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Abstract. Constructing maximal cliques is a well-known
problem in the graph theory. Despite this problem
has been well studied for decades, few efforts
have been presented in distributed computing. The
main contribution of this paper is to propose a
distributed algorithm, modeled by local computations,
for constructing all maximal and disjoint cliques in a
static network. In order to prove the correctness of this
algorithm, we use the formal Event-B method, which is
based on the refinement technique. The latter consists
in enriching a model in a step by step fashion. It is
the foundation of the correct-by-construction approach
which provides an easy way to prove algorithms.
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1 Introduction

The construction of densely connected groups,
called communities, is a well known problem in
complex networks. It has an indispensable role
in several domains such as data mining [13],
emergent pattern detection in terrorist networks
[5], computational biology [3], etc. In order
to model communities in a rigorous way, we
consider maximal cliques which represent maximal
subgraphs in which any pair of nodes is connected
by an edge.

Until recently, several efforts have been devoted
to resolve the maximal cliques problem. Most of
them used centralized algorithms [15] [9] [14] [16],
but only few of them [12] [7] proposed distributed
algorithms.

These algorithms are designed to run on
interconnected autonomous computing entities to
achieve a common entities task. In fact, each entity
communicates locally with its immediate neighbors
and executes asynchronously the same code.

In this context, a distributed algorithm can be
modeled by means of the local computation model
[11]. The latter allows us to encode algorithms at
a high level of abstraction independently from the
network topology. In fact, an algorithm is simply
given by a set of relabeling rules which are locally
executed. These rules, which are closely related to
mathematical and logic formulas, are able to derive
the correctness of distributed algorithms.

Nevertheless, the development of distributed
systems has not been well mastered yet. In
fact, the modeling and the verification remain hard
tasks due to the lack of knowledge of the global
state and the non-determinism in the execution of
the processes.

Then, ensuring the correctness of these
algorithms becomes crucial because it gives us
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confidence that distributed systems perform as
designed and do not behave harmfully.

In most of the proposed solutions [9, [14] [15],
the reliability of the maximal clique algorithms is
justified based on simulation results that can not
guarantee their correctness.

Moreover, using paper-and-pencil based proofs
[7,[12] is a tedious task and a minor error can have
serious consequences on the system operation.
Furthermore, we notice that the proposed solutions
in the literature do not consider any model to
design their algorithms.

So, we find that it is interesting to propose
a distributed algorithm for constructing maximal
cliques within a network graph based on the local
computation model.

To specify the abstraction provided by local
computations, we have used a formal method.
In fact, formal methods provide a real help for
expressing correctness with respect to safety
properties in the design of distributed algorithms.

Particularly, the correct-by-construction ap-
proach [10] provides a simple way to construct and
prove algorithms. The main idea relies upon the
development of distributed algorithms following a
top/down approach controlled by the refinement of
models.

This process allows to simplify the proofs
and validate the integration of requirements.
The Event-B modeling language [1] can support
this methodological proposal by suggesting proof
based-guidelines. It is supported by a tool
called “RODIN” [2] which provides an environment
for developing correct-by-construction models for
software-based systems.

The remainder of this paper is structured as
follows: Section 2| gives a review of related
literature. In Section [3] we present basic concepts
of the local computation models and Event-B
formal method. Section 4| introduces our proposed
algorithm. In Section |5} we specify this algorithm
with the Event-B method. In Section [6] we
conclude the paper and we give some directions
for our future research.
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2 Related Work

Many research studies dealt with the problem
of constructing maximal cliques as it is a
challenging up-to-date issue. Most of the proposed
approaches are based on centralized algorithms
[16] 9] 15], but only few have adopted distributed
solutions [12, [7, [17]. In the following, we present
some details of these solutions.

Luo et al. [12] introduced a distributed algorithm,
called MC (Maximal Clique), to find all maximal
cliques in a graph with linear complexity. Then,
the authors used the MCP (Maximum Clique
Problem) algorithm to get all maximal cliques
with the same number of memberships and they
computed a unique maximum clique by UMCP
(Unique MCP) algorithm.

