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Néstor Lozano Crisóstomo1, Julio C. Garcı́a Melgarejo1, José E. Rocha Medina1,
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Abstract. We derive a new comprehensive evolution
equation to describe the nonlinear propagation of
high power optical pulses through photonic nanowires.
Our basic formulation part from the vectorial form of
Maxwell’s equations and take into account the effect of
the complete strong dispersion implicit in the propagation
constant β of the propagating mode inside the spectral
body of the optical pulses. Applying our new nonlinear
propagation equation in air-silica photonic nanowires,
we show evidence of additional effects that perturb the
supercontinuum, reducing its extreme long-wavelength
edge and making it narrower.
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1 Introduction

Supercontinuum (SC) generation refers to cohe-
rent white light generated by spectral broadening
of an injected spectrum and the generation of new
frequency components within the pulse spectrum
propagating in a nonlinear medium [5, 4]. SC
generation has recently attracted a great deal of
attention because of its wide range of applications

[4, 8]. For that reason, it has been widely studied
as a complex process introducing a variety of
experimental and theoretical challenges in different
waveguide types [4, 8, 6].

The theoretical study of the SC generation in
optical dielectric waveguides has been possible
with the use of the generalized nonlinear Schro-
dinger equation (GNLSE) [1]. Broadly speaking,
the GNLSE appropriately describes the coherent
spectral broadening and the generation of new
frequency components within the spectrum of
high power optical pulses propagating in nonlinear
dispersive waveguides [1, 3].

However, in the context of photonic nanowires,
i.e., waveguides with sub-micron transversal
dimensions, the use of the GNLSE as an accurate
and feasible method to describe the SC generation
is questionable because it does not take into
account, on one hand, the effect of the large
longitudinal field component of the propagating
electromagnetic waves generated due to the
strong optical confinement and high optical powers
[11, 10], and on the other hand, the effect of
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the complete strong dispersion implicit in the
propagation constant β of the propagating mode
inside the spectral body of the optical pulses [1].

The importance of consider the effect of the
large longitudinal electric field component of the
propagating modes along photonic nanowires is
because it can enhance the waveguide nonlinearity
through the nonlinear parameter γ [7]. In this
regard, nonlinear effects like SC generation can
be modified along the photonic nanowires. This
can be crucial in nano-photonic devices based on
optical nonlinearities [2]. Therefore, to analytically
study the SC generation in photonic nanowires is
required to readapt the conventional GNLSE from
the vectorial form of Maxwell’s equations and does
not neglect the longitudinal electric field.

Moreover, in the derivation of the conventional
GNLSE the following approximation is used β +
β0 ≈ 2β0, where β0 is the wave number
of the propagating optical pulse [1]. This
approximation simplify the GNLSE but it is only
valid when the optical field is assumed to be
quasi-monochromatic. Therefore, when short
pulses are launched into photonic nanowires, with
large enough power such that supercontinuum
generation is generated, that approximation is
questionable.

In this theoretical approach, we despise before
approximation and derive a new nonlinear pulse
propagation equation considering the vectorial
nature of Maxwell’s equations and the longitudinal
electric field component of the propagating mode.
We investigate how the complete strong dispersion
implicit in β of the propagating mode inside the
spectral body of the optical pulses affects the
SC generation in air-silica photonic nanowires
waveguides.

2 Nonlinear Propagation Equation

Let us begin by considering an air-silica cylindrical
photonic nanowire of core radius r and length L.
The photonic nanowire is initially pumped with an
optical pulse, at the carrier frequency ω0, such that
it excites the fundamental mode. To describe the
propagation of the optical pulse along the photonic

nanowire, we use the Maxwell frequency-domain
wave equation given by:

−∇(∇·Ẽ)+∇2Ẽ+k20n
2(x, y)Ẽ = −µ0ω

2P̃NL, (1)

where Ẽ(r,ω) and P̃NL(r,ω) are the Fourier
transform of the electric field E(r, t) and nonlinear
polarization PNL(r, t), respectively. E(r, t) and
PNL(r, t) are defined as E(r, t) = 1

2 [E(r, t)e−iω0t

+ c.c.] and PNL(r, t) = 1
2 [PNL(r, t)e−iω0t + c.c.],

where E(r, t) and PNL(r, t) are the slowly varying
functions of time. Therefore, Ẽ(r,ω) = 1

2 [Ẽ(r,ω −
ω0) + c.c.] and P̃NL(r,ω) = 1

2 [P̃NL(r,ω − ω0) +
c.c.]. Here c.c. denotes the complex conjugate.
The other quantities are as follows: k0 = ω

√
ε0µ0

is the free-space wavenumber, ω is the angular
frequency, ε0 is the vacuum permittivity, µ0 is the
vacuum permeability, and n is the linear part of the
refractive index profile.

