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Abstract. In this work, an alternative new methodology 

to segment regions in an image is proposed. The method 
takes the advantages offered by hybrid algorithms, as 
the Possibilistic Fuzzy c-Means (PFCM) clustering 
algorithm, which has the qualities of both the Fuzzy c-
Means (FCM) and the Possibilistic c-Means (PCM). The 
method is called sub-segmentation, and it consists of 
finding some clusters in an image through the 
segmentation of the image and, within these clusters, the 
less representative pixels or atypical pixels. These 
elements very frequently represent the zones of interest 
during image analysis. Three different cases are used in 
order to illustrate the method. The first one is an image 
of a drop of milk, where the generality of the method is 
tested in a simple but representative image. The second 
case corresponds to digital mammograms, where the 
potentiality of the method is tested in a critical 
application, such as anomalies identification in 
mammograms for cancer detection. The last case gives 
an idea of its range of applications, as the method is 
applied to an industrial case of classification of wood 
boards according to their quality. As can be seen from 
the three cases used in this work, the results are very 
interesting and promising.  

Keywords. Pattern recognition, Image processing, 

fuzzy clustering, possibilistic clustering, fault 
detection and diagnosis. 

1 Introduction 

Image segmentation is an important task in the 
fields of image processing and computer vision. 
Segmentation is a process of dividing an image 
into different regions such that each region is 
nearly homogeneous, whereas the union of any 
two regions is not. The level to which the division 
is carried depends on the problem being solved. 
That is, segmentation should stop when the 
objects of interest in an application have been 
isolated. Image segmentation algorithms generally 
are based on one of two basic properties of 
intensity values: discontinuity and similarity. In the 
first category, the approach is to partition an image 
based on abrupt changes in intensity, such as 
edges in an image. The principal approaches in the 
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second category are based on partitioning an 
image into regions that are similar according to a 
set of predefined criteria [1]. 

The main objective of image segmentation is to 
find objects or regions with the same features or 
attributes of pixels, as could be grey levels, 
textures, or colors. Several segmentation methods 
have been developed to do this task, such as edge 
detection, region growth, histogram thresholding, 
clustering, etc. [2-7]. The low level processing 
refers to a representation of the image in pixel or a 
small group of pixels and one of the most common 
and widely used tasks for this level is clustering [8]. 
According to the above, in this paper we use a 
hybrid clustering method based on clustering 
algorithms, specifically the Possibilistic Fuzzy c-
Means (PFCM), which was proposed in [9]. 

Cluster analysis is an unsupervised data 
analysis task, trying to group data objects into 
clusters, such that similar data objects are 
assigned to the same cluster whereas dissimilar 
data objects should belong to different clusters 
[10]. In that sense, clustering algorithms are used 
to find groups in unlabeled data, mainly based on 
a similarity measure between the data patterns and 
the prototypes. This means that similar patterns 
are placed together in the same cluster. So, in the 
case of image segmentation, the identification of 
regions is based fundamentally on the distribution 
of pixel attributes in the feature space, and does 
not take into consideration the spatial distribution 
of pixels in an image. This way each pixel pattern 
is assigned to the region with the nearest or most 
similar prototype according to the features took into 
account. Thus, this process forcedly distribute 
every pixel patterns to the different regions, even if 
some pixels are not very representative of the 
region as a whole. 

For this reason, in many cases it is not sufficient 
to identify the regions or objects of an image, but 
to distinguish, through the variations in intensity, 
the imperfections or marked differences present in 
the objects or regions. These imperfections are 
considered here as atypical pixels, which are very 
common to find in the different objects or regions 
of an image. For the three cases considered in this 
work these imperfections could be the result of a 
light reflection over an object but, and this is a very 
interesting case, they could be real imperfect 
features that can be used aid in image analysis, e.g 

in medical diagnosis or industrial quality 
evaluations. 

Atypical pixels of an object or a region are 
generally difficult to detect because they represent 
a minority among the total pixels of each particular 
cluster in the image. Besides, the traditional 
process to increase the number of regions to 
identify through clustering algorithms, can force to 
use a great quantity of regions in order to detect 
the atypical pixels within the image, increasing the 
computational cost, and the possibilities to fall into 
a local minimum or a saddle point. A different and 
new approach, as proposed in this work, is to find 
the main regions in the image and latter, inside 
them, to find sub-regions corresponding to typical 
and atypical pixels for each previous identified 
region. The main purpose is to find imperfections 
generally represented by the pixels that have the 
minimal values of the features belonging to 
each  region. 

In a variety of applications based on images 
analysis to detect the zones of highest interest, 
such as cancer risk analysis, the less typical pixels, 
representing a tissue with particular 
characteristics, or that tend to fall outside of a 
normal pattern, are precisely the most interesting 
because they represent a variation with respect to 
normal pixels or to healthy tissue in the case of 
cancer risk analysis. We therefore propose image 
sub-segmentation as an alternative to identify this 
kind of pixels after an image is segmented in an 
acceptable way. 

For the image sub-segmentation we propose 
using the PFCM clustering algorithm, as it provides 
fuzzy membership µik and possibilistic membership 
or typicality values tik for every pattern of the data 
set [9]. Therefore, we get a more informed 
segmentation about the membership of the pixels 
to each one of the regions. For the three cases of 
applications presented in this work, the images are 
represented in gray levels and this is the only 
feature used here. 

The purpose of this work is to find sub-regions 
using the advantages offered by the PFCM 
clustering algorithm, which has the qualities of both 
the Fuzzy c-Means (FCM) [11] and the Possibilistic 
c-Means (PCM) [12]. The c-partition generated by 
FCM help us to create Fuzzy Regions (FR), 
whereas the partition generated by PCM helps us 
to identify Possibility Regions (PR), and both (FR 
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and PR) the sub-regions, corresponding to the 
typical and atypical pixels respectively. We use the 
typicality values tik to divide each PR Si, i ... c, in 
two sub-regions: the sub-region of typical pixels, or 
pixels with typicality values greater or equal to a 
specified threshold α, and the sub-region with 
atypical pixels, or pixels with typicality values 
below the established threshold α. 

The rest of this paper is organized as follows. 
Section 2 presents the fundamental concepts of 
image segmentation, Section 3 describes the 
theory of the clustering algorithms (FCM, PCM and 
PFCM). Section 4 presents the approach of the 
sub-segmentation based in PFCM as well as how 
to use the membership µik and typicality tik values 
for image sub-segmentation. Section 5 presents 
the results with images of three kinds of 
applications. Finally, Section 6 gives the main 
conclusions of this work. 

2 Image Segmentation 

Image segmentation is a challenge in image 
analysis due to that the segmentation result plays 
an important role in further image processing [5]. 
The aim of the segmentation is to divide an image 
into several non-overlapping meaningful regions 
with homogeneous characteristics extracted of the 
pixels. On other words, segmentation is basically 
clustering of the pixels in the image according to 
some criteria.  