In [7], the authors presented a new technique for
detecting maximal cliques in large social networks.
This technique has a quasi-linear complexity. It
relies on a network decomposition process based
on two levels. The initial level aims to identify
two sets of nodes. The first set contains the
nodes of the graph whose degree is less than
a certain threshold and the second includes the
nodes of high degree (whose degree is greater
than or equal to this threshold). The second level
of decomposition consists in dividing the graph into
a set of blocks. It adds to each node of low degree
these neighbors to form a block. Then, the Best-Fit
algorithm [6] is applied for each generated block
to determine its maximum clique. The authors
formally proved the correctness of their proposed
solution using manual proofs.

In the same context, Wu et al. [17] proposed
an algorithm for enumerating maximal cliques
in exponential time based on the MapReduce
technique [8]. In a first phase, this algorithm
starts by extracting all possible cliques (maximal,
non maximal and duplicated cliques). The second
phase is based on a pruning strategy which returns
only maximal cliques.

Even though many research approaches have
tackled the problem of finding maximal cliques
in a graph, we notice that the majority of them
[17, 14} 15, [9] rely on simulation to evaluate the
performance of these solutions. Some studies [7,
12] have proved the correctness of their algorithms.
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However, the proofs which have been presented
are done manually. These proofs are long and
tedious in the case of complex algorithms.

The main contribution of our work is to propose
an algorithm for constructing maximal cliques
based on the local computation model.

Our algorithm is inspired by the work of Luo et
al. [12] which has the lowest complexity compared
to other existing algorithms. To specify and prove
its correctness, we use the Event-B formal method.
The strong point of this method is that it supports
the incremental modeling of algorithms using the
step-wise refinement concept. In fact, Event-B
starts from an abstract model and introduces
gradually the different properties of the system to
obtain a more concrete model.

3 Basic Concepts

3.1 Local Computation Models

In this section, we illustrate the notion of local
computations, and particularly that of graph
relabeling systems [11}, 4] by showing how some
algorithms on networks of processors may be
encoded within this framework. A network is
represented as a finite graph whose nodes stand
for processors and edges for (bidirectional) links
between processors. The local state of each
process as well as the communication link are
denoted by a label assigned to the corresponding
node and edge. According to its own state and to
the states of its neighbors, each node may decide
to realize a computation step. After this step, the
states of this node as well as its neighbors and the
corresponding edges may change depending on
some computation rules. Let us recall that graph
relabeling systems satisfy the following conditions:

— They do not affect the structure of the
underlying graph, but only the labeling of its
nodes and edges.

— The locality of these interactions implies that
each relabeling step can only change the
labelings of a connected subgraph with a fixed
size in the underlying graph.

— The local context of the relabeled graph
determines if a relabeling rule is applicable or
not, which means that these computations are
locally generated.

There are three types of local computations
for implementing distributed algorithms: (LCO)
synchronizes a node with only one of its neighbors.
The relabeling rule will be applied to these
two nodes and the edge linking them. (LC1)
synchronizes a ball of radius 1: a center node and
all its neighbors at distance 1. The relabeling rule
may update the label of the center node as well as
those of the edges linking it to its direct neighbors.
The labels of the other nodes in the ball are not
modified. (LC2) synchronizes a ball of radius 1.
The application of the relabeling rule can update
the label of the center node, the labels of its direct
neighbors and also the labels of the edges linking
the center node to its neighbors.

3.2 Event-B Overview

The Event-B modeling language [1] is an evolution
of the B language. A system specification (model)
in Event-B consists of two types of components:
context and machine. A context specifies the
static part of a model and may contain carrier
sets, constants, axioms, and theorems that can be
derived from the axioms of a context.

An Event-B machine describes a reactive
system. It may contain variables, theorems,
invariants and events. The variables define the
state of a machine. They are specified by
invariants.  The properties derivable from the
invariants are called “theorems”. The changes
of possible state are described by events. An
invariant is defined as a predicate preserved by
each event. Machines can be linked to each other
by a refinement relation. To have access to its
elements, a context is seen by a machine and its
refinements. Moreover, a context may be extended
by another to introduce more elements.

