
An Ensemble of Automatic Keyword Extractors:
TextRank, RAKE and TAKE

Tayfun Pay1, Stephen Lucci2, James L. Cox3

1,3 Computer Science Department,
Graduate Center of New York, New York,

United States

2 Computer Science Department,
The City College of New York, New York,

United States

3 Brooklyn College of New York,
Computer and Information Science Department, Brooklyn,

United States

tpay@gradcenter.cuny.edu, lucci.stephen@gmail.com, cox@sci.brooklyn.cuny.edu

Abstract. We construct an ensemble method for
automatic keyword extraction from single documents.
We utilize three different unsupervised automatic
keyword extractors in building our ensemble method.
These three approaches provide candidate keywords
for the ensemble method without using their respective
threshold functions. The ensemble method combines
these candidate keywords and recomputes their scores
after applying pruning heuristics. It then extracts
keywords by employing dynamic threshold functions. We
analyze the performance of our ensemble method by
using all parts of the Inspect data set. Our ensemble
method achieved a better overall performance when
compared to the automatic keyword extractors that were
used in its development as well as to some recent
automatic keyword extraction methods.

Keywords. Data mining, text mining, text analysis,
ensemble methods.

1 Introduction

This paper is an expansion of the work that was
originally presented in [22]. This extended version
includes a thorough explanation of the automatic
keyword extractors that are used in building our
ensemble method. We also provide a sample input

and output for our ensemble method as well as the
methods used in its construction. We present the
performance of our ensemble method on additional
data sets. We also compare its performance with
some recent automatic keyword extractors.

There has been enormous amount of data
that has been generated in recent years and
there is a need to process this data for different
purposes. Simultaneously, there has been a
growing interest in designing keyword1 extractors
that unearth words or sequence of words that
concisely represent a document.

These automatic keyword extraction approaches
could be graph based [14], statistics based [18],
clustering based [16], linguistic based [11], or other
[10]. They could also be some combination of
the aforementioned methods as in [20, 5, 12].
There has been also various studies done using
semi supervised [1] as well as supervised [15]
approaches.

Extracting more significant keywords is impor-
tant for many different tasks in big data such

1We use the words, keyword and keyphrase interchangeably
although some authors refer to the former as having a single
word and the latter as having more than one word.
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as classification [7], clustering [28], indexing
[9] and data-analysis [6]. For instance, when
more significant keywords are extracted then
the subsequently utilized classification algorithms
could potentially place the documents into more
relevant categories. Similarly, more significant
keywords could conceivably assist the clustering
algorithms to create more appropriate clusters with
the given documents. Additionally, when more
significant keywords are extracted then they could
possibly be used to decide on the placement of
the document within the given database more
accurately. There is basically no down side to
extracting more significant keywords.

There has also been growing interest in
ensemble based machine learning methods, such
as the ones in [24, 29, 2]. An ensemble based
machine learning approach combines several
machine learning methods, wherein each one is
ran independently with the same input and the
output is then agreed upon by merging their
outcomes. If a simple majority opinion is obtained
among these approaches, it is referred to as
hard voting. Instead, if each approach assigns a
probability of class membership, then the average
probability obtained is referred to as soft voting.
It has been recognized that the performance
of ensemble based machine learning methods
are often better than any single approach used
in their construction. This is particularly true
when these machine learning approaches are
autonomous from each other, such that they make
uncorrelated errors.

In this light, we decided to construct an en-
semble method for automatic keyword extraction.
We employ the following unsupervised automatic
keyword extractors in the construction of our
ensemble method: TextRank [19], RAKE [23] and
TAKE [21]. In the following section, we discuss how
these automatic keyword extractors work. We then
explain how to construct our ensemble method.

In the two sections that follow, we introduce
the Inspect data set from [13] and our metrics
for measuring the performance of our approaches;
and go through a sample input and output to
the three automatic keyword extractors as well
as to our ensemble method. We then analyze
the performance of our ensemble method and

compare it to the methods used in its construction
as well as to other automatic keyword extractors.
Finally, we conclude with prospects for our current
and future work on this topic.