If I(x,y), x  X and y  Y, represents the whole 
image where we try to identify regions and their 
typical and atypical pixels. The segmentation is a 
process that partitions I(x,y) in several regions  
S1(x,y), S2(x,y), …, Sc(x,y), such that the following 
conditions are desirable: 

⋃ 𝑆𝑖 = 𝐼   𝑎𝑛𝑑  𝑆𝑖  ∩ 𝑆𝑗 =  ∅,   𝑖 ≠ 𝑗.               

𝑐

𝑖=1

 (1) 

In the first condition it is assumed that the union 
of the segmented regions, Si, i=1,…,c,  allows to 
build the complete image, whereas in the second 
condition it is assumed that the image is partitioned 
into a set of non-overlapping or disjoint regions.  

In other words, it is desirable to identify all the 
objects in an image and that they would be clearly 
differentiated among them. 

Nowadays, there exists many methods for 
image segmentation based on different principles. 
In this work, we use a hybrid clustering algorithm 
(PFCM) derived from the family of c-Means 
methods and described in the next section. This 
approach has been selected as it is founded on 
membership µik and typicality tik values, such that 
each pixel is evaluated against all the prototypes 
and the most similar prototype. Therefore, that 
facilitates the association of the pixels with the 
most representative regions that partition the 
whole image. Clustering is commonly used for 
segmentation, as there exists a great similarity 
between them. In fact, the main difference is that 
clustering was developed for feature spaces, 
whereas image segmentation was developed for 
the spatial domain of the image. 

As was mentioned in the introduction of this 
work, we only use the gray intensity level as 
feature. Therefore, a one-dimensional vector is 
built with a mapping from the original space of the 
image to gray levels of the pixels, as follows: 

𝐼(𝑥𝑖 , 𝑦𝑗) → 𝐼 = {𝑥𝐼
(𝑞)

}
𝑞=1,…,𝑥 x 𝑦

  ,           (2) 

where xI
(q), is the level of gray for the q-th pixel of I, 

the complete space of the image with   i = 1, ..., x  
and j = 1, ..., y dimensions. 

2.1 Image Segmentation by Partitional 
Clustering Algorithms 

The partitional clustering algorithms are one 
most popular unsupervised pattern classification 
techniques used for the partition a set of objects 
into k groups. According to that characteristic, the 
partitional clustering algorithms are an excellent 
option to perform the image segmentation task. 
The partitional clustering algorithms has been 
successfully used for feature analysis, clustering, 
and classifier design in a variety of scientific 
disciplines such as astronomy, geology, medical 
imaging, target recognition and image 
segmentation. These algorithms find more or less 
homogeneous groups by iteratively minimizing a 
cost function from the similarity among the pixels 
and the prototypes in the features space.  
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The partitional clustering algorithm most used 
for image segmentation is the FCM [13-17]. 

An image is represented in an n-dimensional 
space that depends on the number of features or 
attributes associated to the pixels, where each 
point in this space will be named pixel or pattern. 

Generally, an image is defined in a rectangular 
lattice where each pixel has its particular position; 
even though an image is pre-processed to reduce 
the level of noise or to improve the contrast, the 
lattice has no changes. 

As previously mentioned, the segmentation by 
clustering algorithms is normally based on the 
values of the features or attributes of the pixels, 
and the spatial distribution is seldom taken 
into account.  

Thus, the results are very sensitive to noise, 
and this can produce regions with holes (pixels that 
belong to other regions) in the spatial domain of the 
image. That means that there could be a lack of 
spatial homogeneity in the regions. Nowadays 
there exist some partitional clustering algorithms 
that include spatial information through the 
objective function [5], [18-21]. However, in this 
work only the gray level of each pixel is considered 
for the features.  

3 Clustering Algorithms 

In this work we take advantage of the qualities of 
fuzzy and possibilistic clustering algorithms in 
order to find c groups in a set of unlabeled data set 
Z={z1, z2,…,zk,…, zN}, c < N, in an m-dimensional 
space, where each data zk is associated with the 
nearest prototype, or group center, vi among the c 
possible groups (z = 1, ..., c).  

The membership of each data zk to the different 
groups depends on the kind of partition of the m-
dimensional space where the data set is defined. 
This way, a c-partition can be either: hard, fuzzy, 
or possibilistic [22]. 

The hard c-partition of the space for a data set 
Z={zk | k=1,2,...,N} of finite dimension, where 
1<c<N, is defined by eqs. (3), (4) defines the fuzzy 
c-partition, whereas eq. (5) defines the possibilistic 
c-partition. 

𝑀ℎ𝑐𝑚 =  {𝑈 ∈ 𝑅𝑐 x 𝑁𝜇𝑖𝑘
∈ {0,1},

∀ 𝑖 𝑎𝑛𝑑 𝑘; ∑ 𝜇𝑖𝑘 = 1,

𝑐

𝑖=1

∀𝑘,

0 < ∑ 𝜇𝑖𝑘 < 𝑁, ∀𝑖

𝑁

𝑘=1

},     

(3) 

𝑀𝑓𝑐𝑚 =  {𝑈 ∈ 𝑅𝑐 x 𝑁𝜇𝑖𝑘
∈ [0,1],

∀ 𝑖 𝑎𝑛𝑑 𝑘; ∑ 𝜇𝑖𝑘 = 1,

𝑐

𝑖=1

∀𝑘,

0 < ∑ 𝜇𝑖𝑘 < 𝑁, ∀𝑖

𝑁

𝑘=1

}, 

(4) 

𝑀𝑝𝑐𝑚 =  {𝑈 ∈ 𝑅𝑐 x 𝑁𝜇𝑖𝑘
∈ [0,1],

∀ 𝑖 𝑎𝑛𝑑 𝑘; ∀𝑘,
∃𝑖 , 𝜇𝑖𝑘 > 0: };         0

< ∑ 𝜇𝑖𝑘 < 𝑁, ∀𝑖

𝑁

𝑘=1

}, 

(5) 

3.1 Fuzzy c-Means Algorithm 

The Fuzzy c-Means clustering algorithm (FCM) 
was initially developed by Dunn [23], and 
generalized later by Bezdek [11]. This algorithm is 
based on the optimization of the objective function 
given by (6): 

𝐽𝑓𝑐𝑚(𝑍; 𝑈, 𝑉) = ∑ ∑(𝜇𝑖𝑘)𝑚‖𝑧𝑘 − 𝑣𝑖‖𝐴𝑖

2 ,

𝑁

𝑘=1

𝑐

𝑖=1

 (6) 

where the membership matrix U=[µik]  Mfcm, is a 
fuzzy c-partition of the space where Z is defined, 
V=[v1,v2,...,vc] is the vector of prototypes of the c 

groups, which are calculated according to 𝐷𝑖𝑘𝐴𝑖

2 =

‖𝑧𝑘 − 𝑣𝑖‖𝐴𝑖

2  a squared inner-product distance norm, 

and  m [1, ] is a weighting exponent which 
determines the fuzziness of the partition. The 
optimal c-partition for a Fuzzy c-Means algorithm, 
is reached through the couple (U*,V*) which 
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minimizes locally the objective function Jfcm, 
according to the Alternating Optimization (AO). 