The concept of refinement is the main feature
of Event-B. The refinement of a machine enables
to enrich it in a step-by-step fashion. It is the
foundation of the correct-by-construction approach
[1Q]. It is also used to transform an abstract model
into a more concrete version by modifying the state
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definition. In fact, new variables and events can be
introduced. Furthermore, abstract events can be
refined to become more concrete.

The relation between variables in the concrete
and abstract model is given by a gluing invariant.

An Event-B specification is considered as correct
only if each machine as well as the process of
refinement is proved by adequate Proof obligations
(POs); i.e events preserve the invariant(s) and
each event is feasible. POs are generated by the
RODIN tool [2], which provides an environment
for developing correct-by-construction models for
software based systems. They can be discharged
either automatically by an integrated proof tool or
through interactive proof steps.

4 A Distributed Algorithm for
Constructing Maximal Cliques

A network can be modeled as a simple and
undirected graph G=(ND,E) where ND is the set
of nodes and E is the set of edges. In this work,
we suppose that every node in the graph knows its
neighbors. A clique is a fully connected subgraph
of the graph G, and a maximal clique is a clique
that is not a subset of any other clique in the
same graph.

The proposed algorithm may be encoded by the
graph relabeling system R = (L, I’, P) defined by
L = {State,Clique}, I' = {Init,@}, and P =
{R1, R2, R3}.

State and Clique are two functions. State gives
the current state of each node and Clique assigns
to each node the nodes of its maximal clique. Each
node v has two labels State(v) and Clique(v):

— State(v) € {Init,C,I, No, Alone} is the state
of the node v. It can take one of these labels:

1. Init: the node v is in the initial state.

2. C: the node v detects a maximal clique.
We call v “the center” of this clique.

3. I:the node v belongs to a maximal clique
and it is different to the center of the
clique.
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4. No: the node v is in the waiting state.
It has not been assigned to a maximal
clique yet.

5. Alone: the node v does not belong to
any maximal clique. It is called “isolated
node”.

— Clique(v) C N(v): the set N(v) contains v
and all its neighbors. The node v belongs to
the maximal clique “Clique(v)”. Initially, each
node v has Clique(v) = @.

I’ is the set of initial labels and R1, R2 and R3 are
the LC1 relabeling rules.

For each node v € ND, we define B(v) =
(1 N(k) the set of nodes that stores the
kEN(v)
intersection of all N(k) (k € N(v)). Let R(v) be all
the nodes of B(v) which have not been assigned to
maximal cliques yet. These nodes are labeled /nit
or No.

4.1 Rule R1

The goal of this rule is to detect a maximal clique
in the graph. Let x be a node of the graph G in
the initial state and R(x) containing at least three
nodes. By applying the rule R1, all the nodes
of R(z) form a maximal clique having as center
the node z.

Then, x is labeled C and the other nodes of
R(x) are labeled I. Formally, the rule R1 is written
as followdt

— Precondition:

— State(z) = Init and Clique(x) = 2,
— card(R(x)) > 3.

— Relabeling:

— State(z) := C and Clique(z) := R(x),

- Va-a € R(z)\{z} = State(a) :=1 and
Clique(a) := R(x).

T«card(R(z))” denotes the number of nodes of R(x).
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4.2 Rule R2

The goal of the rule R2 is to define a waiting node.
It consists in modifying the state of a node from the
initial state to the waiting state by giving it the label
“No”. Let = be a node labeled “Init”.

It has R(z) containing less than three nodes and
there is a node in the initial state that is a neighbor
of z. By applying the rule R2, the label of the node
x becomes “No”. Formally, the rule R2 is written
as follows:

— Precondition:

— State(x) = Init and Clique(z) = @,
- card(R(x)) < 3.

— Relabeling:

— State(z) := No,
- Clique(z) = @.

4.3 Rule R3

This rule aims to detect an isolated node which
does not belong to any maximal clique. This node
is called an isolated node. The rule R3 requires
the presence of a node x having the initial or the
waiting state. Besides, all the neighboring nodes
must not be in the initial state.

