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Abstract. This paper describes the design of the 2017
RedICA: Text-Image Matching (RICATIM) challenge,
including the dataset generation, a complete analysis
of results, and the descriptions of the top-ranked
developed methods. The academic challenge explores
the feasibility of a novel binary image classification
scenario, where each instance corresponds to the
concatenation of learned representations of an image
and a word. Instances are labeled as positive if the
word is relevant for describing the visual content of the

image, and negative otherwise. This novel approach
of the image classification problem poses an alternative
scenario where any text-image pair can be represented
in such space, so any word could be considered for
describing an image. The proposed methods are diverse
and competitive, showing considerable improvements
over the proposed baselines.

Keywords. Text-image matching, image annotation,
multimodal information processing, academic chal-
lenges.
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1 Introduction

Automatic image annotation (AIA) consists of
assigning keywords to images to describe their
visual content. AIA has been traditionally
approached as a supervised learning task, where,
given a dataset formed by image-label pairs, a
function (i.e., a classifier) mapping images to labels
are learned. In this scenario, the classes for the
classifier correspond to labels that can be used to
annotate images (like “animal”, “transport”, “fruit”,
for example). The performance of supervised AIA
methods is acceptable, mainly when the number
of labels is small. In principle, with this approach,
it is possible to assign whichever label to images.
Although in practice, this process is constrained to
assign a limited number of them, that is, only those
concepts present in the training dataset, e.g., see
ImageNet [38].

If we increase the number of considered
labels, the complexity of the associated model
increases considerably. Consequently, datasets
for AIA have traditionally considered only a
few concepts to describe images (e.g., Caltech
256 [17], PASCAL [9] datasets), which makes the
classification quite specific and limits the diversity
in the label assignation process.

To alleviate the foregoing limitations of super-
vised AIA methods, unsupervised formulations
have been proposed as well [31]. These methods
aim to discovery text-image associations by
mining large collections of multimodal documents.
Unsupervised AIA techniques relax the limitation
of reduced annotation vocabulary. However,
its performance is commonly lower than that of
supervised techniques.

Supervised and unsupervised AIA methods
cannot offer both vocabulary diversity-scalability
and high performance. Alternatively, the AIA
problem can be approached as a text-image
matching task, and this can be formulated as a
binary classification problem [32]. In a nutshell,
image and textual descriptors are concatenated to
form a heterogeneous input space. The classes for
samples are given by the relevance of a word to the
image, see Figure 1.

Fig. 1. Image and text matching sample

Since this formulation is based on supervised
learning, it inherits the high performance of
supervised AIA methods.

Likewise, since in principle, any text-image can
be represented in such input space, any word could
be considered for describing an image. Figure 2
illustrates the considered scenario.

To study the feasibility of the suggested
approach, we organized an academic competition
on text-image matching. Academic challenges
have been successfully used in many domains
as a mechanism to advance state of the
art (e.g., ImageNet1, ChaLearn Looking at
People challenges2), allowing the community of
researchers to propose competitive solutions to
specific tasks. With this purpose in mind, we
generated a challenging dataset for text-image
matching and asked participants to develop
solutions for the problem.

In addition to data, we provided an evaluation
protocol and prizes to encourage participants.
The challenge was run in the CodaLab platform
and attracted more than 40 participants, and
results suggest that the proposed formulation is
a promising solution to the AIA problem. This
paper describes in detail the challenge design,
summarizes its main results, and performs a
detailed analysis of the best three methods
developed by the participants.

This paper is an extended version of [32],
where a summary of results was reported. This
paper goes several steps forward, by providing a

1http://www.image-net.org/
2http://chalearnlap.cvc.uab.es/
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detailed description of the design of the challenge,
a complete analysis of results, and an in-depth
description and analysis of the top three teams that
participated in the challenge.

2 Related Work

Generating training data for supervised image
classification methods is generally performed
manually, in the best cases, by using crowd
services (e.g., Mechanical Turk [36]). Although
the quality of this sort of methods is commonly
acceptable, manually generating labels can be
an expensive and laborious endeavor. Besides,
datasets generated in this way only cover a
reduced number of labels (concepts) and are
subject to bias/noise.

Notwithstanding the above, some methods have
been proposed with the aim to label images with
large annotation vocabularies. For instance, in [4],
a fully-automated system for learning everything
about any concept was presented. The idea
behind this method consists of processing books
and images on the Web intertwining the data
collection through their variances. The system was
able to model 760 concepts using approximately
233M images3, although somewhat scalable, 760
concepts are far away from being ’everything.’

In the same path, several semi-supervised
approaches have tried to alleviate the problem
of learning any concept using unlabeled data
(e.g., see [34, 3]). These methods assume that
unlabeled data can be used to extract knowledge
to improve the one found in small datasets.
One way to incorporate unlabeled data is by
using transfer learning. The purpose of transfer
learning is to translate knowledge/information from
a source domain to a target domain, often using
a single feature space [2]. Different approaches
for transfer learning have been proposed so far,
from traditional machine learning approaches, e.g.,
see [35, 42, 2, 30, 45], to the most recent through
the use of deep learning, where pre-trained models
obtained by a convolutional neural network can be
exploited for feature extraction [37], or fine-tuning
its architecture [43].