Theorem FCM [11]: If  𝐷𝑖𝑘𝐴𝑖
= ‖𝑧𝑘 − 𝑣𝑖‖𝐴𝑖

> 0,

1 ≤  𝑖 ≤ 𝑐,  for every k, m>1, and Z contains at least 

c distinct data points, then (U,V)  Mfcm  RcN may 
minimize Jfcm only if:  

𝜇𝑖𝑘 =  (∑ (
𝐷𝑖𝑘𝐴𝑖

𝐷𝑗𝑘𝐴𝑖

)

2
(𝑚−1)⁄𝑐

𝑗=1

)

−1

1 ≤ 𝑖 ≤ 𝑐;    1 ≤ 𝑘 ≤ 𝑁

 , (7) 

𝑣𝑖 =  
∑ 𝜇𝑖𝑘

𝑚𝑧𝑘
𝑁
𝑘=1

∑ 𝜇𝑖𝑘
𝑚𝑁

𝑘=1

1 ≤ 𝑖 ≤ 𝑐

,          (8) 

being (7) and (8) necessary but not 
sufficient  conditions. 

Following the previous equations of the FCM 
algorithm, the solution can be reached with the 
next steps: 

Given the data set Z choose the number of 
clusters 1<c<N, the weighting exponent m>1, as 

well as the ending tolerance >0. 

1. Provide an initial value to each one of the 
prototypes  vi, i=1,..,c. These values are 
generally given in a random way. 

2. Calculate the distance of each one of the zk to 

each one of the prototypes vi, using𝐷𝑖𝑘𝐴𝑖

2 =

 (𝑧𝑘 − 𝑣𝑖)
𝑇𝐴𝑖(𝑧𝑘 − 𝑣𝑖),   1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑁 

3. If 𝐷𝑖𝑘𝐴𝑖
> 0, calculate the membership values 

of the matrix U=[µik] using (7). 

4. Update the new values of the prototypes  vi 

using (8). 

5. Verify if the error is equal or lower than  , ||Vk+1 

-Vk||err  ≤ , 

6. If this is truth, stop. Else, go to step 2. 

The FCM is an algorithm that calculates a 
membership value µik for each point zk in function 
of all prototypes vi. The sum of the membership 
values of zk to the c groups must be equal to one. 
However, a problem arises when there are several 
equidistant points from the prototypes of the 
groups, because the FCM is not able to detect 
noise points or nearest and furthest points from the 
prototypes. Pal et al. [24] show an example with 
two points located in the boundary of two groups, 
one point near to the prototypes and the other one 

far away from them. This must be handled with 
care, as both points are not equally representative 
of the groups, even if they have the same 
membership values. One way to overcome this 
inconvenience is to use a possibilistic algorithm. 

3.2 Possibilistic c-Means Algorithm 

The Possibilistic c-Means clustering algorithm 
(PCM) [12] is based on typicality values and 
relaxes the constraint of the FCM concerning the 
sum of membership values of a point to all the c 
groups, which must be equal to one. Thus, the 
PCM identifies the similarity of data points with an 
alone prototype vi using a typicality values that 
takes values in [0,1]. The nearest data points to the 
prototypes are considered typical, further data 
points are atypical and data points with zero, or 
almost zero, typicality values are considered noise 
[25]. The objective function Jpcm proposed by 
Krishnapuram [12] for this algorithm is given by: 

𝐽𝑝𝑐𝑚(𝑍; 𝑇, 𝑉, 𝛾) =  ∑ ∑(𝑡𝑖𝑘)𝑚‖𝑧𝑘 − 𝑣𝑖‖𝐴
2

𝑐

𝑖=1

𝑁

𝑘=1

+ ∑ 𝛾𝑖 ∑(1 − 𝑡𝑖𝑘)𝑚

𝑁

𝑘=1

 ,

𝑐

𝑖=1

 

(9) 

where T = [tik]  Mpcm, i > 0, and 1 ≤ i ≤ c. 

The first term of Jpcm is similar to that of the FCM 
objective function, which is based on the distance 
of the points to the prototypes. The second term, 

that includes a penalty i, tries to bring the typicality 
values tik toward 1. 

Theorem PCM [12]: If 𝐷𝑖𝑘𝐴𝑖
= ‖𝑧𝑘 − 𝑣𝑖‖𝐴𝑖

> 0,

𝛾𝑖 > 0, 1 ≤  𝑖 ≤ 𝑐, 𝑚 > 1, and Z has at least  c 

distinct data points, then (T,V)  Mpcm    Rc  N may 
minimize Jpcm only if 

𝑡𝑖𝑘 =  
1

1 + (
‖𝑧𝑘 − 𝑣𝑖‖2

𝛾𝑖
)

1
(𝑚−1)⁄

   1 ≤ 𝑖 ≤ 𝑐; 

1 ≤ 𝑘 ≤ 𝑁 , 

(10) 

𝑣𝑖 =   ∑ 𝑡𝑖𝑘
𝑚

𝑁

𝑘=1

𝑧𝑘 ∑ 𝑡𝑖𝑘
𝑚 ,    1 ≤ 𝑖 ≤ 𝑐

𝑁

𝑘=1

; 1 ≤ 𝑘 ≤ 𝑁 .⁄  (11) 

Being (10) and  (11) only necessary but not 
sufficient conditions. 

Krishnapuram and Keller [12] [26] recommend 
to apply the FCM at a first time, such that the initial 
values of the PCM algorithm can be estimated. 
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They also suggest the calculus of the penalty value 

i with (12): 

𝛾𝑖 = 𝐾
∑ 𝜇𝑖𝑘

𝑚𝑁
𝑘=1 ‖𝑧𝑘 − 𝑣𝑖‖𝐴

2

∑ 𝜇𝑖𝑘
𝑚𝑁

𝑘=1

 , (12) 

where K>0, although the most common value is 
K=1, and the membership values µik are those 
calculated with the FCM algorithm in order to 
reduce the influence of noise. 

The PCM algorithm is very sensitive to the i 
values, and the typicality values depend directly on 

it. For example, if the value of i is small, the 
typicality values tik of  T are also small, whereas if 

the value of i is high, the tik are also high. For this 

work, the i values are obtained using the eq. (12). 

In order to avoid a problem with the initial PCM 
algorithm, as sometimes the prototypes of different 
groups coincided [27], even if the natural structure 
of data has well delimited different groups, Tim et 
al. [28-30] have modified the objective function to 
include a constraint based on the repulsion among 
groups, thus avoiding identical groups when they 
must be different. 

The problems of the FCM and PCM clustering 
algorithms, outlier sensitivity for the FCM and the 
coincident clusters for the PCM, as it has been 
explained before, have been solved in the hybrid 
algorithm PFCM that is described in the next sub-
section, and it is an excellent candidate for image 
sub-segmentation. 