As aresult, the node x is marked as “Alone” and
Clique(z) contains only the node . Formally, this
rule is written as follows

— Precondition:

— State(x) € {No, Init},

- Va,z-a =~z € G = State(a) # Init.
— Relabeling:

— State(z) := Alone,
— Clique(z) = {z}.

2« » denotes the maplet operator in Event-B. “a — z” is
the edge ax where a and x are two nodes of the graph G

A run of the proposed algorithm consists in
applying the relabeling rules specified by the algo-
rithm until no rule is applicable. These rules are
applied asynchronously and non-deterministically,
which means that given the initial labeling, many
different runs are usually possible. In the final
configuration, every node x (r € ND) has
State(x) € {C, I, Alone} and Clique(z) # @:

1. If x does not belong to any maximal clique, it
will have State(x) = Alone and Clique(z) =

2. If x belongs to a maximal clique, it will have
State(x) € {C,I} and
card(Clique(x)) > 3.

An execution example of the proposed algorithm
can be downloaded from this link?l

5 Formal Specification of the Proposed
Algorithm

As mentioned earlier, the specification of our
algorithm is performed with the Event-B method
and done with the RODIN platform. It starts
with a very abstract model. Through successive
refinements, we obtain a concrete one that
expresses the local behavior of processors in the
network. ~ We outline in this paper the basic
elements of our specification. Fig. [1| depicts the
different components of our specification. The
first machine MO expresses the specification of
the maximal cliques problem by events stating a
relation between the initial states and the final
states. It uses definitions and properties of the
graph in the two contexts “C0” and “C71”. The
second machine M1 refines MO. It introduces
events for expressing how nodes are making a
choice and it refines the events of the first level.
The machine M2 refines M1. It provides further
details to compute the set of nodes of each
maximal clique. The machine M3 refines M2 and
sees the context C2, which extends the context
“C1”, to specify local label modification. M3
produces a set of events corresponding to the three
relabeling rules.

Shttps://urlz.fr/a51T
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Context «CO»

extends

Machine«<MO» —>¢¢5 5 Context«C1»

refines
Machine«M1»

reﬂnes extends
Machine«M2»

refines

Machine«M3» —5€€5 o Context«C2»

Fig. 1. Our proposed model

5.1 Formal Specification of the Algorithm
Contexts

5.1.1 The context “C0”

As shown in Listing (1} a network can be straightfor-
wardly modeled as a simple and undirected graph
G where nodes ND denote processors and edges
denote direct communication links (axm1).

An undirected graph indicates that there is no
distinction between two nodes associated with
each edge (axm2). A graph is simple if it has
zero or one edge between any two nodes and no
edge starts and ends at the same node (axm3).
The domain restriction “ND <« id” is a subset of
the relation “id” that contains all the pairs whose
first element is in ND. The identity relation id maps
every element to itself.

Moreover, we introduce a constant “N” which
assigns to each node “z” from the graph the set
composed of “z” and its neighbors (axm4, axmb).
By means of the axiom axm6, we specify that the
set of nodes and edges in the graph are finite.
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5.1.2 The context “C1”

It is introduced as an extension of the context “C0”
(see Listing [2). We define “cliques” to be a set
of all possible cliques in the graph G (axm1). Any
pair of nodes can never form a clique, then all
cliques contain at least three nodes. We add axm2
and axm3 to specify all possible combinations of
maximal and disjoint cliques in the graph G called
“clique_combination” .

5.1.3 The context “C2”

It extends the context “C1” by adding the labels of
nodes into our model. Indeed, we introduce a new
set called“labels” to represent all possible labels
(partition(labels, {Init}, {C},{I}, {No}, {Alone})).
Each node in a particular state is encoded by a
specific label which allows nodes to perform an
elementary step of computation according to some
relabeling rules.

5.2 Formal Specification of the Algorithm
Machines

5.2.1 The First Level (Machine MO)

The first machine, called MO, specifies only the
goal of the distributed algorithm, but, it does not
describe the process of computing the solution.
This machine includes only one event “Oneshot’,
depicted in Listing [3] which specifies the result of
the algorithm in one step. In other words, there
is no protocol, only the formal definition of its
intended result. The analogy of someone closing
and opening their eyes. To specify this event,
we introduce the variable “solution” which contains
the result of the algorithm execution: a possible
combination of maximal and disjoint cliques in the
graph G. Formally, “solution” is defined by the
invariant inv1: solution € P(ND <« ND). Initially,
the variable solution is empty.