3http://levan.cs.washington.edu/

On the other hand, unsupervised AIA meth-
ods rely on text mining methods that process
collections of weakly labeled images (e.g., web
pages and the images they contain) to assign
free-vocabulary labels to images, e.g., see [19, 26,
31]. The assumption is that text that accompanies
images is at some level related to the visual
content; and therefore, this can be employed in
the labeling process. In this regard, the extracted
vocabulary by unsupervised AIA methods can be
larger than the used by supervised AIA ones;
however, its main limitation is the inherent noise in
weakly labeled images.

In this work, we rely on a simple transfer
learning methodology to obtain a representation
for images to be used in a novel AIA formulation
based on text-image matching. The proposed
approach cast the AIA problem as one of binary
classification. When compared to supervised AIA
methods, the proposed approach maintains the
high performance of this sort of models. While,
when compared to unsupervised AIA techniques,
the proposed approach can work with large
annotation vocabularies.

3 Text-Image Matching Challenge

The RICATIM challenge was run in the CodaLab4

platform and had a duration of about 45 days.
The task approached by participants was that of
determining the relevance of words to describe the
content of images. More specifically, participants
had to develop binary classification methods
for determining the relevance (positive class) or
not (negative class) of words to describe the
visual content of images. Vectorial descriptors
were extracted from each image and from the
word separately (see details below). Both
representations were concatenated, giving rise to
a heterogeneous text-image representation. A
challenging dataset was generated in this way,
assigning classes to each instance according to
the relevance of the word to describe the visual
content of images (see Figure 1).

The dataset was split into training (develop-
ment), validation, and test partitions.

4https://competitions.codalab.org
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Fig. 2. A general framework used for generating posi-
tive/negative instances of the approached problem. The
representations of images and words are concatenated
to produce the instances of the binary classification task

Labeled training data and unlabeled validation
data were made available at the beginning of
the challenge. During the challenge, participants
could submit predictions for the validation set
via the CodaLab platform and receive immediate
feedback on their validation performance via the
leaderboard. At the end of the development phase,
unlabeled test data were released, and participants
had a few days for submitting predictions for these
data. Performance on the test set was used to
determine the winners of the challenge.

Two baseline methods were implemented; the
first one was simple enough to give the participants
a wide margin for improvement. This baseline
was a machine learning approach using a support
vector machine (SVM) with LIBLINEAR [10]
without performing any preprocessing in the data.
The second point of comparison was defined
using the random forest implementation from the
CLOP5 toolbox.

This challenge was organized and sponsored by
RedICA6: Red Temática CONACyT en Inteligencia
Computacional Aplicada, and it was expected to be
the first of a series of periodic challenges organized
by this academic network. To be eligible for prizes,
the winners had to release their code publicly and
submit fact sheets describing their methods. The
source code of every participant was verified and
replicated before announcing the winners.

The timeline for the challenge was as follows:

5http://clopinet.com/CLOP/
6http://redica.mx/

— July 3, 2017: Beginning of the challenge,
release of development and validation data.

— August 14, 2017: Release of test data and
validation ground truth labels.

— August 16, 2017: Submission deadline for
prediction in the test set. Release of
worksheet template.

— August 18, 2017: Submission deadline for
code and fact sheets.

— August 19 - August 23, 2017: Verification
phase (code and fact sheets).

— August 24, 2017: Winners notification.

— September 4 - September 8, 2017: Pre-
sentation of results at ENIAC-SNAIC and
award winners.

4 The RICATIM Dataset

For the organization of the challenge, we
developed a novel dataset on text-image matching
called RICATIM7. An instance in this dataset
consists of a concatenation of a visual and a textual
representation (see Figure 2). For representing
images, we used CNN-based features extracted
by using a pre-trained deep neural network: each
image was preprocessed and passed through
a pre-trained 16-layer CNN-model [39], the
penultimate layer activations were used as the
visual representation for images (a vector of
4096 elements).

On the other hand, keywords were repre-
sented by their word2vec representation [29]
(200-dimensional vectors were used). Word2vec
representations were obtained by using Wikipedia
as training collection. After the generation of
individual image and text representations, both
input spaces were concatenated to form the
input space for the text-image matching challenge,
consisting of 4,096 attributes from each image and
200 attributes from the text, all associated with a
binary class.