3.3 PFCM Clustering Algorithm 

Pal et al. [31] have proposed to use the 
membership values as well as the typicality values, 
looking for a better clustering algorithm, and they 
called it Fuzzy Possibilistic c-Means (FPCM). 
However, the sum equal to one of the typicality 
values for each point was the origin of a problem, 
particularly when the algorithm uses a lot of data.  

In order to avoid this problem, Pal et al. [9] 
proposed to relax this constraint and they 
developed the PFCM clustering algorithm, where 
the function to be optimized is given by (13): 

𝐽𝑝𝑓𝑐𝑚(𝑍; 𝑈, 𝑇, 𝑉) = ∑ ∑(𝑎𝜇𝑖𝑘
𝑚 + 𝑏𝑡𝑖𝑘

𝜂
)

𝑁

𝑘=1

𝑐

𝑖=1

× ‖𝑧𝑘 − 𝑣𝑖‖2

+ ∑ 𝛾𝑖

𝑐

𝑖=1

∑(1 − 𝑡𝑖𝑘)𝜂 ,

𝑁

𝑘=1

 

(13) 

and subject to the constraints  ∑ 𝜇𝑖𝑘 = 1 ∀ 𝑘𝑐
𝑖=1 ; 0  ≤ 

µik, tik ≤  1 and the constants a>0, b>0, m>1 and 

>1. The parameters a and b define a relative 
importance between the membership values and 
the typicality values. The parameter µik in (13) has 
the same meaning as in the FCM. The same 
happens for the tik values with respect to the PCM 
algorithm. 

Theorem PFCM [9]: If  𝐷𝑖𝑘𝐴𝑖
= ‖𝑧𝑘 − 𝑣𝑖‖𝐴𝑖

> 0,

1 ≤  𝑖 ≤ 𝑐, for every k, m>1, >1, and Z contains at 

least c distinct data points, then (U,T,V)  Mfcm  

Mpcm   Rc   N may minimize Jpfcm only if: 

𝜇𝑖𝑘 =  (∑ (
𝐷𝑖𝑘𝐴𝑖

𝐷𝑖𝑘𝐴𝑖

)

2 (𝑚−1)⁄𝑐

𝑗=1

)

−1

,

1 ≤ 𝑖 ≤ 𝑐;     1 ≤ 𝑘 ≤ 𝑁, 

(14) 

𝑡𝑖𝑘 =  
1

1 + (
𝑏
𝛾𝑖

𝐷𝑖𝑘𝐴𝑖

2 )1 (𝜂−1)⁄
,

1 ≤ 𝑖 ≤ 𝑐; 1 ≤ 𝑘 ≤ 𝑁 ,  

(15) 

𝑣𝑖 =  
∑ (𝑎𝜇𝑖𝑘

𝑚 + 𝑏𝑡𝑖𝑘
𝜂

)𝑧𝑘
𝑁
𝑘=1

∑ (𝑎𝜇𝑖𝑘
𝑚 + 𝑏𝑡𝑖𝑘

𝜂
)𝑁

𝑘=1

                   1 ≤ 𝑖 ≤ 𝑐, (16) 

being (14), (15), and (16) only necessary but not 
sufficient conditions. 

The iterative process of this algorithm follows 
the next steps:  

Given the data set Z choose the number of 
clusters 1<c<N, the weighting exponents m>1, 

>1, and the values of the constants a>0, and b>0. 

1. Provide an initial value to each one of the 
prototypes vi, i=1,..,c. These values are 
generally given in a random way. 

2. Run the FCM algorithm as described in 
Section 3.1. 

3. With these results and (12) calculate the 

penalty parameter i for each cluster i. Take 
K=1. 
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4. Calculate the distance of zk to each one of the 
prototypes vi using  

𝐷𝑖𝑘𝐴𝑖

2  =  (𝑧𝑘 − 𝑣𝑖)
𝑇𝐴𝑖(𝑧𝑘 − 𝑣𝑖),   1 ≤ 𝑖 ≤

𝑐, 1 ≤ 𝑘 ≤ 𝑁, 𝐴𝑖 = 𝐼 ∀𝑖  

5. If  DikA  0, calculate the membership values of 
the matrix U=[µik] with (14). 

6. If DikA  0, calculate the typicality values of the 
matrix T=[tik] with (15). 

7. Update the value of the prototypes vi using 
(16). 

8. Verify if the error is equal or lower than 
‖𝑉𝑘+1 − 𝑉𝑘‖𝑒𝑟𝑟 ≤ 𝛿, if this is truth, stop. Else, 
go to step IV. 

Using both membership and typicality values, it 
is possible to identify groups and theirs most or 
least representative data as well. We therefore use 
them to create the sub-groups of typical and 
atypical data for each group. 

4 Image Sub-segmentation with the 
PFCM algorithm 

In a previous work [32]  we have made an analogy 
between the theory of prototypes proposed by 
Rosch [33], and clustering algorithms based on 
fuzzy and possibilistic concepts. There, we analyze 
the concept of typicality in the context of the theory 
of prototypes, where prototypes are the most 
typical examples, according to a given criterion, to 
represent groups, and they have the most 
important features of the corresponding group. 

In the case of birds, for example, the dove is 
more typical than the ostrich and the penguin, 
because it has more features of a bird. However, 
ostriches and penguins are members of the 
category of birds, and different from horses and 
cows to cite an example. Therefore, there is an 
internal resemblance among the members of a 
group, and an external dissimilarity to the members 
of other categories, even when several categories 
share some features, as it happens with birds and 
reptiles, as both kinds of animals reproduce by 
eggs. However, each group has its own features 
that define them as members of a particular group, 
and different to the others. A similar situation 
happens with a numerical data set, that is, it is 
possible to take into account an external 

dissimilarity (FCM) and an internal resemblance 
(PCM) among patterns and prototypes. 

In this way, we can apply a hybrid clustering 
algorithm, as the PFCM, such that the external 
dissimilarity and the internal resemblance can be 
represented by membership values µik and 
typicality values tik respectively, as a possibility to 
identify typical and atypical pixels into each 
identified region in the whole space of the image. 
This is a good option to find more information 
directly related with the pixels of an image, as for 
the three cases considered in this work, where the 
most typical or the most atypical data can be easily 
identified inside the regions provided by the hybrid 
algorithm. 

For example, select a threshold α, 0<α<1, such 
that pixels in each region in one image can be 
divided in two sub-regions, each one containing 
typical or atypical pixels, where the typical pixels 
have the greatest typicality values. So, with a high 
value of α we can find the most typical pixels of a 
region, and with a low value we find the most 
atypical pixels. In this work, the threshold must be 
the best compromise to separate correctly the 
atypical pixels from the typical ones. 