In a graph, there are many combinations of
maximal cliques. The event Oneshot attributes
in a non-deterministic way an element from
“clique_combination” to the variable “solution”. We
prove by refinement that this solution can be
calculated.
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Listing 1. Axioms of the context CO

axml : GC ND x ND

axm2 : G=G!

axm3 : (ND<id)NG =0

axm4 : N € ND — P(ND)

axm5 : Vz.x € ND — N(z) = {z} UG[{z}]
axmé : finite(G) A finite(ND)

Listing 2. Axioms of the context C1

axml1 : cliqgues = {¢c.ND,c.G-ccND C ND A finite(c.ND) A card(c.ND) 2 3 N c.G C GA

c.G=(c.ND x ¢c.ND)\ (ND qid) A c.G = c.G '|c.G}

axm2 : clique_combination C P(cliques)

axm3 : cliqgue_-combination = {X,z1,22-X C cliques Azl € X Nz2 € X Nzl #
dom(zl) Ndom(22) = @A NVY- Y CGAY ¢ X =Y ¢ cliques)| X}

T2\

Listing 3. Event Oneshot, in MO

Event Oneshot
any c
where

grdl : solution = @

grd2 : c € clique_combination
then

actl : solution := ¢
end

Listing 4. Machine M7 invariants

invl : in_cliques C ND

inv2 : out_cliques C ND

inv3 : new-cliqgues CP(ND x ND)

invd : new_cliques C P(in_cliques X in_cliques)

invs : in_cliques Nout_cliques = &

invé : in_cliques U out_cliques = ND

inv7 : Va,b-a € new_cliques A b € new_cliques A a # b= dom(a) N dom(b) = &
inv8 : Vz-x € new_cliques A finite(z) = card(z) > 3

Listing 5. Event Add_in_Clique, in M1

Event Add_in_Clique
any Bl,x
where
grd1 : B1 C out_cliques
grd2 : z € Bl
grd3 : B1 C G[{z}] U {z}
grdd : Vy,zy€ BINzE€EBlIAy#2 — y—~2z2€G
grd5 : Vr.r € out_cliques AT € G[{z}] Ar x (B1\{r}) CG = r € Bl
grdé : card(Bl) >3
then
actl : out.cliques := out_cliques \ Bl
act2 : in_cliques := in_cliques U B1
agtS : new_cliques := new-cliques U {{a-a € B1 Aa # x|z — a}}
en

Listing 6. Event Oneshot, in M1

Event Oneshot refines Oneshot
where
grd1l : solution = &
grd2 : Vy-y C G Ay ¢ new.cliques = y ¢ cliques
Th3 : new-cliques € clique_.combination
with c¢: c = new-cliques
then
act1l : solution := new-cliques
end
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5.2.2 The Second Level (Machine M1)

In this machine, we start by introducing details
about the maximal cliques algorithm. To do so,
we add three variables in the invariant component
as shown in Listing [ “in_cliques” defines
the set of nodes which belong to the detected
maximal cliques (inv1). “out_cliques” contains
the nodes which do not belong to these cliques
(inv2).  “new_cliques” is the set of edges of
the detected maximal cliques (inv3 and inv4).
Initially, out_cliques contains all the graph nodes
“ND”, whereas in_cliques and new_cliques are
empty. The definition of these variables requires
the addition of new properties:

(inv) The nodes of in_cliques are different from
those of out_cliques.

(inve) The total of these nodes is equal to the set
of nodes “ND”.

(inv7) There is no intersection between the nodes
of the detected cliques.

(inv8) All the detected cliques contain at least three
nodes.

At this level, we refine the event Oneshot defined
in MO and we add two new events: Add_in_Clique
and Add_out_Clique. Due to lack of space, we
detail only the formal specification of the events
Oneshot and Add_in_Clique.