7https://competitions.codalab.org/my/datasets/download/
c1d8687e-899b-4da1-9ea2-ebbd98494043
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Fig. 3. Sample of images from [18, 8]: (a)-(d) images
taken by tourism travel agencies; (e) segmented images;
and (f) image accompanied by its metadata

Below we describe the way we generated the
labels for instances of this mixed input space.
For the creation of the RICATIM dataset, we
randomly selected a set of 3,300 images from
the IAPR TC-12 dataset [18, 8]. The IAPR
TC-12 collection consists of 20,000 real-world
images. Every image has a manually generated
caption/description, see (f) in Figure 3. The
segmented and annotated IAPR TC-12 (SAIAPR
TC-12) benchmark [8] is an extended version
where images were manually segmented and
annotated at the region level (i.e., see (e) in
Figure 3) with about 250 keywords (hierarchically
organized). We used labels information from both
the IAPR TC12 dataset and its extended version
for preparing the RICATIM dataset.

To generate the labels of instances for the
dataset, the initial 3,300 images dataset was
divided into three subsets: X , Y and Z containing
the same number of images. Each subset was
processed differently to generate labels. The aim
was to produce more diversity into the created
instances. The adopted strategies are depicted in
Figure 4, and are described as follows:

— Region-level labels. For the X subset,
we used the labels assigned to images

according to the considered dataset. For
a given image i ∈ X , the generation of
positive instances (relevant text-image pairs)
was straightforward: manually assigned labels
to image i were considered as relevant.
The labels for negative instances (nonrelevant
text-image pairs) were produced by randomly
taking labels from the semantically-farthest
keywords to the manually assigned labels.
The semantic distance was estimated by the
distances among the word2vec representa-
tions of labels.

— Annotated captions. For the Y subset, we
used descriptions to generate classes, see (f)
in Figure 3. First, descriptions were indexed
with a bag-of-words (BoW) model; then, a
TF-IDF weighting scheme was applied. For
generating positive instances, given an image
i ∈ Y we considered as relevant labels
those words from the caption with higher
TF-IDF value. As the vocabulary extracted
from the captions is large, i.e., 7,708 different
terms, the terms used as negative were not
taken from the last positions. Instead, using
the word2vec representation corresponding
to whole extracted vocabulary, a matrix of
cosine distances among these vectors was
calculated. Thus, empirically a distance range
was chosen to take terms to be used as
negative, i.e., the negative label for a given
positive label was randomly taken from the
nearest 200-400 labels to the positive one
(we found related, but irrelevant, words in
this range).

— Unsupervised Automatic Image Annotation.
In this case, we used a UAIA method
proposed in [31] to generate relevant and
irrelevant text-image pairs for set Z. We
integrate this strategy into the creation of
the dataset because we focus on a hybrid
approach to AIA. Note that AIA methods
commonly use a cleaner ground truth but less
diverse than those assigned by considering a
free-vocabulary.

In each of the subsets/labeling-strategies, a
negative instance was generated per each positive
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Fig. 4. Strategies adopted for representing labels
assigned to images in the instance generation process

Fig. 5. Number of submissions per participant

one, taking special care that labels used as
negative were different from the positives. A
different number of instances was created from
each image, depending on the number of words
assigned to it in the reference collection. In the
case of the X subset (i.e., region level approach)
an average of eight labels was used. The other
two strategies tend to generate a varied number
of positive and negative instances for each image,
in a range between three and six labels. In the
end, both sets had an average of 10 annotations
per image, among positive and negative labels.

From the three strategies used in the methodol-
ogy, a total of 31,128 instances were generated.
Then, we selected 30,000 random instances
from the different subsets to create the following
disjoint subsets:

— Training data (labeled data, can be used to
train and develop models). This partition
is formed by 20,000 instances, where

40% are positive instances, and 60% are
negative instances.

— Validation data (unlabeled data, participants
can make predictions during phase 1 to get
immediate feedback in the leaderboard). This
partition is composed of 5,000 instances, 60%
positive and 40% negative instances.

— Test dataset (used to determine the winners).
This partition is composed of 5,000 instances,
but this time 50% are positive instances, and
50% are negative instances.

Finally, instances in each partition were shuffled
with the aim to avoid learning the construction
pattern. Additionally, we also provided raw images
and the actual words used to generate instance
in case participants wanted to take advantage of
such information.

5 Summary of Results

In this section, we summarize the results obtained
in the challenge, while the next section presents
the detailed results with the descriptions of the top
ranked methods.

The competition attracted 43 participants that
made more than 220 submissions to the leader-
board. Figure 5 shows the number of submissions
per participant. It can be observed that several
participants contributed with a large number
of submissions.

Figure 6 shows the validation performance of
submissions vs. time. The baselines (marked
with red circles) were outperformed since the very
beginning of the challenge. Still, at the end of the
challenge, some of the participants overfitted the
validation data (accessible from the leaderboard).

