each LF, # stands for the
number of LF positive instances, F1 stands for F1-
measure, and the highest F1-measure for each LF
is in boldface.

Usually, in machine learning experiments,
ZeroR is chosen as the baseline. ZeroR is a trivial
classifier that assigns the majority class to all
examples. In our experiments, the majority class is
always “no” since the number of negative
examples for each lexical function is bigger than
the number of its positive examples. For example,
the number of positive examples for Oper1 is 266

and the number of its negative examples is 608 –
266 = 342. The number of positive examples for
the rest seven lexical functions is even less than
for Oper1 as it is seen from Table 2, therefore,
ZeroR has no sense as the baseline.

However, the baseline can be a random choice
of a positive or a negative answer to the question
“Is this collocation of this particular lexical
function?” In such a case we deal with the
probability of a positive and negative response.
Since we are interested in only assigning the
positive answer to a collocation, we calculate the
probability of “yes” class for eight lexical functions
in the experiments according to the formula:

Table 2. Best classifiers on LF detection

LF # Baseline Classifier F1

Oper1 266 0.437

BayesianLogisticRegression 0.873

Id3 0.870

SMO 0.864

Oper2 28 0.046

J48 0.706

LogitBoost 0.686

LADTree 0.667

IncepOper1 24 0.040

Prism 0.774

NNge 0.727

SMO 0.722

ContOper1 16 0.026

DecisionTable 0.833

FilteredClassifier 0.800

Ridor 0.783

Func0

16 0.026

BFTree 0.696

HyperPipes 0.636

AttributeSelectedClassifier 0.636

CausFunc0 109 0.179

JRip 0.725

EnsembleSelection 0.699

REPTree 0.695

CausFunc01 89 0.146

END 0.762

LogitBoost 0.756

AttributeSelectedClassifier 0.733

Real1 60 0.099

FT 0.598

NNge 0.593

Id3 0.587

Total # 608 Average best 0.746

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Olga Kolesnikova, Alexander Gelbukh, Liliana Chanona Hernández146

ISSN 2007-9737

probability of “yes” = (the number of positive
examples of a given lexical function) / (the number
of all examples). These probabilities will be results
of a classifier that assigns the class “yes” to
collocations at random assuming a uniform
probability distribution. Since we will compare the
probabilities of the random choice with the results
obtained in our experiments, we present the former
as numbers within the range from 0 to 1 in Table 2.

As it is seen from Table 2, no single classifier is
the best one for detecting all LFs. For each LF, the
highest result is achieved by a different classifier.
The maximum F1-measure of 0.873 is achieved by
BayesianLogisticRegression classifier for Oper1.
The lowest best F1-measure of 0.598 is shown by
FT for Real1. The average best F1-measure
(calculated over only the eight best results, one for
each LF) is 0.746.

No correlation was observed between the
number of instances in the training set and the
results obtained from the classifiers. For example,
a low result of 0.598 is shown for Real1 which has
more positive instances (60) than ContOper1 (only
16), but for ContOper1 a high result of 0.833 was
attained. At the same time, Func0 with the equal
number of positive instances as ContOper1 (16)
was detected with an F1-measure of 0.696 which
is low. Similar results were showed for CausFunc01
(F1-measure of 0.762) and IncepOper1 (F1-
measure of 0.774), though CausFunc01 has 89
positive instances and IncepOper1, only 24.

It is also seen from Table 2 that the best
classifiers for all LFs except for Oper1 are based on

symbolic, not statistical, learning. J48, the best

method for detecting Oper2, is a rule-based
classifier algorithm that generates C4.5 decision
trees, which in their turn implement ID3 algorithm.

Prism, the best classifier for IncepOper1, is based

on the inductive rule learning and uses separate-
and-conquer strategy.