The Fourier transform of E(r, t) can be written in
the form:

Ẽ(r,ω − ω0) = F(x, y,ω0)ã(z,ω − ω0)eiβ0z, (2)

where F(x, y,ω0) = e(x, y,ω0)/
√
N governs the

shape of the fundamental mode, ã(z,ω − ω0)
is the slowly varying modal amplitude, and β0
is the wavenumber. Here e(x, y,ω0) is the
frequency-independent transverse modal profile of
the air-silica photonic nanowire and N is related to
the spectral power of the pulse, and its obtained
using the Poynting vector [1].

Substituting Eq. (2) into (1) and applying the
slowly varying envelope approximation, we obtain
after associating terms:

−µ0ω
2e−iβ0zP̃NL

= (2iβ0FT −∇TFz − k̂∇T · FT )
∂ã

∂z

+iβ0(iβ0FT −∇TFz − k̂∇T · FT )ã

+[∇2
TF−∇T (∇T · FT) + k20n

2F]ã, (3)

where:
∇ = ∇T + k̂ ∂

∂z , ∇T = î ∂∂x + ĵ ∂∂y , F = FT + k̂Fz,
and FT = îFx + ĵFy.

Here Fz is the longitudinal component and FT
is the transverse part of the normalized electric
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field. Using the fact that the fundamental mode
distribution satisfies the equation: −∇(∇ ·Feiβz) +
(∇2 + k20n

2)Feiβz = 0, where β(ω) is the
propagation constant of that mode, we obtain after
substitute the last relation on the last term of the
right-hand side of Eq. (3) and associating terms:

−µ0ω
2e−iβ0zP̃NL

= (2iβ0FT −∇TFz − k̂∇T · FT )
∂ã

∂z

−i(β − β0)[i(β + β0)FT −∇TFz − k̂∇T · FT ]ã.
(4)

Here the usual way to simplify this equation is
to use the following approximation: β + β0 ≈ 2β0.
In this regard, Eq. (4) becomes the standard
nonlinear propagation equation which is commonly
used for describing the behavior of optical pulses
in optical fibers [1]. However, before approximation
is only valid when the optical field is assumed
to be quasi-monochromatic. Therefore, when
femtosecond pulses are launched into photonic
nanowires with large enough power such that
supercontinuum generation is generated, that
approximation is questionable. In this theoretical
approach, we despise that approximation and
derive a new nonlinear propagation equation.

Multiplying Eq. (4) with F∗, using the vectorial
identity F ∗z (∇T · FT ) = ∇T · (F ∗z FT ) − FT · ∇TF ∗z ,
integrating over the transverse plane and noticing
that

∫∫
∇T · (F ∗z FT )dxdy = 0; we obtain:

iµ0ω
2e−iβ0z

∫∫
F∗ · P̃NLdxdy

= (2β0

∫∫
|FT |2dxdy − i

∫∫
FT · ∇TF ∗z dxdy

+i

∫∫
F∗T · ∇TFzdxdy)

∂ã

∂z

−i(β − β0)[β0

∫∫
|FT |2dxdy

−i
∫∫

FT · ∇TF ∗z dxdy + β

∫∫
|FT |2dxdy

+i

∫∫
F∗T · ∇TFzdxdy]ã. (5)

Considering that (eT × h∗T ) · k̂ = (e × h∗) · k̂
and using the relations between the electric and

magnetic fields dictated by Maxwell’s equations [9,
11], we obtain:

µ0ω

N

∫∫
(e× h∗) · k̂dxdy

= β

∫∫
|FT |2dxdy − i

∫∫
FT · ∇TF ∗z dxdy. (6)

From Eq. (6) and its complex conjugate,
we obtain that

∫∫
FT · ∇TF ∗z dxdy = −

∫∫
F∗T ·

∇TFzdxdy. Therefore, using the last relation and
Eq. (6), Eq. (5) can be written as:

iµ0ω
2e−iβ0z

∫∫
F∗ · P̃NLdxdy

= (2β0

∫∫
|FT |2dxdy − 2i

∫∫
FT · ∇TF ∗z dxdy)

∂ã

∂z

−i(β − β0)[β0

∫∫
|FT |2dxdy

−i
∫∫

FT · ∇TF ∗z dxdy

+
µ0ω

N

∫∫
(e× h∗) · k̂dxdy]ã. (7)

If we consider the generalized orthogonality
condition given by 1

2

∫∫
(e × h∗) · k̂dxdy = N , and

by taking the inverse Fourier transform of Eq. (7),
we obtain that the propagation equation for a(z, t)
can be written as:

∂a

∂z
= i(1 +

i

2ω0

∂

∂t
)

∞∑
m=1

im
βm
m!