The FCM algorithm is among the most popular 
partitional clustering algorithms. However, and due 
to the constraint on the sum of the membership 
values of a point to all the groups must be one, the 
membership of a point to a particular group 
depends on the membership to other groups. So, 
the membership value can be interpreted as a 
relative typicality, considering that in the Zadeh's 
formulation of fuzzy set theory [34], the 
membership value of a point in the universe of 
discourse to a fuzzy set does not depend on the 
membership values to other fuzzy sets [35]. On the 
other hand, the PCM algorithm provides typicality 
values that can be interpreted as an absolute 
typicality, because this value only depends on the 
similarity between a point and a prototype. This 
difference between relative and absolute typicality 
allows us to identify typical and atypical pixels in 
each one of the identified regions in the image. 

Next, we describe the proposed approach for 
the sub-segmentation of images using hybrid 
algorithms as the PFCM. 

Proposed approach for the sub-segmentation 
of images with the PFCM clustering algorithm is as 
follows. 
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1. Get the vector of features through the mapping 
of the original image. 

2. Assign a value to the parameters (a,b,m,) as 
well as to the number of clusters c, or number 
of regions Si, i = 1, …, c, to partition the space 
of features of the image. 

3. Run the PFCM algorithm to get: 

– The membership matrix U. 

– The typicality matrix T. 

The steps to run the algorithm has been 
described in Section 3.3. 

4. Label each pixel zk, k=1,..., N, according to the 
FR with maximum membership value in U=[µik] 
for every Si, i=1,..., c, as shown in the following 
equation: 

𝑆𝑖 =  𝑚𝑎𝑥𝑖[𝜇𝑖𝑘], 𝑖 = 1, … , 𝑐 , (17) 

such that each pixel zk can only belong to one 
region Si. 

5. Label each pixel zk, k=1,..., N, according to the 
PR with maximum typicality value in T=[tik] for 
every Si, i=1,..., c, as shown in the following 
equation:  

𝑆𝑖 =  𝑚𝑎𝑥𝑖[𝑡𝑖𝑘], 𝑖 = 1, … , 𝑐,       (18) (18) 

such that each pixel zk can only belong to one 
region Si. 

6. Get the maximum typicality value for each 
point from the previous Si matrix and put it in 
the Tmax matrix:  

𝑇𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖[𝑡𝑖𝑘], 𝑖 = 1, … , 𝑐. (19) 

7. Select a value for the threshold α. 

8. With α and the Tmax matrix, separate all the 
pixels in two sub-matrices (T1,T2), the first 
matrix: 

𝑇1 =  𝑇𝑚𝑎𝑥  ≥ 𝛼, (20) 

which contains the typical pixels, and second 
matrix: 

𝑇2 =  𝑇𝑚𝑎𝑥  < 𝛼 (21) 

containing the atypical pixels. 

9. From the labeled pixels zk of the T1 sub-matrix 
the following sub-regions can be generated: 

𝑇1 = 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
, … , 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑐

, 𝑖 = 1, … , 𝑐, (22) 

and from the T2 sub-matrix: 

𝑇2 = 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑐+1
, … , 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙2𝑐

,

𝑖 = 1, … , 𝑐, 
(23) 

such that each PR is defined by: 

𝑆𝑖 = 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑖
    and   𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙1+𝑐

 . (24) 

10. Select the sub-matrix T1 or T2 of interest for the 
corresponding analysis. 

Fig. 1 shows the process of the proposed 
approach for the image sub-segmentation applying 
the PFCM. 

 

Fig. 1. Process of image sub-segmentation by PFCM 
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5 Experimental Results 

The proposed approach has been applied in three 
different domain of applications. Here we use four 
images to show the results: a drop of milk, ROI 
images of digitized mammograms [36]  and a 
board of wood [37]; seeing these images is evident 
why the atypical pixels are of great interest. The 

parameters (a, b, m and  ) of the PFCM clustering 
algorithm have a great influence on the results. 
The values of a and b represent a relative 
importance of membership and typicality in the 
computation of prototypes. If the value of a is 
greater than the value of b, the prototypes 
calculated with eq. (16) are more influenced by the 
membership values. Conversely, if b is greater 

than a the typicality values have more influence, 
and hence the prototypes are expected to be less 
affected by noise. So, in order to reduce the effect 
of the outlier pixels and to find prototypes that 
depend more on the most representative pixels of 
each regions, a higher value of b than a must be 
used, as proposed by Pal et al. [9]. From here, the 
values used for these parameters are: a=1 and 
b=2. On the other hand, the parameters m=2 and 

=2 represent an absolute weight of membership 
values µik and typicality values tik, respectively. As 

µik and tik take values in [0, 1], values of m and  
greater than 1, as defined for the algorithm, reduce 
the effect of membership and typicality values. This 
suggest that low values must be taken for both 
parameters. In fact, it is characteristic to use m=2 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Comparison of segmentation results for a drop of milk image with 400 x 320 pixels. (a) Original image. 
Segmentation with the PFCM: (b) in two FR with the membership matrix U, (c) in four possibility sub-regions with the 
typicality matrix T, and (d) in four FR with the FCM 
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for the FCM algorithm and those derived from it. As 
we want to weight the typicality values in a similar 

way we have selected =2. 

5.1 Sub-Segmentation of the Drop of Milk 
Image 

The image of the drop of milk is very simple as 
there are only two easily identifiable regions: the 
drop of milk and the background. However, some 
pixels in both regions differ significantly from the 
rest of pixels, and they are considered as atypical. 
In this case, the great difference of gray level of 
some pixels results from the illumination of the 
scene and the shape of the object. These pixels 
can be identified applying the methodology for the 
sub-segmentation of images presented in Section 
4, as follows. 

Once the values of parameters of the PFCM 
clustering algorithm have been defined, it can be 
applied in order to segment and afterwards to sub-
segment the image in different regions or groups, 
and sub-regions or sub-groups, respectively. The 
estimated values of the prototypes for the drop of 
milk image are v1 = 187.6164 and v2 = 49.0242 with 
the following parameters of the PFCM, a=1, b=2, 

m=2 and  = 2. As can be seen in eq. (16), these 
ones depend on the membership and 
typicality values. 

When the values of the U and T matrices of the 
PFCM clustering algorithm are available, we can 
build the groups using the membership values of U 
= [µik] and the maximum membership for each 
column, as explained in step III in the previous 
section, that is, to build the regions according to the 
external dissimilarity. With these results, the 
typicality values of T=[tik], and a threshold α, we 
can identify the sub-regions as described in steps 
IV to X. In this case, the sub-regions are built 
according to the internal resemblance. 

Fig. 2 shows the original image to process and 
different results. Fig. 2(a) contains the original 
image of the drop of milk. Fig. 2(b) the identified FR 
with the membership values of U in two regions FR: 
(S1  and S2), and Fig. 2(d) the two PR (S1, S2) and 

four sub-regions 𝑆1: 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
∪

𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3 𝑎𝑛𝑑 𝑆2: 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2
∪ 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4

 when using 

the typicality values of T. In a more classical 
approach, Fig. 2(e) contains four FR (S1, S2, S3 and 

S4) resulting from the segmentation of the image 
using the FCM algorithm. 