2 Automatic Keyword Extractors

2.1 Text-Rank

Text-Rank [19] utilizes a part of speech (pos)
tagger to assign a pos-tag for each word. It
only considers adjectives and nouns as possible
keyword components. These words are treated
as vertices in a graph wherein an edge is drawn
between each word that appears within a given
co-occurrence window. A co-occurrence window of
size n for a given word consists of the n− 1 words
that appear to the left and to the right of it. Then
the ranking algorithm, page-rank [4], is executed
until convergence is reached. The top third scoring
words are selected for post-processing. At this
stage, multi-word keywords are constructed by
consulting the original text to determine if any of
the selected words appear next to each other. Any
word that does not appear next to another word
in the list of the top third scoring words of the
document are extracted as single-word keywords,
and the rest are extracted as multi-word keywords.

2.2 RAKE

RAKE (Rapid Automatic Keyword Extraction) [23]
utilizes a stop-list to locate candidate keywords.
Any sequence of words that appear between
two stop-list words and/or punctuation marks
are marked as candidate keywords. Then the
frequency and the degree values of each word
in the list of candidate keywords are calculated.
The frequency of a word is the total number of its
occurrences within the list of candidate keywords.
The degree of a word is the total number of words
that it appears with, within the list of candidate
keywords. Then each word is assigned a score of
degree over frequency. The cumulative score of
each candidate keyword is computed by summing
up the scores of the words that it contains. The
top third scoring candidate keywords are extracted
as keywords.
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2.3 TAKE

TAKE (Totally Automated Keyword Extraction) [21]
utilizes a pos-tagger to assign a pos-tag for
each word and then marks all noun-phrases as
candidate keywords. A noun-phrase consists of
zero or more adjectives followed by one or more
nouns. Then all candidate keywords are filtered out
in the following manner: 1) if they contain a word
from a stop-list and 2) if they contain only one word
with a frequency of one that does not appear in the
first ten-percent of the document. TAKE calculates
the candidate keyword scores in the same manner
as RAKE. All candidate keywords that have a score
higher than the value computed by the dynamic
threshold function are extracted as keywords.

3 Ensemble of Automatic Keyword
Extractors

There are several utility functions that need to be
provided and several parameters that need to be
set for the automatic keyword extractors in question
to execute. First of all, RAKE and TAKE need
access to a stop-list, the former needs a stop-list to
be able to come up with candidate keywords and
the latter needs one to filter the list of candidate
keywords.

We use the fox stop-list from [8] for the
aforementioned purposes. Second of all, TAKE
and TextRank need a pos-tag for each word to be
able to construct a set of candidate keywords. We
use the default pos-tagger from the NLTK library [3]
for this purpose. Finally, we set the co-occurrence
window in TextRank to two.

Our ensemble method consists of the following
four stages: A) Receiving a list of candidate
keywords from each automatic keyword extractor.
B) Filtering the list of candidate keywords
according to pruning heuristics. C) Combining and
recalculating the scores of candidate keywords.
D) Applying a dynamic threshold function to
extract keywords.

3.1 Candidate Keyword Selection

We remove the threshold function of each
automatic keyword extractor. In doing so, the
ensemble method gets the total set of candidate
keywords found by each approach. The scores
of each candidate keyword for each approach
are normalized by dividing them by the highest
score within their set. This provides the ensemble
method with a list of candidate keywords for each
approach with a possible score that is greater than
zero and less than or equal to one.

There are various reasons why we remove
the threshold function of each automatic keyword
extractor. In one scenario, some candidate
keywords that are discarded, due to scoring lower
than the threshold function, might be found by
another approach. In another extreme scenario,
the normalized score of some candidate keyword
might actually be higher in one approach than
when compared to another. However, the one with
the higher normalized score might not be selected
due to scoring lower than the value set by the
respective threshold function. Therefore, we take
into account all of the candidate keywords from all
of the automatic keyword extractors.