Event “Add_in_Clique” : This new event is added
to compute all maximal cliques in the graph G
(see Listing B). It can be triggered if we have
a ball “B1” containing at least three nodes (grd3
and grd6). All the nodes of B7 are connected
(grd4) and belong to out_cliques, that is to say
they have not been assigned to maximal cliques
yet (grd1). By means of the grd5, we specify that
the ball B1 can not be extended by one or more
adjacent nodes. In fact, B7 is not a subset of a
larger connected graph. We note “x” the center of
the ball B1 (grd2 and grd3). At every computation
step, the nodes of the detected ball are eventually
added to the set in_cliques (act2) and removed
from out_cliques (act1). Moreover, we add the
set of ball edges to new_cliques (act3). Event
“Oneshot” :  This event refines the Oneshot
presented in MO to verify that the final value of
new_cliques represents the result of the algorithm
(see Listing [6). To do so, we reinforce the guard
component by specifying that all maximal cliques
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in the graph G have been detected (grd2). By
means of the theorem Th3, we verify that the
set new_cliques represents the detected maximal
and disjoint cliques. The abstract parameter “c”,
defined in M0, is replaced with a concrete value
(new_cliques) by means of a witness. In Event-B,
a witness is defined as a simple equality predicate
involving the abstract parameters.

5.2.3 The Third Level (Machine M2)

The refinement of M1 called M2 introduces more
details about the maximal cliques algorithm. In
fact, we introduce the variable “Clique” as a
function which assigns to each node the set of
nodes of its maximal clique (invl : Clique €
ND — P(ND)). Initially, the Clique of each node
is empty. To link the states between the machines
M1 and M2, we define three gluing invariants:

— Each node of in_cliques belongs to a detected
maximal clique.
(inv2) Voo € in_cliqgues = Clique(x) #
@ Nz € Clique(x)

— Each node of out_cliques has not computed its
maximal clique yet.
(inv3) Va -z € out_cliqgues = Clique(x) = &

— Each node that has not been assigned to
a maximal cligue yet belongs to the set
out_cliques.

(invd) Va-Clique(x) = @ = x € out_cliques

At this refinement level, the events of the
previous level still exist but they become more
concrete:

— The event “Oneshot” refines the “Oneshot”
presented in M1. It uses the concrete variable
Clique to specify that each node of the graph
has computed the maximal clique to which it
belongs.

— We refine the event “Add_in_Clique” of the
machine M1 to converge towards the local
aspect. The goal of this event is to detect
maximal cligues and assign to each node its
corresponding clique.
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— We refine the event “Add_out_Clique” to give
to each node “x” which does not belong to any
clique “Clique(z) = {x}”.

Due to space limitation, we only detail the
specification of the event “Add_in_Clique”. The
goal of this event is to detect maximal and disjoint
cliques and assign to each node its corresponding
clique. In fact, we refine the event “Add_in_Clique”
of the machine M7 to converge towards the local
aspect (see Listing[7).

We reinforce the guard component by using the
local variable Clique. The first guard specifies that
the center x of the ball B and its neighbors from
B1 do not belong to any detected clique. The grd5
states that B7 can not be extended by other nodes
which have not been assigned to maximal cliques
yet. We add the guards grd6 and grd7 to indicate
that the intersection of all the elements of N(a),
which not belong to maximal cliques, contains at
least three nodes ]

We note “a” as each node of the ball B7. In
the action component, we set the maximal clique
of each node of the ball to “B7” (act1). To do so,
we use the overriding operator “ < ”.

5.2.4 The Fourth Level (Machine M3)

Once the machine of the third level has been
specified and proven, it can be refined to describe
the local label modification and encode the
relabeling rules proposed in Section In order
to reach this goal, we introduce a new variable
“State” (invl State € ND — labels) which
assigns to each node a label from the set “labels”
that encodes the state of a process. Initially,
all the nodes are labeled “Init”.  The addition
of the variable “State” involves adding new
properties which link the abstract state variables
to the concrete ones. We have formalized these
properties in form of Event-B invariants:

— A node z which has Clique(xz) not empty
belongs to a maximal clique or it is an isolated
node.