Table 1 summarizes the results of the top-ranked
participants in the competition (the information
between brackets indicates the team to which
different participants belong to). The top four
participants were successful in outperforming the
baselines and achieving recognition rates close to
0.9. In the following section, we describe in detail
these methods, and later, we analyze in depth
their performances.
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6 Top-Ranked Methods

In this section, we present the top three ranked
methods in the final phase of the challenge. For
each method, an analysis of its performance
is included. The top-3 ranked methods were
considered for the study. Their overall performance
is shown in Table 1. For completion, Table 2 shows
the performance of the considered teams on the
different subsets of data that were used to generate
the labels (see Section 4). The reported score
corresponds to the micro-average accuracy, where
each subset is considered individually.

In the third column, we can see that the most
challenging subset for classification was the subset
generated from the labels provided by the UAIA
method, while the proposed solution methods
achieved similar performances in the other two
columns (1 and 2). These results suggest that
the labels provided by the UAIA method can be
noisy or to refer to concepts that are difficult to
correlate with visual information. In the following,
we provide more details on the solutions from the
top 3 ranked participants.

The organized challenge was a success in terms
of participation and performance achieved by the
solutions in the text-image matching approach
to AIA. To gain further insights into the nature of
methods and their performance, in the rest of this
paper, we describe the top-ranked methodologies
and perform an extensive study comparing their
performance.

Fig. 6. Performance of submissions vs. time (the red
circles indicate the performance of the baselines)

Table 1. Performance measures (in %) for the all
techniques

System (TEAM) Accuracy F1
dev. test dev. test

Organizing team
baseline 1 0.644 0.639 0.69 0.64
baseline 2 0.760 0.818 0.76 0.79

I3GO+ team
job80 (T1) 0.831 0.838 0.85 0.84

ClaudiaSanchez (T1) 0.816 0.823 0.84 0.82
mgraffg (T1) 0.813 0.824 0.84 0.82

dmocteo (T1) 0.684 0.833 0.71 0.83
sadit (T1) 0.797 0.844 0.82 0.84

MIGUE, TAVO & ANDRES team
migue (T2) 0.811 0.830 0.83 0.82

octavioloyola (T2) 0.807 0.834 0.83 0.83
andres (T2) 0.801 0.824 0.82 0.82

Voltaire Project team
Phoenix (T3) 0.823 0.828 0.85 0.83

Argenis team
argenis (T4) 0.758 0.780 0.78 0.78

Individual participants
naman 0.656 — 0.72 —

miguelgarcia 0.600 — 0.75 —
barb 0.479 — 0.48 —

victor 0.499 — 0.55 —

Table 2. Performance accuracy (in %) according to the
label source creation

Team (methods under
their best settings)

micro acc.
(regions)

micro acc.
(captions)

micro acc.
(UAIA)

method proposed
by I3GO+ 0.925 0.922 0.691

method proposed by MI-
GUE, TAVO & ANDRES 0.913 0.916 0.677

method proposed
by Phoenix 0.911 0.908 0.670

6.1 I3GO+ (First Place)

We start describing the solution that won the
RICATIM challenge. The proposal consists of
generating a new low dimensional space by
approximating the k centers problem using the
Farthest First Traversal algorithm (FF-traversal),
along with a kernel function. The new
representation feeds a kNN classifier. By using this
approach, the dimension is reduced, and the final
performance is improved. Below we describe each
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of the steps involved in this solution, a graphical
description of this method is provided in Figure 7.

Fig. 7. Flow diagram for FF-traversal scheme

6.1.1 The k-Centers Problem

Finding a solution for k-centers is equivalent to
the generate ε-nets problem ([40]). From this
point of view, k-center is an optimization problem,
where the objective is to find a set of centers
C = {c1, c2, · · · , ck} of cardinality k = |C|, and
where all elements xi ∈ X are at most distance
ε from its nearest center in C. The precise value
of ε is optimized for a particular value of k, and
conversely, k can also be optimized for some ε.

6.1.2 Farthest First Traversal

The Farthest First Traversal (FF-traversal) al-
gorithm was proposed simultaneously in [15]
and [20]. The algorithm finds the best
know approximation (in polynomial time) for the
k-centers problem, i.e., at most two times the
optimal solution. Finding any best approximation
is NP-Hard (see [15, 20, 11]).

The algorithm of T.F. Gonzalez [15] calculates a
set C, where all cj ∈ C are farthest among them.
So, for each x ∈ X, the distance to the nearest
centers is kept in C, the distance for each xi is
updated each time that a new cj is added to C. In
order to ease the algorithm definition let use define
dmin(x) as the distance between x and its nearest
center in C, then dmin(x) = min{d(x, c) | c ∈ C}.
Algorithm 1 specifies the FF-traversal:

Given some starting element for C, the farthest
object in X \C to all objects in C is located in each
iteration, and then it is added to C. This order
resembles a farthest-first walk or traversal over
X, and this fact gives the name to the algorithm.
Let r be the distance used to choose the new
center; it follows that at each FF-traversal iteration,
a Delaunay set is built; the following properties
are preserved:

Input: X a metric database and k the number
of centers

Output: C furthest set
C ← c where c is selected randomly from X
while |C| < k do

w ← arg max{dmin(x) | x ∈ X \ C}
r ← max{dmin(x) | x ∈ X \ C}
C ← C ∪ {w}

end
Algorithm 1: The farthest first traversal algorithm

– Any pair of objects xp,xq ∈ X are at distance
at least r from each other

– Any elements xq ∈ X are at most distance r
from one of the cj ∈ C

So, the FF-traversal algorithm finds k elements
that minimize the maximum distance between the
elements x ∈ X to some c among the available
centers C. Figure 8a shows the Delaunay set
generated from 5 normal distributions with four
items each one. Each ball radius is the optimal r
found at iteration 5. Moreover, Figure 8b illustrates
the order of how FF-traversal selected the five
centers in C.