DecisionTable, the best for ContOper1, is an

induction algorithm whose task is to find the
optimal list of attributes such that the decision table
created from this list will have the lowest possible

error on the training data. BFTree, the best

method for Func0, is a best-first decision tree
learner – an alternative approach to standard
decision tree techniques such as C4.5 algorithm
since they expand nodes in best-first order instead

of a fixed depth-first order. JRip, the best

algorithm for CausFunc0, implements a

propositional rule learner RIPPER. END, the best

for CausFunc01, is a meta-classifier for handling
multi-class datasets with two-class classifiers by

building an ensemble of nested dichotomies. FT,

the best for Real1, is a classifier for building
functional trees, which are classification trees that
could have logistic regression functions at the inner
nodes and/or leaves. More details on classifiers
can be found in [23].

Since almost all best classifiers for LF detection
are symbolic, we can suppose that collocational
semantics is better distinguished by rules and
decision-making procedures than based on
probabilistic knowledge learned from the training
data. Statistical methods are limited by the
assumption that all features in data are equally
important in contributing to the decision of
assigning a particular class to an example and as
well independent of one another. This is a rather
simplified view of data, because in many cases,
data features are not equally important or
independent and this is certainly true for linguistic
data, especially for such a language phenomenon
as hypernyms. Graphically, hypernyms form a tree,
a hierarchic structure where every hypernym has
its ancestor (except for the hypernym at the root of
the tree) and a child or children (except for
hypernyms in the leaf nodes of the tree).

Table 3 presents some of the best results
reported in [22, 23], and our best results. No
comparison is fair because the experiments were
not run on the same dataset though in all cases
verb-noun collocations were dealt with. In Table 3,
W04 stands for [22], W06 stands for [23], F1 stands
for F1-measure, # signifies the number of
instances for a given LF, NB is the nearest
neighbor technique, NB is Naïve Bayesian
network, BLR is BayesianLogisticRegression

Table 4 shows performance of classifiers
commonly used for natural language processing:
Naive Bayes, C4.5 decision tree learner, nearest-
neighbor instance-based learner, and support
vector machine. In this table, W06 stands for [23],
BLR stands for BayesianLogisticRegression, and
DT stands for DecisionTable.

The column ‘Best’ presents the best result
achieved in our research by classifiers specified
after the | symbol.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Automatic Detection of Semantic Classes of Verb-Noun Collocations 147

ISSN 2007-9737

The best values are taken from Table 2 and
displayed here for the sake of a more
convenient viewing.

It can be seen from Table 4 that the value of F1-
measure averaged over four classifiers for each LF
is significantly lower than the best result for this LF
with the only exception of Oper1 for which the
difference between the average result and the best
result is not so great (0.760 vs. 0.873).

It is rather surprising that Naive Bayes
performed so poorly except for Oper1 (F1-measure
of 0.711). Naive Bayes was not able to predict
Oper2, IncepOper1, ContOper1, and Func0 at all.
However, [23] reports better results achieved by
Naive Bayes. Unfortunately, they cannot be
compared for all LFs in our experiments because
not all of them were dealt with in [23]. Better results
for Naive Bayes may be explained by a more
informative data representation in [23] where Basic
Concepts and Top Concepts of EuroWordNet were

used as features for LF learning [21] together with
hypernym information.

5 Conclusions

It is widely acknowledged that collocations can be
classified according to their structure. Oxford
Collocations Dictionary for Students of English [12]
groups collocations with similar syntactic patterns
like ‘verb + noun’, ‘verb + adverb’, ‘preposition +
noun’, etc. We have shown that collocations can
be classified semantically according to the
typology of lexical functions. The formalism of
lexical functions encodes semantic information of
collocations representing it by abstract meanings
like ‘do’, ‘cause’, ‘begin’, ‘continue’, etc. Lexical
functions can serve as semantic descriptions of
collocational classes. Still a more detailed
description of classes is given by means of
semantic and syntactic patterns typical for each