3.2 Pruning Heuristics

The ensemble method then applies a pruning
heuristic. This heuristic removes any candidate
keyword that is located by a single approach and
consists of a single word. The rationale here is that
there is no statistical significance for a keyword that
consists of a single word and was only found by a
single keyword extractor.

3.3 Recomputation of Candidate Keyword
Scores

The next step is to recompute the candidate
keyword scores. As we combine the three
different lists of candidate keywords, the scores
of candidate keywords located by more than one
approach are summed and then multiplied by the
total number of approaches that found them.

The rationale behind multiplying the summed
scores by the total number of approaches is that
their cumulative score might still be too low to pass
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the threshold function in the next stage. This can
happen even when a candidate keyword has been
located by all of the approaches. Therefore, we
want to additionally reward the candidate keywords
that were found by more than one approach.

3.4 Dynamic Threshold Function

The keywords are finally extracted by applying
dynamic threshold functions. In one method,
the overall mean is calculated and any candidate
keyword that scores higher than the mean is
extracted as a keyword for the document. And in
the other method, the overall median is utilized for
this same purpose.

The dynamic threshold functions do not under-
mine the contextual properties of each document.
This is because they do not treat them in
the same way as a static threshold function
would have. For instance, if a static threshold
function was used, such as extracting top third
scoring candidate keywords as keywords, then
documents with the same number of candidate
keywords would always have the same number
of keywords extracted. On the other hand, we
let the characteristics of the document determine
how many keywords are extracted by employing
dynamic threshold functions.

4 Data Set

The data set that we used was introduced in
[13], and subsequently used in [19, 23, 21]
for evaluating their automatic keyword extraction
methods. This data set contains 2000 titles
and abstracts for journal papers from Computer
Science and Information Technology. These items
are divided into a training set, validation set and
testing set that contain 1000 and two sets of 500
documents, respectively. Only the testing set was
used in [22] as well as in [19, 23, 21] since these
are unsupervised methods. However, we also
used the validation set and the training set for the
purposes of testing. We will refer to the testing set,
the validation set and the training set as data sets
I, II and III, respectively.

Data set I contains 500 documents where there
are 4912 manually assigned keywords of which

only 3837 are present in the titles and abstracts.
Data set II contains 500 documents where there
are 4575 manually assigned keywords of which
only 3509 are present in the titles and abstracts.
Finally, Data set III contains 1000 documents
where there are 9788 manually assigned keywords
of which only 7552 are present in the titles
and abstracts.

We calculated the following parameters: ex-
tracted keywords, correct keywords, precision,
recall and f-measure:

Precision =
correct keywords

extracted keywords
,

Recall =
correct keywords

manually assigned keywords
,

F −Measure = 2× precision× recall

precision+ recall
.

Precision provides us with the percentage of
extracted keywords that are correct. Recall
provides the percentage of manually assigned
keywords that are extracted. As previously noted in
[13], both precision and recall are equally important
so that they are given the same weight.

We use the total number of manually assigned
keywords in the calculation of recall and f-measure,
since it was done this way in [19, 23, 21].
Therefore, the highest obtainable recall for data set
I is 78.1, for data set II is 76.7 and for data set III
is 77.2.

5 Sample Input - Output

Table 1 illustrates the keywords that were extracted
by the aforementioned methods and our ensemble
approach from the following sample input, which is
the title and the abstract of the paper in [25] and
is from the Inspect data set [13]. The manually
assigned keywords that are present in the title and
the abstract are italicized.

“Title: An optimization approach to plan for
reusable software components.

Abstract: It is well acknowledged in software
engineering that there is a great potential for
accomplishing significant productivity improve-
ments through the implementation of a successful
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software reuse program. On the other hand,
such gains are attainable only by instituting
detailed action plans at both the organizational
and program level. Given this need, the paucity
of research papers related to planning, and in
particular, optimized planning is surprising. This
research, which is aimed at this gap, brings out
an application of optimization for the planning of
reusable software components (SCs). We present
a model that selects a set of SCs that must be
built, in order to lower development and adaptation
costs. We also provide implications to project
management based on simulation, an approach
that has been adopted by other cost models
in the software engineering literature. Such a
prescriptive model does not exist in the literature.”