6.1.3 Kernelized k-Centers

The proposed solution is based on the hypothesis
that chosen centers are good enough to represent
the complete database variation; hence selected
centers are used to create a lower dimensional
space. The new feature space is created by
mapping all the objects in X to the new space
X ′, and X ′ is used as training dataset for a
k−nn classifier. The new features for each xi are
generated using a function Φ(x,C) over each xi
and the elements in C; i.e. x′i = Φk(xi,C) =
{φ(xi, c1),φ(xi, c2), . . . ,φ(xi, ck)}, where φ(xi, cj)
can be any kernel function (similarity or distance
d). For instance to use a linear kernel φ(xi, cj) =
d(xi, cj) is used, and for a RBF (Gaussian)
kernel the function given by equation 1 can be
used instead:

φ(xi, cj) = e−
d(xi,cj)

2σ2 . (1)
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(a) Generated Delaunay set

(b) Selection sequence

Fig. 8. FF-traversal phases

For the presented experiments when using
RBFs, the parameter σ is set to the ε found
at the last iteration of the FF-traversal algorithm.
Algorithm 2 describes the feature generation
algorithm:

Input: X the metric database, k the number of
features, d distance function, and f a
kernel function.

Output: X ′ database in k-centers feature
space

C ← FF-traversal(X, k)
X ′ ← {}
for xi ∈ X do

x′i = Fk(xi,C)
X ′ ← X ′

⋃
{x′i}

end
Algorithm 2: Farthest First Traversal for feature
condensation

This approach is named FF-traversal for Feature
Condensation (FFTFC) and the generated feature
space as k-Centers Features. The resulting
process is composed of two main stages:

– Find the set C (i.e., a solution for k-centers),

– Generate X ′ (i.e., X ′ = {x′|x′ = Φ(x)∀x ∈
X}).

6.1.4 Experimental Setup

The authors tried several related approaches.
Firstly, this proposal used the FFTFC over the
official image vectors and the plain word2vec
features. To control the significance of each kind of
feature, the authors introduced a weighted metric
dW , defined in Equation 2:

dW = (1−W ) ·d(ximage, cj,1)+W ·d(xtext, cj,2), (2)

where W ∈ [0, 1]. By using Equation 2 the weight
W is used to adjust the contribution of each feature
portion (i.e., image and text). The kernel function
may use the set of centers C, or the set of centroids
Ĉ. Each centroid ĉ ∈ Ĉ is computed using c, where
each component of ĉ is computed as the average
of that component over all items having c as its
nearest center c ∈ C.

Also, a set of additional features for text
labels were produced with µTC library (see
[41]). Feature vectors obtained with µTC are
sparse vectors of dimension m = 3951, these
features were concatenated to the image data
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to get 8047-dimensional vectors. A new set of
k-Centers features were created using this new
representation. A standard PCA dimensionality
reduction and the nonlinear Kernel PCA (KPCA)
were compared with FFTFC. All results in this
approach were computed using an RBF kernel, for
both KPCA and FFTFC.

The selection of the classifier and its parameters
were performed using a cross-validation split of
70% for the training set and 30% for the validation
set. The resulting features were used to fit a kNN
(k=3) classifier. Table 3 shows the obtained results
for the four evaluated metrics at the RICATIM
Challenge. As can be seen, over the 70-30
split, the k-centers and KPCA outperforms PCA
and exhibit similar scores. However, k-Centers
features have lower dimensionality. For the sake of
completeness, the scores using the original feature
space are also shown at Table 3. The best result
of each score is marked using boldface.

6.1.5 Performance at Development Phase

During the development phase, an ensemble
of three of the previous classifiers was tested.
Results obtained are shown at Table 1, the top
result for I3GO+ team are the results of an
ensemble with a majority class for the three
k-Centers features show at Table 3, while second
and third rows at Table 1 are the resulting scores
for EvoDAG based classifiers (see [16]) over
k-Centers features. Table 4 shows the top three
results for the proposed scheme. It is relevant to
mention that the first one was the best score at the
development phase.