(inv2) Vz-Clique(x)
State™[{C, I, Alone}]

# @ = x €

4«7 is the Event-B range subtraction operator.

— A node which has not been assigned to a
maximal clique yet is in the initial or the waiting
state.

(inv3) Vz-Clique(z) = @ = z €
State=1[{Init, No}]

— If a node is labeled C, its maximal clique
contains itself and a set of its neighbors.
(inv4) Vz-State(x) = C = Clique(x) C {z} U
Gl{z}] Az € Clique(z)

— Each maximal clique contains one center node
labeled C and the other nodes are labeled I.
(inv5) Vx,y-y € Clique(z) \ {z} A State(z) =
C = State(y) = I A Clique(y) = Clique(x)

— If a node y is labeled |/, it has a neighboring
node which belongs to the same maximal
clique and it is the center of this clique.

(inv6) Yy-State(y) = I = (Fz-z € Gl{y}] A
State(x) = C A Clique(y) = Clique(z))

— An isolated node does not belong to any
maximal clique, then its maximal clique is the
identity.

(inv7) Vz- State(z) = Alone=Clique(x) = {z}

— Each node x labeled C or I belongs to a
maximal clique, then it has Clique(z) not
empty.

(inv8) Vz - State(x) € {C, I} = Clique(z) # &

— Each node in the initial or the waiting state
has not been assigned to a maximal clique
yet.

(inv9) Vz-State(x) €
Clique(z) = @

{No, Init} =

At this level, we refine the event “Oneshot” and we
specify the three relabeling rules of the algorithm:

— The event “Oneshot” verifies that, at the end
of the algorithm execution, no node is in the
initial or the waiting sate. The set of maximal
cliques correspond to nodes labeled “C” and
its neighbors labeled “/".

— The relabeling rule R7 is specified by an
event called “Rule1” which refines the event
“Add_in_Clique” defined in M2.
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Listing 7. Event Add_in_Clique, in M2

any Bl,x
where

then

end

Event Add_in_Clique refines Add.in_Clique

grd1 : Clique(z) = @ A B1 N dom(Clique & {@}) = &
grd5 : Vr-Clique(r) = @ Ar € G[{z}] Ar x (B1\ {r}) C
grd6 : card(inter({a-a € B1|N(a)}) \ (dom(Clique & {2})
grd7 : finite(inter({a-a € B1|N(a)}) \ (dom(Clique & {

actl : Clique := Clique < {a-a € Bl|a — B1}

G — reBl
)) >3
2}1)))

— The event “Rule2” is introduced to specify the
rule R2.

— The event “Rule3” specifies the rule R3 and
refines the event “Add_out_Clique” of the
machine M2.

5.3 Overview of Proof Obligations

We present in Fig. [2] the proof statistics for the
development of our algorithm using the RODIN
platform.  These statistics are a measure of
the development complexity. We distinguish the
proof obligations (POs) discharged automatically
by RODIN and those that are interactively proved.
The algorithm development results in 188 POs,
in which 86 (46%) POs are automatically proved,
and 102 (54%) are interactively proved using the
RODIN prover. Many POs are generated in
Event-B models due to the introduction of local
information. In order to ensure the correctness
of the machines, we have established various
invariants in stepwise refinement.

6 Conclusion and Future Work

In this paper, we have addressed the problem of
enumerating maximal cliques in a graph.

Unlike the existing works, our solution is based
on a distributed algorithm encoded by the local
computation model.  This model provides an
abstraction of distributed computations, which can
be expressed by the Event-B method. To do
so, we have proposed three relabeling rules
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Fig. 2. An overview of the number of proof obligations

which represent the local behaviour of processors
ensuring the detection of maximal cliques.

Moreover, we have specified our algorithm
based on a stepwise refinement strategy to build a
correct solution. The proof obligations discharged
either automatically or interactively is a measure of
the development complexity.

We intend in the future to extend our solution
to construct maximum cliques which represent the
clique that contains the largest number of nodes
in the whole graph. In addition, it is interesting to
verify the correctness of temporal properties such
as liveness properties that can not be verified using
invariants.
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