Table 1. M1 = TextRank, M2 = RAKE, M3= TAKE and EN
= Ensemble Method. The boldfaced candidate keywords
are manually assigned keywords, N = did not locate, C =
located as candidate keyword, E = extracted as keyword

CandidateKeywords M1 M2 M3 EN
successful software reuse program E E E E

software reuse program N N N N
software engineering literature E E E E

software engineering E E E E
productivity improvements E N E E

significant productivity improvements N E N C
optimization approach E C C E

optimization C C E E
approach C C C E

detailed action plans E N N C
action plans N E E E

optimized planning C C C E
reusable software components E E E E

adaptation costs E C C E
development costs N N N N
lower development N C N C

development C N C C
project management based N E N C

project management N N C C
management C N N N
simulation C C N C

program level C E E E
prescriptive model E E C E

research papers related N E N C
research papers E N E E
organizational E C N C

In this example, there are 11 manually assigned
keywords of which 10 of them are present in the
text. (The manually assigned keyword adaptation
costs is not present in the text as a whole.)
TextRank extracted 11 keywords and 4 of them

were in the set of manually assigned keywords.
RAKE extracted 10 keywords and 3 of them were
in the set of manually assigned keywords. TAKE
extracted 9 keywords and 5 of them were in the
set of manually assigned keywords. The ensemble
method extracted 14 keywords and 7 of them were
in the set of manually assigned keywords.

It can be observed from table 1 that different
automatic keyword extractors obtain different
candidate keywords and extract varying keywords
for the given document. The ensemble method
was also able to extract keywords that were found
only as candidate keywords by some automatic
keyword extractor. For example, optimized
planning was merely located as a candidate
keyword by all of the automatic keyword extractors,
but it was only extracted as a keyword by our
ensemble approach. It is also interesting to see
that none of the automatic keyword extractors were
able to locate the keyword software reuse program,
but instead located and extracted its superset as a
keyword, successful software reuse program.

6 Analysis

The performance of our ensemble method along
with the automatic keyword extractors that were
used in its development on data sets I, II and III
are illustrated in tables 2 and 3, 4 and 5, and 6 and
7, respectively.

For all three data sets, our ensemble method has
the highest number of correct keywords extracted,
highest recall as well as the highest f-measure
compared to any of the individual automatic
keyword extractors. This is true when either the
mean or the median dynamic threshold function
is utilized.

The only limitation is with respect to precision,
where the method in [21] with the corresponding
dynamic threshold function has a higher precision
than our ensemble method, but a much lower
recall. This is normal with respect to how
ensemble based methods work. Because each
approach contributed to the ensemble method
certain keywords that were different from one
another; and some of these keywords matched the
manually assigned keywords and some did not.
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In turn, this increased the recall, but brought
down the precision at the same time. When
we look at the results within each data set, we
observe that our ensemble method achieved a
higher precision with the mean dynamic threshold
function compared to its iteration with the median
dynamic threshold function. And it achieved a
higher recall with the median dynamic threshold
function compared to its iteration with the mean
dynamic threshold function. This is also true
with respect to the the method in [21]. It seems
as though if you want higher precision then use
the mean dynamic threshold function and if you
want higher recall then use the median dynamic
threshold function.

We also compare our ensemble method to the
most recent automatic keyword extractor that was
tested on the Inspec data set. The supervised
recurrent neural network method in [26] achieves
a precision of 31.0, recall of 27.5 and f-measure
of 35.8 on data set I. This result is comparable to
the performance of TextRank, but is inferior to the
result achieved by our ensemble method.

There are some other methods, namely [16] and
[27], that also employed the Inspect data set to
test the performance of their automatic keyword
extractors. The method in [16] calculated their
recalls and consequently their f-measures, using
the manually assigned keywords that are present
in the abstracts. This provided them with an
obtainable recall of 100. We cannot compare
our methods to theirs in a fair manner since we
cannot recompute their performance metrics given
the limited information they provided. On the
other hand, the authors of paper [27] created a
subset of the Inspec data set by removing any
document that does not contain all of its manually
assigned keywords. This also provided them with
an obtainable recall of 100. Once again, we
cannot do a fair comparison between their methods
and ours.