6.2 An Approach based on Contrast Patterns
(Second Place)

This section describes the proposal that obtained
a second place in the RICATIM challenge.
Additionally, this section shows the experimental
results attained for each pattern-based approach
using the original RICATIM database as well as
the experimental results achieved but using a
new RICATIM database representation, which was
introduced by the I3GO+ team (see section 6.1).

6.2.1 Classification Based on Contrast
Patterns

Over the past years, several classifiers have been
proposed in the literature but nowadays obtaining a
high accuracy is not the only desired characteristic
for a classifier; experts in the application domain
should understand the results associated to each
class of the problem [44, 25].

Contrast pattern-based classifiers are an essen-
tial family of both understandable and accurate
classifiers. The main reasons are that contrast
pattern-based classifiers provide patterns in a
language that is easy for a human to understand,
and they have demonstrated to be more accurate
predictions than other popular classification mod-
els, such as decision trees, naive Bayes, nearest
neighbor, bagging, boosting, and the support
vector machine (SVM) [44, 25].

A classifier based on contrast patterns uses a
collection of contrast patterns to create a classifier
that predicts a query object class [44].

A pattern is represented by a conjunction of
relational statements, each with the form: [fi # vj ],
where vj is a value in the domain of feature fi, and
# is a relational operator from the set {=, 6=,≤,>}
[28, 25]. For example, [Height ∈ [1.9, 2.1]] ∧
[Weight ≤ 120] ∧ [Agility = “Excellent”]] is
a pattern describing a collection of basketball
players. Let p be a pattern and T be (often)
a (training) dataset; then, the support of p (with
respect to T ) is a fraction resulting from dividing the
number of objects in T described (covered) by p by
the total number of objects in T . Now, a contrast
pattern (CP) for a class c is a pattern whereby the
support of CP for c is significantly higher than any
support of CP for every class other than c [6, 5, 25].

Contrast pattern-based classifiers are used in
various real-world applications, such as gene
expression profiles [7], structural alerts for
computational toxicology [33], gene transfer and
microarray concordance analysis [27], characteri-
zation for leukemia subtypes [24], classification of
spatial and image data [23], and heart disease
prediction [21], in which they have reported
effective classification results.
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Table 3. Comparison of k-Centers and standard techniques to reduce the dimension

Method/
Features

Orig.
dim.

Red.
dim. Ref.

Dist.
fun.(d) Acc. Recall PR F1

k-Centers/Img 4296 264 centers L2 0.802 0.801 0.733 0.797
k-Centers/Img 4296 264 centers Cosine 0.810 0.810 0.738 0.805
Original 4296 – – – 0.483 0.471 0.368 0.470
PCA/Img 4296 264 – – 0.487 0.474 0.372 0.474
PCA/Img 4296 328 – – 0.488 0.475 0.372 0.474
PCA/Img 4296 456 – – 0.480 0.469 0.367 0.468
KPCA/Img 4296 264 – – 0.808 0.811 0.730 0.804
KPCA/Img 4296 328 – – 0.806 0.807 0.733 0.801
KPCA/Img 4296 456 – – 0.811 0.812 0.740 0.806
KPCA/Img 4296 712 – – 0.811 0.811 0.741 0.806
k-Centers/Img

+ µTC 8047 140 centers
WCosine
(W=0.96) 0.821 0.817 0.764 0.815

Table 4. Scores over the RICATIM Challenge Validation
Set

Classifier Acc. Recall Prec. F1

top 3 k-Centers 0.8396 0.9016 0.8223 0.8601
top 2 k-Centers + KPCA 0.8332 0.8843 0.8306 0.8566
k-Centers/Image + µTC 0.8308 0.8885 0.8210 0.8534

For building a contrast pattern-based classifier,
there are three phases: mining, filtering, and
classification strategy [22, 25].

Pattern Mining: This phase is dedicated to finding
a set of candidate patterns by an exploratory
analysis using a search-space, which is
defined by a set of inductive constraints
provided by the user. There are several
algorithms for mining patterns, those that
extract patterns from the tree (e.g., from
decision trees) and those directly generating
the patterns (e.g., rule miners)

Pattern Filtering: This phase focus on selecting
a subset of patterns coming from a large col-
lection of patterns produced in the preceding
phase. For selecting a subset of patterns,
a quality measure for patterns is commonly
used [12].

Classification Strategy: This phase is respon-
sible for searching the best strategy for
combining the information provided by a
subset of patterns and so builds an accurate
model based on patterns. Usually, combining
the support provided by each pattern into the
subset is a widely used classification strategy
[5, 25].

6.2.2 Mining and Filtering Patterns

For RICATIM challenge, the team that won the
second place have used an approach based
on decision trees for mining contrast patterns.
Using contrast pattern mining based on decision
trees has two main advantages. First, the local
discretization performed by decision tree miners
with numeric features avoids doing a priori global
discretization, which might cause information loss.
Second, with decision trees, there is a significant
reduction of the search space of potential patterns,
since, even in longer paths of decision trees,
a small proportion of candidate attributes are
obtained. Moreover, the authors of [14] argued that
creating the collection of extracted patterns from all
the generated trees, reducing it through a filtering
procedure, and obtaining an accurate model, is a
simple procedure.