Table 3. Best results in [22, 23] and our best results for some LFs

LF # in W04
Result

in W04,F1
in W06

Result in W06 # in
our data

Our result

F1 Method F1 Method

Oper1 50 0.609 87 0.737 NB 266 0.873 BLR

Oper2 48 0.759 48 0.662 NN 28 0.706 J48

CausFunc0 53 0.766 53 0.676 NN 109 0.725 JRip

Real1 52 0.741 52 0.500 NN 60 0.598 FT

Average 0.719 0.644 0.726

Table 4. Performance of four classifiers most frequently used in natural language processing

on LF predicting. The numbers are F1-measure values

LF NB in W06 NB J48 IB1 SMO Average Best

Oper1 0.737 0.711 0.844 0.620 0.864 0.760 0.873 | BLR

Oper2 0.304 0.000 0.706 0.327 0.595 0.407 0.706 | J48

IncepOper1 0.000 0.571 0.357 0.722 0.413 0.774 | Prism

ContOper1 0.000 0.800 0.333 0.750 0.471 0.833 | DT

Func0 0.000 0.636 0.348 0.583 0.392 0.696 | BFTree

CausFunc0 0.589 0.308 0.609 0.387 0.643 0.487 0.725 | JRip

CausFunc01 0.077 0.762 0.462 0.681 0.496 0.762 | END

Real1 0.452 0.040 0.533 0.364 0.627 0.391 0.598 | FT

Average 0.477 0.746

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Olga Kolesnikova, Alexander Gelbukh, Liliana Chanona Hernández148

ISSN 2007-9737

class, like ‘to do the <noun>’, ‘to cause the <noun>
to exist’, ‘to begin to do the <noun>’, etc.

It has been demonstrated in our experiments
that verbal lexical functions can be detected
automatically applying supervised machine
learning techniques on the dataset of Spanish
verb-noun collocations. We tested 68 supervised
learning algorithms and evaluated their
performance on automatic detection of lexical
functions. The maximum F1-measure of 75% was
achieved in our experiments. The best state-of-the-
art result is 70% [22, 23].

Our experiments have also demonstrated that
symbolic learning methods significantly outperform
statistical methods on the task of LF detection.
Such a classical statistic method as Naive Bayes
failed to distinguish four out of eight LFs in the
experiments; the average F1-measure of statistical
methods is 0.477.

In future, we plan to apply the concept of
syntactic n-grams [16, 17] for extraction of LF, i.e.,
to use additional syntactic information for this task.

Acknowledgements

We are grateful to Adam Kilgarriff and Vojtěch
Kovář for providing us a list of most frequent verb-
noun pairs from the Spanish Web Corpus of the
Sketch Engine2.

The work was done under partial support of
Mexican Government: SNI, COFAA-IPN, BEIFI-
IPN, and SIP-IPN grants 20201948 and 20200859.

References

1. Alonso-Ramos, M., Rambow, O., & Wanner, L.
(2008). Using semantically annotated corpora to
build collocation resources. Proceedings of the
International Language Resources and Evaluation
Conference (LREC), Vol. 19, No. 4, pp. 1154–1158.

2. Archer, V. (2007). Using conceptual vectors to get

Magn collocations (and using contrastive properties
to get their translations). Gerdes, K., Reuther, T. &
Wanner, L. (eds.), Proceedings of the Third
International Conference on Meaning-Text Theory,
Wiener Slawistischer Almanach, Sonderband 69,
München-Wien, pp. 57–65.

2 www.sketchengine.co.uk

3. Bolshakov, I.A. & Gelbukh, A. (2001). A very large

database of collocations and semantic links.
Proceedings of NLDB'2000: 5th International
Conference on Applications of Natural Language to
Information Systems, pp. 103–114. DOI: 10.1007/3-
540-45399-7_9.

4. Castro-Sánchez, N.A. & Sidorov, G. (2010).

Analysis of definitions of verbs in an explanatory
dictionary for automatic extraction of actants based
on detection of patterns. Lecture Notes in Computer
Science 6177, pp 233–239.

5. Delač D., Krleža, Z., Šnajder, J., Bašić B.D., &
Šarić, F. (2009). TermeX: A tool for collocation
extraction. Computational Linguistics and Intelligent
Text Processing, pp. 149–157. DOI: 10.1007/978-3-
642-00382-0_12.