7 Conclusion

The quantity of data that is being collected
is growing exponentially, and consequently, it
becomes important that higher quality keywords
be extracted. This is due to the fact that more

Table 2. Precision Recall and F-Measure for Data Set I

method precision recall f -measure

Ensemble - (T=Mean) [22] 46.7 50.9 48.7
Ensemble - (T=Median) [22] 42.1 55.9 48.0
TAKE - (T=Mean) [21] 50.4 33.7 40.4
TAKE - (T=Median) [21] 44.3 46.9 45.6
RAKE - (ka-stoplist) [23] 33.7 41.5 37.2
RAKE - (fox-stoplist) [23] 26.0 42.2 32.1
TextRank (UnD. w=2) [19] 31.2 43.1 36.2
TextRank (UnD. w=3) [19] 28.2 38.6 32.6

Table 3. Extracted and correct keywords for Data Set I

method extracted correct

Ensemble - (T=Mean) [22] 5353 2501
Ensemble - (T=Median) [22] 6523 2746
TAKE - (T=Mean) [21] 3279 1653
TAKE - (T=Median) [21] 5197 2304
RAKE - (ka-stoplist) [23] 6052 2037
RAKE - (fox-stoplist) [23] 7893 2054
TextRank (UnD. w=2) [19] 6784 2116
TextRank (UnD. w=3) [19] 6715 1897

Table 4. Precision Recall and F-Measure for Data Set II

method precision recall f -measure

Ensemble - (T=Mean) 44.0 49.1 46.7
Ensemble - (T=Median) 39.3 54.6 45.7
TAKE - (T=Mean) 45.1 34.5 39.1
TAKE - (T=Median) 40.0 46.2 42.9
RAKE - (fox-stoplist) 23.9 42.4 30.6
TextRank (UnD. w=2) 31.0 45.3 36.8

Table 5. Extracted and correct keywords for Data Set II

method extracted correct

Ensemble - (T=Mean) 5120 2248
Ensemble - (T=Median) 6357 2496
TAKE - (T=Mean) 3501 1578
TAKE - (T=Median) 5291 2114
RAKE - (fox-stoplist) 8124 1942
TextRank (UnD. w=2) 6681 2073

Table 6. Precision Recall and F-Measure for Data Set III

method precision recall f -measure

Ensemble - (T=Mean) 43.8 50.2 46.9
Ensemble - (T=Median) 39.4 55.7 46.1
TAKE - (T=Mean) 46.1 35.4 40.1
TAKE - (T=Median) 40.7 48.4 44.2
RAKE - (fox-stoplist) 24.5 42.0 30.9
TextRank (UnD. w=2) 28.9 43.3 34.7
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Table 7. Extracted and correct keywords for Data Set III

method extracted correct

Ensemble - (T=Mean) 11203 4918
Ensemble - (T=Median) 13835 5450
TAKE - (T=Mean) 7509 3464
TAKE - (T=Median) 11631 4734
RAKE - (fox-stoplist) 16748 4107
TextRank (UnD. w=2) 14631 4237

significant keywords would yield better results
for the subsequently utilized machine learning
algorithms. Additionally, this allows more accurate
classification of documents and correct placement
in databases.

We presented an unsupervised ensemble
method for automatically extracting keywords
from single documents. We showed that
our ensemble method obtained better overall
performance compared to the individual methods
used in its development as well as to some of the
recent approaches that were studied. We can also
infer that our ensemble method is stable since it
achieved this performance on three different data
sets.

Although our ensemble method achieved better
overall performance with respect to how well
it found the keywords, it was nonetheless
computationally slow because of TextRank. Our
studies with regard to this has been presented in
[17], where we construct yet another ensemble
method without using TextRank and achieve
comparable results, but with faster computation
times. We wish to continue this line of research,
where we will explore other types of ensemble
methods for keyword extraction and experiment on
different data sets.
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