Two strategies for inducing decision trees were
used with the aim of mining diversity contrast
patterns. Diversity is an essential property for
generating a collection of decision trees since it is
possible that a collection of nearly identical trees
cannot outperform any of their components.

In [13], an experimental comparison of different
diversity generation procedures, was performed.
From this work, two of the best strategies were
selected: Bagging and Random Forest.

Bagging creates diversity by generating each
tree with a bootstrap replicate of the training set.
Since small changes in the training sample lead to
significant changes in the model of a decision tree,
Bagging is an excellent way to obtain a diverse
collection. On the other hand, Random Forest
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creates different trees by selecting a Random
Subset of attributes at each node. The best
feature of the selected subset is then used to build
the node. The success of Random Forest can
also be explained because injecting randomness
at the level of nodes tends to produce higher
accuracy models.

Once the collection of trees is generated, all
paths from the root nodes to all leaf nodes in
each tree is considered as a pattern. This list of
patterns could have duplicated patterns, which are
eliminated. In addition, particular patterns are also
removed. A pattern p is considered as particular
if there is another pattern q in the collection such
that the item set in p is a subset of the items in q.
Thus, the final list of patterns has not duplicates or
particular patterns.

6.2.3 The Pattern-based Classifier PBC4cip

As the pattern-based classifier, PBC4cip [25] was
selected. This classifier reports competitive results
in both problems with and without class imbalance.
In the training phase, PBC4cip weights the sum
of supports in each class, for all contrast patterns
covering a query object, taking into account the
class imbalance level. This strategy is different
from traditional classifiers, which only sum the
supports. The weighted expression is:

wc =

(
1− |c|
|T |

)/∑
p∈P

support (p, c), (3)

where |c| represents the number of objects
belonging to the class c, |T | is the number of
objects in the training dataset, P is the set of
all the patterns for the class c, and support(p, c)
is the support of the pattern p into the class c.
This expression punishes the high sum of supports
computed for the majority class.

In the classification phase, PBC4cip computes
the sum of supports in each class for all patterns
matching with the query object o. This sum is also
multiplied by the weight wc of its corresponding
class c. Thus, the query object is classified in the
class where it reaches the highest value, according
to Equation (4).

WSum Supp(o, c) = wc
∑
p∈P

p covers o

support(p, c). (4)

6.2.4 Experimental Results

Table 5 shows the experimental results using two
feature representations of the RICATIM database
(see section 4). These results lead us to three main
observations. First, the reduced representation
allows the classifier to achieve a higher accuracy
no matter the contrast patterns miner and whether
pruning is used or not. Second, using pruning
slightly outperforms the accuracy of every contrast
patterns miner. Also, third, using Random Forest
with the reduced representations consistently
improves the accuracy of the Bagging miner.

Finally, it is recommended to use PBC4cip
with patterns mined with Random Forest (pruning
the trees) from the reduced representations of
features. It is essential to mention that, in
the recommended version, the Bhattacharyya
coefficient [1] was used to evaluate candidate splits
in the decision trees generation.

6.3 Phoenix Team (Third Place)

This section describes the methodology that
obtained a third place in RICATIM challenge.
The proposed approach was derived from two
observations over the dataset. First, it was
noted that several images were redundant in the
training set, which could affect the performance
of any machine learning algorithm. Second, it
was noticed that the initial problem could be
partitioned into smaller problems, where each
problem consists of classifying the new pair
(image, word) only by using the pairs with the same
word between them. For these reasons, first, the
proposed method filters the training set to enhance
the performance of the classifier.

Second, the dataset has the inconvenience of
high dimensionality. In this regard, the proposed
method transforms the feature space into a
low-dimensional space trying to group instances
with similar content. Finally, for the classification
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phase k-Nearest Neighbor, was used trying to
exploit the similarity between images.

In general terms, the algorithm is divided into
these three stages (Figure 9). The first stage
consists of an instance selection process to
discard irrelevant and noisy data, only focusing
on those images that share the same word
representation. The second stage attacks the
high dimensionality problem by performing a
feature selection/generation process to get a new
reduced feature space. It is important to note
that the proposed approach takes advantage
of one of the most known feature reduction
techniques: Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA). The last
stage consists of classifying the new sample with
kNN; in this phase, the input of the kNN was
both the representation of the new sample and
condensed training set. More details of the stages
mentioned above are described as follows:

1. Instance selection. From the original training
dataset, new subsets, formed by only those
images that share the same word, are
created. For the cases where the word is
minority8, then they are assigned to the most
similar subset by using cosine distance among
word vectors.

2. Feature reduction. PCA is applied, and
only the features that have less of 90% of
variance are preserved. This way, there
are guaranteed at least two features per
instance. After, LDA is used to improve
the separability between positive and negative
classes among instances.