The Fig. 2(c) shows two FR: (S1 and S2). The 
first one and in white color, S1, represents the drop 
of milk. The second FR and in black color, S2, 
represents the background. This result is very 
similar to that obtained with the FCM alone. It can 
be considered as a good segmentation between 
the drop of milk and the background, except for the 
region in the lower part of the drop of milk, due to 
the shadow generated by this one, because it has 
a gray intensity level very close to the value of the 
prototype (49.0242) for the background. 

Fig. 2(c) shows the sub-segmentation results of 
the image with the typicality values tik and a 
threshold α=0.2, according to the approach 
previously described. Each PR S1 and S2 is 
represented by two sub-regions. The first PR S1 is 

represented by colors; dark gray for the 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
 

and white color for the  𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3
, and they 

represent the drop of milk. The second PR S2 
correspond to the background, which is 
represented by black color  𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2

 and light gray  

𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4
. Comparing the pixels of an atypical sub-

region with the elements of its corresponding 
region, results in a set of elements that clearly 
differs from the most representative elements of 
the corresponding region. They are, in fact, the 
furthest elements from the prototype belonging to 
this region, and they could be present in a very few 
quantity. 

In order to get a clearer idea of the sub-
segmentation, the Figs.: 3(c), 3(d), 3(e) and 3(f) 
show the PR S1 and S2 respectively with the 
original pixels. The Fig. 3(c) and 3(d) contains a 
sub-segmentation of the PR S1 or the drop of milk. 
These pixels are the most typical for a threshold 
α=0.2, that is, they are the nearest pixels to the 

prototype v1. As can be seen, 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
 represents 

a homogeneous region, as this one does not 
contain atypical pixels. 

Therefore, in the image the atypical pixels have 
two gray levels very different, one near to the white 
color and the other near to a medium gray level or 
near to the mean value between the white and 
black colors, which represents the prototypes (v1 
and v2). This is the reason why the atypical pixels, 
those reflecting the light and those at the boundary, 
are observed in the Fig. 3(d). Reducing the value 
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of the threshold, in this case α<0.2, allows to 
identify the most atypical pixels of the PR S1 in the 
image. The corresponding pixels are those with 
gray level near to the white color, and the atypical 
pixels located at the boundary of the drop of milk 
are not detected this time.  

Figs. 3(e) and 3(f) are included to show the sub-
segmentation of PR S2. In the PR 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2

, shown 

in Fig. 3(e), corresponds to the group of typical 
pixels of the background. This image shows that 
some pixels that belong to the drop of milk have a 
gray level intensity very similar to background. The 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. Segmentation and sub-segmentation with the original pixels and a black background. (a) FR S1, (b) FR S2. (c) 

PR 𝑆1: 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
, (d) PR 𝑆1: 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3

, (e) PR 𝑆2: 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2
, (f) PR 𝑆2: 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4

. 
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atypical pixels 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4
  shown the Fig. 3(f), are 

those found in the edge of the drop of milk and the 
base thereof. The others are in the upper left 
corner of this image. These pixels have a small 
gray level intensity or very dark, that cannot be 
seen due to the similarity of gray level intensity of 
the pixels of the background.  

In Fig. 3(d) and Fig. 3(f), show the atypical 
pixels. These pixels are found at the end of the 
prototypes (v1 and v2). For example, in the sub-

region 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3
 (see Fig. 3(d)) the prototype is 

v1=187.6164, then the end toward the right are the 
pixels with grey level intensity very similar to the 
white color and the pixels on the other end, are the 
pixels that are the on the border between the 
regions S1 and S2. 

In the sub-region 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4
 (see Fig. 3(f)) the 

prototype is v1= 49.0242 then the ends are the 
pixels that have a grey level intensity close to 0. In 
other end are the pixels between the border of the 
regions S1 and S2. Take into account that, for this 
experiment α = 0.2. For a better idea of the effect 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 4. Value threshold effect α in the sub-segmentation process with PFCM, and segmentation with the FCM in several 

regions. (a) α = 0.2, (b) α = 0.15, (c) α = 0.1 and (d) α = 0.05. (e) FCM 2 regions, (f) FCM 4 regions, (g) FCM 6 regions 
and (h) FCM 8 regions 
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to threshold α, this value is modified to (0.2, 0.15, 
0.1 and 0.05, see Figures 4 (a, b, c, d)). It is noted 
that, with decreasing α, also decreases the number 
of atypical pixels. On the other hand, when the 
value of α is very small α = 0.05 the PR S2 do not 
have atypical pixels, only the PR S1 have atypical 

pixels 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3
 and only in an end, pixels close to 

255 (white color). 

As can be seen in the previous results, the sub-
segmentation method allows us to find the most 
representative pixels of each region (according the 
value of α selected). Nevertheless, in images 
where there exist a great variation in the values of 
the features, caused in this particular example by 
the reflection of the light and the shadow of the 
drop of milk, it is very difficult to segment totally the 
object. On the other hand, Fig. 2(d) shows the 
results of a classical approach for image 
segmentation corresponding, in this case, to four 
FR with the FCM. In order to detect the atypical 
pixels as a sole group, for example those of the S1 
region, the number of regions must be increased in 
a significantly way following a classical approach. 
In the Figs. 4 (e, f, g, h) it has increased the number 
of regions. The atypical pixels are beginning to see 
when the image has been segmented into 8 
regions. 

A comparison between Fig. 2(c) and Fig. 2(d) 
clearly shows the difficulty and the different results 
between both approaches, the sub-segmentation 
method and a classical method, in this case the 
latter done with the FCM clustering algorithm. With 
the classical approach more or less homogeneous 
regions are obtained from the number of regions in 
which the image is segmented, if required find 
more atypical pixels must increase the number of 
regions. For the sub-segmentation, it is necessary 
to run the algorithm once and use the T matrix and 
vary the value of α to find the atypical pixels. 

5.2 Sub-Segmentation of Digitized 
Mammograms 

Breast cancer is one of the main causes of dead of 
women around the world. Early detection of breast 
cancer is essential in reducing life loss. Clusters of 
Microcalcifications (MCs) are an important early 
sign of breast cancer. MCs appear as bright spots 
of calcium deposits. Individual microcalcification is 
sometimes difficult to detect because of the 

surrounding breast tissue, their variation in shape, 
orientation, brightness, and diameter size [38-39]. 
MCs are potential indicators of malignant types of 
breast cancer. Therefore, their detection is very 
important to prevent and treat this disease. 
However, it is still a hard task to detect all the MCs 
in mammograms, because of the poor contrast 
with the tissue that surrounds them.  

The approach proposed in Section 4 is now 
applied to the identification of MCs in two ROI 
images of digitized mammograms. These kinds of 
images have the characteristic that the changes in 
the gray intensity level in the regions of the 
microcalcifications can difficult this task. As the 
purpose of this work is to show the advantages of 
the sub-segmentation method, the ROI images 
were not pre-processed for the enhancement of 
features in order to identify the anomalies present 
in the images, as it is generally done by someone 
who tries to solve the problem of microcalcification 
identification. 