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., & Witten I. H. (2009). The WEKA
data mining software: An update. SIGKDD
Explorations, Vol. 11, No. 11, pp. 10–18. DOI:
10.1145/1656274.1656278.

7. Kahane, S. (2003). The Meaning-Text theory,

dependency and valency. Handbooks of Linguistics
and Communication Sciences, Vol. 25, pp. 1–2.

8. Kilgarriff, A., Rychly, P., Smrz, P., & Tugwell, D.
(2004). The sketch engine. Proceedings of
EURALEX, Lorient, pp. 105–116.

9. Longman Dictionary of Contemporary English
(1995). Essex, UK: Longman Group Ltd.

10. Manning, C. & Schütze, H. (1999). Foundations of
statistical natural language processing. The MIT
Press, Cambridge, US.

11. Mel’čuk, I. (1996). Lexical functions: A tool for the
description of lexical relations in a lexicon. Lexical
functions in lexicography and natural language
processing. John Benjamins, Amsterdam/
Philadelphia, pp. 37–102.

12. Oxford Collocations Dictionary for Students of
English (2003). Oxford University Press, Oxford,

UK.

13. Ruppenhofer, J., Ellsworth, M., Petruck, M.R.,
Johnson, C.R., & Scheffczyk, J. (2006). FrameNet

II: Extended theory and practice. pp. 1–115.

14. Schwab, D., Lafourcade, M., & Prince, V. (2002).
Antonymy and Conceptual Vectors. Shu-Chuan, T.,
Tsuei-Er, C., & Yi-Fen, L. (eds.) Coling 2002:
Proceedings of the 19th International Conference
on Computational Linguistics, Howard International
House, Taipei, Taiwan, pp. 904–910.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Automatic Detection of Semantic Classes of Verb-Noun Collocations 149

ISSN 2007-9737

15. Seretan, V. (2011). Survey of extraction methods.
Text, Speech and Language Technology, Vol. 44,

pp. 29–58.

16. Sidorov, G. (2019). Syntactic n-grams in

computational linguistics. Springer.

17. Sidorov, G. (2013). Construcción no lineal de n-
gramas en lingüística computacional. SMIA,
México.

18. Siepmann, D. (2005). Collocation, colligation and

encoding dictionaries. Part I: Lexicological aspects.
International Journal of Lexicography, Vol. 18, No.
4, pp. 409–443.

19. Smadja, F. (1993). Retrieving collocations from
text: Xtract. Computational Linguistics, Vol. 19, No.
1, pp. 143–178.

20. Vossen, P. (1998). EuroWordNet: A multilingual
database with lexical semantic networks. Kluwer
Academic Publishers, Dordrecht, the Netherlands.
Vol. 32, No. 1-2, pp. 1–79.

21. Vossen, P., Bloksma, L., Rodriguez, H., Climent,
S., Roventini, A., Bertagna, F., & Alonge, A.
(1998). The EuroWordNet base concepts and top
ontology. Technical Report Deliverable D017,
D034, D036, WP5 EuroWordNet, LE2-4003.
University of Amsterdam.

22. Wanner, L. (2004). Towards automatic fine-grained
classification of verb-noun collocations. Natural
Language Engineering, Vol. 10, No. 2, pp. 95–143.
DOI: 10.1017/S1351324904003328.

23. Wanner, L., Bohnet, B., & Giereth, M. (2006).

What is beyond collocations? Insights from machine
learning experiments. Proceedings of the
EURALEX Conference.

24. Witten, I.H. & Frank, E. (2005). Data mining:

Practical machine learning tools and techniques.
Morgan Kaufmann.

Article received on 29/01/2019; accepted on 02/09/2019.
Corresponding author is Alexander Gelbukh.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 141–150
doi: 10.13053/CyS-24-1-3130

Olga Kolesnikova, Alexander Gelbukh, Liliana Chanona Hernández150

ISSN 2007-9737