3. Classification. This stage relies on the use
of k-NN using a majority vote strategy for
assigning the class.

During the validation phase of the challenge, this
method was evaluated with the following k values:
1, 3, 5, and 7. At the end of the validation phase,
the best value for k was 3, which obtained a second
place in the scoreboard at the validation phase.

8A word is considered a minority when it is associated with
less than 10 images.

Table 5. Performance of PBC4cip classifier in
validation and testing phases. The table shows different
configurations for mining contrast patterns. The column
“Original Features” shows the results using the original
feature representation provided in the competition. The
column “New Representation” shows the results using
the feature representation referred in the second row of
Table 3. The best results for both Validation and Testing
are boldfaced

Contrast
Patterns Miner

Prunning
Dec. Trees

Original
Features

New
Repres.

Bagging Yes 0.8340 0.8442
Bagging No 0.8232 0.8448

Random Forest Yes 0.7894 0.8486
Random Forest No 0.7878 0.8472

Bagging+RandomForest Yes 0.7778 0.8466
Bagging+RandomForest No 0.7704 0.8460

Landscape

Landscape
PCA

LDA

3NN

Stage 1 - Instance Selection Stage 2 - 
Dimensionality

Reduction
Stage 3 - 

Classification

Training 
Set

New Sample

Fig. 9. Diagram of the methodology proposed by the
Phoenix team

6.4 Discussion

The academic challenge has produced positive
results, achieving results on accuracy more
significant than 0.8 and surpassing the proposed
baselines. In a successful way, the methods
proposed by the top-ranked teams, although
diverse, they proved to be competitive at the
exploitation of the proposed dataset. After
analyzing these methods, we found that ensembles
and feature preprocessing are necessary and
helpful for handling noisy instances and for creating
diversity. The most crucial property of classifier
ensembles is the diversity; it is based on the
rationale that a set of nearly identical classifiers
cannot outperform any of their components.

In this regard, both, first and second places have
proposed methods that include ensembles where
they approach the problem differently. I3GO+
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used ensembles of kNN and EvoDAG over an
augmented data representation trying to extract the
most information possible.

On the other hand, the second place used
ensembles of decision trees by using a random
approach, and after, this solution extracts several
patterns from each decision tree. Furthermore, it
is interesting that when both approaches are used
in conjunction, then better results can be reached
(i.e., see Table 5). In this case, first performing an
augmentation in data using the I3GO+ approach,
and second by using a practical approach to
classify them as the approach introduced by the
second place to discover patterns.

However, it is essential to highlight that the
discovered patterns are complicated to understand
by experts in the application domain because
the representation of both datasets is based on
word2vec representations. Nevertheless, although
both mentioned proposals are effective, they have
a limitation regarding the high computation power,
being this characteristic alleviated it for the third
place that proposed a method purely based on
efficient machine learning techniques.

Regarding the benefits of this problem for-
mulation, we foresee a promising approach for
combining and taking advantage of multimodal
data. It is possible to match representations from
diverse sources, extending the capabilities of the
main approaches for AIA. For these reasons, we
plan to extend our dataset by considering new
scenarios for generating synthetic instances from a
word embedding perspective rather than an image
perspective (presented here).

7 Conclusions

The availability of huge collections of images
out there makes it critical to develop methods
able to organize and analyze such data. AIA
is a field of research that aims at associating
keywords to images, to make visual information
more accessible. This article describes the design
of an academic challenge in a novel approach
to AIA. The paper includes a detailed description
and analysis of solutions that have reported the
highest performance so far in this AIA formulation.
Among the most significant findings of this work

are: i) we show that it is feasible to approach
the AIA problem as one of binary classification;
ii) we describe three outstanding methodologies
for approaching the problem, each one based on
different formulations; and finally, iii) we introduce
a novel dataset9 that can be used to perform
research in this novel AIA paradigm.
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J., López-López, A., Montes, M., Morales, E.,
Sucar, L. E., Villaseñor, L., & Grubinger, M.
(2010). The segmented and annotated {IAPR}
TC-12 benchmark. Computer Vision and Image
Understanding, Vol. 114, No. 4, pp. 419 – 428.
Special issue on Image and Video Retrieval
Evaluation.

9. Everingham, M., Van Gool, L., Williams, C. K. I.,
Winn, J., & Zisserman, A. (2010). The pascal
visual object classes (voc) challenge. International
Journal of Computer Vision, Vol. 88, No. 2,
pp. 303–338.

10. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang,
X.-R., & Lin, C.-J. (2008). Liblinear: A library for
large linear classification. J. Mach. Learn. Res.,
Vol. 9, pp. 1871–1874.

11. Feder, T. & Greene, D. (1988). Optimal algorithms
for approximate clustering. Proceedings of the
twentieth annual ACM symposium on Theory of
computing, ACM, pp. 434–444.

12. Garcı́a-Borroto, M., Loyola-González, O.,
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