∂ma

∂tm

+i
1

4
ω0e
−i(β0z−ω0t)(1 +

i

ω0

∂

∂t
)2

∫∫
F∗ · PNLdxdy,

(8)

where we have expanded β(ω) in a Taylor
series about ω0 and replaced by ω by ω0(1 +
i
ω0

∂
∂t ). For the nonlinear term of Eq. (8),

since for isotropic medium such as glasses, we
approximated PNL(r, t) ≈ P(3)(r, t), where:

P(3)(r, t) =
3ε0χ

(3)
xxxx

4

×E(r, t)

∫ t

−∞
R(t− τ)|E(r, τ)|2dτ , (9)

where χ
(3)
xxxx is a real parameter. Here, the upper

limit of integration extends only up to t because the
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nonlinear response function R(t− τ) must be zero
for τ > t to ensure the causality [1]. Therefore by
substituting the Fourier transform of Eq. (2) into Eq.
(9), and using it in Eq. (8), we obtain the following
time-domain propagation equation:

∂a

∂z
= i(1 + i

τshock
2

∂

∂T
)

∞∑
m=2

im
βm
m!

∂ma

∂Tm

+iγ(1 + iτshock
∂

∂T
)2a(z,T )

×
∫ +∞

−∞
R(T ′)|a(z,T − T ′)|2dT ′, (10)

where τshock = 1
ω0

. We have removed the β1
term by assuming that T represents time in a
reference frame moving at the group velocity of
the input pulse. In obtaining Eq. (10), we have
using the relation 3χ

(3)
xxxx = 4ε0cnn2 [1], where

c is the speed of light in vacuum and n2 is the
nonlinear refractive index. Comparing Eq. (10)
with the conventional GNLSE [1], we can notice
the appearance of additional shock terms in the
dispersion and nonlinear terms. The nonlinear
coefficient γ is given by:

γ = k0
ε0
µ0

∫
n2(x, y)n2(x, y)|e(x, y)|4dxdy

(
∫

[e(x, y)× h∗(x, y)] · k̂dxdy)2
. (11)
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Fig. 1. Nonlinear parameter changes abruptly with the
core radius of the air-silica photonic nanowire

Figure 1 shows how the nonlinear parameter
changes with the core radius of an air-silica

photonic nanowire. For our calculations, we
chose the following values: the nonlinear refractive
index n2 = 2.6 × 10−20 m2 W−1, the wavelength
λ = 800 nm, and the relative core-cladding index
difference ∆ = 0.312.

Fig. 2. (a) and (b) SC generation evolution and output
spectra using the conventional model. (c) and (d) SC
generation evolution and output spectra using our new
pulse propagation model for L = 35 cm

To examine the main correction that our
nonlinear pulse propagation model does to the
SC generation in air-silica photonic nanowires, we
compare in Fig. 2 the SC generation produced by
the conventional GNLSE and by our new nonlinear
propagation equation. Figure 2 (a) and (b) shows
the SC generation produced by the conventional
GNLSE and Fig. 2 (c) and (d) shows the SC
generation produced by our new pulse propagation
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model. For this purpose, we have used the
following value of the nonlinear parameter: γ =
0.182 W−1m−1. We numerically simulate the SC
generation in an air-silica photonic nanowire with
length L = 35 cm, and core radius r = 900 nm. The
input sech pulse has a central wavelength λ = 800
nm, peak power P0 = 1 kW, and T0 = 50 fs.
Figure 2 shows that the additional shock terms in
our new propagation equation (Eq. (10)) have the
effect of reducing the long-wavelength edge of the
supercontinuum spectrum.

Fig. 3. (a) and (b) SC generation evolution and output
spectra using the conventional model. (c) and (d) SC
generation evolution and output spectra using our new
pulse propagation model for L = 2 m

Figure 3 shows that our new propagation
model has more correction on the conventional
model when the length of the photonic nanowire

waveguide is larger, i.e., for higher legths there is
a higher reduction of the extreme long-wavelength
edge of the supercontinuum spectrum and
therefore the spectrum becomes narrower. This
result would be expected to be crucial for accurate
comparison of simulations with experiments. In
fact, our results

3 Conclusion

We have derived a new comprehensive evolution
equation to describe the nonlinear propagation
of high power optical pulses through photonic
nanowires. Our basic formulation part from the
vectorial form of Maxwell’s equations and take
into account the effect of the complete strong
dispersion implicit in the propagation constant β of
the propagating mode inside the spectral body of
the optical pulses.

Applying our new nonlinear propagation equa-
tion in air-silica photonic nanowires, we have
showed evidence of additional effects that perturb
the supercontinuum, reducing its extreme long-
wavelength edge and making it narrower.
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