The two ROI images of digitized mammograms 
of Fig. 5(a) and Fig. 5(c) are only segmented in two 
PR, one of them, S1, for the healthy tissue and the 
other one, S2, for the tissue that differs significantly 
from the healthy tissue or tissue that contains MCs. 
The MCs appear in small clusters, with few pixels, 
with relatively high intensity and closed contours 
compared with their neighboring pixels. Although 
the gray intensity level of MCs can vary 
significantly between healthy and abnormal tissue, 
MCs have a few quantity of pixels and this makes 
difficult their identification. 

Fig. 5(b) and Fig. 5(d) contain the sub-
segmentation results, where we attempt to identify 
the brighter pixels or pixels corresponding to MCs, 
as these are the least representative of healthy 
tissue. Fig. 5(b) shows the results of the Fig. 5(a) 
with a threshold α=0.1 obtained experimentally. 
This value was selected after several tests, and it 
was considered the best value for this particular 
case. The sub-segmentation of Fig. 5(b) is given 
according to the following colors: the PR S1 =  

𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
 (in black color)  𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3

 (in light gray), 

and the PR S2= 𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2
 (in dark gray)  𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4

 

(in white color). 

The threshold α for the image of Fig. 5(d) is 
α=0.02. This value is much smaller than the 
threshold of image in Fig. 5(b), as there is a more 
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important contrast between healthy tissue and 
pixels with higher gray intensity levels. 

As contrast increases, it makes that the atypical 
pixels be further from the prototypes and the 
algorithm gives them a smaller typicality value. So, 
a smaller threshold α value is required. The 
converse is also true, that means, as the contrast 
decreases, the threshold α value must be 
increased. Therefore, the best value of this 

parameter is application dependent. Fig. 5(d) 
shows the results of the image sub-segmentation 
of the Fig. 5(c): the  PR S1 =  𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1

 (in black 

color)  𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3
 (this region does not present 

atypical pixels for the chosen value of the threshold 

α), and the PR S2 =  𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2
 (in dark gray)  

𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4
 (in white color) that contains the MCs or 

abnormalities in white color. 

 
(a)  

(b) 

 
(c) 

 
(d) 

Fig. 5. (a) ROI image of the mammogram A with 256 x 256 pixels, (b) four sub-groups of mammogram A using the 

typicality matrix T, (c) ROI image of the mammogram B with 256 x 256 pixels, and (d) four sub-groups of mammogram 
B using the typicality matrix T 

 

    

 

Fig. 6. Original ROIs images 

 

    

Fig. 7. Enhancement of microcalcifications by top-hat transform 

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1393–1415
doi: 10.13053/CyS-23-4-3310

Benjamin Ojeda Magaña, Joel Quintanilla Domínguez, Ruben Ruelas, Jose Miguel Barrón Adame, et al.1406

ISSN 2007-9737



 

In order to analyze the main differences 
between the sub-segmentation and the 
segmentation through a partitional clustering 
algorithms other experiment is presented.  

5.2.1 Image Selection 

A set of ten images were selected from several 
mammograms of the mini-MIAS database provided 

by the Mammographic Image Analysis 
Society  [36].  

The areas in which abnormalities such as MCs 
were located were taken as regions of interest 
(ROI). In this experiment the size of the ROI 

images are of 256  256 pixels with spatial 
resolution of   200 µm/pixel. Figure 6 shows some 
ROIs images used in this experiment. 

Segmentation in 2 clusters 

    
Segmentation in 3 clusters 

    
Segmentation in 4 clusters 

    
Segmentation in 5 clusters 

    
Final Segmentation in 2 classes 

    

Fig. 8. ROIs segmentation based on FCM from 2 to 5 clusters and the finals binary images. 
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5.2.2 Image Enhancement 

With the aim to improve the contrast between the 
MCs and background in the ROI image, a 
morphological contrast enhancement technique is 
used in this experiment. This morphological 
contrast enhancement is an image enhancement 
technique based on mathematical morphology 
operation known as top-hat transforms. This 
technique was used in previous works such as, 
[40-44], with satisfactory results in the 
MCs  detection.  

The morphological top-hat transform is used to 
enhance ROI images, with the aim of detecting 
objects that differ in brightness from the 
surrounding background; in this case, it was used 
to increase the contrast between the MCs and the 
background. The top-hat transform is defined by 
the following equation: 

𝐼𝑇 = 𝐼 − [(𝐼 ⊖ 𝑆𝐸) ⊕ 𝑆𝐸], (25) 

where, I is the input ROI image, IT is the 
transformed ROI image, SE is the structuring 

element, ⊖ represents morphological erosion 

operation,  ⊕ represents morphological dilation 

operation and  image subtraction operation. 
[(𝐼 ⊖ 𝑆𝐸) ⊕ 𝑆𝐸] is also known as the 
morphological opening operation.  

During image enhancement, the same SE at 

different sizes, 3  3, 5  5, 77, was applied to 
perform the top-hat transform. The SE used in this 
experiment was a flat disk-shaped. Figure 7 shows 
the ROI images processed by the top-hat 

transform with a SE of 7  7. 

5.2.3 Image Segmentation by Clustering 
Algorithms 

A data vector Z for each ROI is generated for 
each of the images obtained from the previous 
stage. Thus, a unidimensional vector xse is built by 
mapping the images to the pixels as follows: 

[{𝐼𝑇(𝑥, 𝑦)}1≤𝑥≤𝑅,1≤𝑦≤𝐶]
𝑠𝑒

→ 𝕩𝑠𝑒

= {𝑥𝑠𝑒
(𝑞)

}
𝑞=1,…,𝑅×𝐶

 , 
(26) 

where se is the size of the SE, x(q)
se is the gray-

level of the q-th pixel of IT when the image is 
decomposed row by row and R and C correspond 
to the size of the image. Then, the data vector Z 
can be written as follows: 

𝑍 =  [𝕩3×3  𝕩5×5 𝕩7×7]𝑇 . (27) 

For data vector Z, two proposed clustering 
techniques are then applied to obtain a label for 
each pattern belonging to each cluster of the 
partition of feature space, where only one cluster 
corresponds to MCs, which generally appear in a 
group of just a few patterns (pixels), and the 
remaining clusters correspond to normal (healthy) 
tissue. The initial conditions and results for each 
proposed clustering technique are 
presented below. 

5.2.4 MCs Segmentation by FCM 

The initial conditions for this approach are as 
follows: Clusters number: 2 to 5. Prototypes: 
initialized as random values. Weighting exponent 
m = 2. Distance measure: Euclidean 
distance function. 

Fig. 8 shows segmented ROI images with 
different cluster values obtained after applying the 
FCM (presented in the Subsection 3.1) to Z. 

5.2.5 MCs sub-Segmentation by PFCM 

In this experiment, the approach presented in 
Section 4 is applied. The initial conditions are as 
follows: Clusters number: 2. Prototypes initialized 
as random values. Distance measure:  

Euclidean distance function. Parameters of the 

PFCM: m = 2, a = 1, b = 2,  = 2. α = [0.03  0.02  
0.01] 

Fig. 9 shows segmented ROI images with 
different threshold values α obtained after applying 
the approach presented in Section 4 to the data 
vector Z. 
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5.3 Sub-Segmentation for Wood Surface 
Defect Detection 

Every person that uses wood, for construction 
or ornamental purposes, will be looking material of 
high quality or free of defects according to 
establish standards. As everybody knows, the 
price of a board of wood is directly related to its 

quality, and this one is characterized by the 
number of defects, their size and distribution.  

A defect is every irregularity that reduces the 
durability, the resistance, the aesthetic value, or 
the useful volume of the wood. 

In this application we focus on the detection of 
defects in the surface of the wood, such as knots, 
the most natural and common problem [45-47]. 

Original ROIs Images 

    
Sub-segmentation using T 

    
Sub-segmentation with α =0.3 

    
Sub-segmentation with α =0.2 

    
Sub-segmentation with α =0.1 

    

Fig. 9. ROIs sub-segmentation based on PFCM with 2 clusters and 3 different values of α 
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These defects are classified in seven categories, 
identified as: Dry defect (DE), Encased defect 
(EN), Sound defect (SO), Leaf defect (LE), Edge 
defect (ED), Horn defect (HO), and Defect 
(DE) [48]. In a manual inspection process, an 
inspector identifies the defects based on the 
characteristics of shape, size, structure, and color.  

In a common visual inspection, the 
classification is based on the geometrical 
characteristics of the knots, such as the size, but 
also in the size of the smallest square that encloses 
each knot, the diameter, the position in the wood, 
and the mean gray level [49]. An automatic 
inspection process of the wood surface follows the 
next 5 steps: (1) image acquisition, (2) image 
segmentation for detection of regions of interest 

where there are defects or knots on the surface of 
the wood, (3) features extraction, (4) selection of 
features, and finally (5) the classification [50]. As 
this paper is focused on the sub-segmentation of 
images, this is applied to the step 2, where a board 
of wood is divided in two regions, the clean wood 
and wood with defects. 

In this particular application, the objective of the 
sub-segmentation of the image of a board of wood 
is to identify defects (knots) in lumber boards in 
order to evaluate its quality. As can be seen in Fig. 
10(a), the appearance of sawn timber has huge 
natural variations, and shape of knots are very 
different from wood and they can be easily 
identified by a human inspector. However, for 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. (a) Original image of a board of wood with several knots and resolution of 523 x 2406 pixels, (b) segmentation 
of the image in two groups with the membership matrix U, (c) sub-segmentation of the image in four sub-groups with 
the typicality matrix T 
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automatic wood inspection systems these 
variations are a major source for complication. 

Fig. 10 (b) shows the results of the FR 
segmentation, where the features of the wood are 
divided in an acceptable way. The estimated 
values of the Table are v1=178.4531 and v2= 
205.1826, with the following parameters of the 

PFCM, a=1, b=2, m=2, =2. Fig. 10(c) shows the 
results of segmentation of the wood surface into 
two PR S1 and S2, the first region is represented in 
black color and the second one in white. As can be 
seen, the knots are within group S1. This is a 
consequence of the constraint on the sum of 
membership values µik of a given pixel zk that must 

be equal to one for all groups. Therefore, to find the 
knots with the membership values µik only, we 
need to increase the number of groups Si in a 
significant way, and this number is application 
dependent as the gray intensity level varies 
significantly from one board to another. 

Processing the image as proposed in the 
previous section provides a segmentation in two 
groups, which, at once, are divided in order to 
identify the typical and atypical pixels of each 
group. The first group S1 is formed by the sub-

groups   𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙1
, represented in black color, and  

𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3
, represented in light gray, and the second 

group S2 is divided in the sub-group  𝑆𝑡𝑦𝑝𝑖𝑐𝑎𝑙2
, 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 11. Possible identified defects through the sub-segmentation of an image of a board of wood. Regions of interest 

of 50  50 pixels 

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1393–1415
doi: 10.13053/CyS-23-4-3310

Images Sub-segmentation by Fuzzy and Possibilistic Clustering Algorithm 1411

ISSN 2007-9737



 

represented in dark gray, and the sub-group 
𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4

, represented in white color. In this 

particular application, the atypical pixels of both 
groups, that is 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙3

 and 𝑆𝑎𝑡𝑦𝑝𝑖𝑐𝑎𝑙4
, are very 

similar and they coincide with the knots. From 
experimental results, the selected value for the 
threshold α was 0.02. This is a very low value due 
to marked difference between the gray intensity 
level of knots and the rest of the wood, and it allows 
a very good identification of these defects. Finally, 
Fig. 11 shows the possible knots identified by the 
sub-segmentation approach. 

6 Conclusions 

In this work, we have proposed to take profit of the 
membership and typicality values for the sub-
segmentation of images, as an easy way to identify 
atypical pixels. The main problem for this is that 
atypical pixels are present in a few quantity. 
However, they could be related to quality, so they 
are of great interest in a wide field of applications, 
as in the last two cases considered in 
this document. 

Three cases have been considered here: a 
drop of milk, ROI images extracted from 
mammograms, and a board of wood. In the first 
case, it was shown the interest of the proposed 
approach relative to a classical approach of image 
segmentation. In the second case, the 
mammograms, it was shown an easy way to 
identify pixels, even in few quantities, that evolves 
and each time becomes more different from pixels 
with normal features. This can be very helpful for a 
system of aid to medical diagnosis and, as pixels 
evolve in features and quantity, the earlier the 
detection the better. In the third and last case, the 
board of wood, it was shown how defects, which 
represent very few pixels compared to the size of 
the object, are easily identified.  

These three cases show the practical 
application and interest of the proposed approach 
for the sub-segmentation of images. This could 
also be helpful for quality evaluations in a great 
variety of industrial processes. 

The value of the threshold α to divide a group in 
typical and atypical pixels is application dependent, 
and it was identified experimentally so far. 
However, a high or low value depends on the 

contrast between typical and atypical pixels. That 
is, for high contrast atypical pixels is well 
differentiated from typical pixels and they have a 
small typicality value, so the value of the threshold 
is low. On the other hand, for low contrast between 
typical and atypical pixels, the value of the 
threshold is usually high. 

Actually, we only have used the level of gray as 
feature for the sub-segmentation of images and we 
got good results. In forthcoming works, we pretend 
to include spatial information in order to take into 
account local neighbors and reduce, in this way, 
the problem of noise. This was the case of the 
board of wood where knots where identified with 
some noise, as shown in the last figure. Besides, 
we are attempting to propose a criterion for the 
automatic estimation of the threshold α. 
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