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Abstract. Clustering methods are used for identifying
groups of similar objects considered as homogenous
set. Unfortunately, analytic performance evaluation of
clustering methods is a difficult task because of their
ad-hoc nature. In this paper, we propose a new test case
generator of artificial data for 2 dimensional Gaussian
mixtures. The proposed generator has two interesting
advantages: the first one is its ability to produce
simulated mixture for any number of components, while
the second one resides in the fact that it formally
quantifies the overlap rate which allows us to add
some complexity to the data. Clustering algorithms and
validity indices behavior is also analyzed by changing the
overlap rate between clusters.
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1 Introduction

Clustering methods are defined as unsupervised
learning processes used to divide a set of
observations into clusters [36, 38, 31, 28]. Clusters
are groups of similar observations which are
sufficiently far from each other. Several clustering
methods are defined in the literature and all share
a common nature - the difficulty in their analytical
evaluation [39, 3, 9, 23, 14].

The discrete frequencies of observations and
the measures of similarities between entities
and clusters produce many local minima which
disturb the process of clustering to converge to
the correct results. Therefore, one avenue is
to evaluate clustering algorithms using artificially
constructed data. Many authors have categorized
unsupervised classification based on criteria such
as similarity or dissimilarity measures, the nature of
data, and the function to be optimized [18]. Based
on evaluation, the two principal categories are
hierarchical methods and mobile centers methods.

The ultra-metric inequality is one of the most
often used methods to generate artificial data
to evaluate hierarchical algorithms [10, 22]. A
large number of popular methods are based on
employing the mixture model and particularly the
Gaussian mixtures [15, 2, 25, 26]. The mixture
models must satisfy some properties that conform
with the clustering methods [24]. These patterns
are summarized in two criteria: the internal
cohesion and the external isolation.

Internal cohesion ensures observations within
the same cluster have similar properties. Ex-
ternal isolation ensures observation from different
clusters are very dissimilar. Several works in
the literature considered the Gaussian distribution
as design block for clustering algorithms due its
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well-known properties [15, 2]. On the other
hand, several approaches have been proposed to
generate artificial data. Salem and Nandy [30]
proposed different structures for producing artificial
observations in 2D spaces. The main rule to
preserve the internal cohesion of the components
mixture is to introduce empty space between the
clusters despite the fact that empty space is not a
sufficient condition to guarantee external isolation.
In the case where the mixture components have
close enough centers, no clustering method has
the ability to identify the components [30]. In [34,
35], well separated data is generated for 2D and
3D cases.

The two criteria characterizing the cluster
structure are strongly respected. Milligan [23]
developed an algorithm for generating artificial
data but was only able to avoid the total overlap
for the first dimension. The claim is that
avoiding overlap for the first dimension allows
by transitivity to avoid total overlap for the rest
of the dimensions [8, 29]. Milligan’s algorithm
is verified by visual inspection. Kuiper and
Fisher [20] and Bayne et al. [5] directly manipulated
a variable which measured certain parameters
as separability for a simple covariance matrix of
normal clusters. Blashfield [6] and Edelbrock [13]
used unconstrained multivariate Gaussian mixture
with fairly complex covariance structures.

This allows to obtain cluster structure and the
clusters are well separated [14]. Other authors
have inserted noise in well separated data to
add some complexity to the obtained simulated
data [30, 34, 35]. Baudry et al. [4] proposed
a verification method to estimate the Gaussian
mixture model. This work clearly distinguishes
cluster structures of the mixture where the
components are well separated from the Gaussian
mixtures in case of total overlap. In [17, 37], the
authors proposed a new artificial data generator
that embeds the notion of the rate of overlap for
uncorrelated 2D artificial Gaussian data.

In this paper, we propose a new automatic
method for generating artificial data by controlling
mixture components overlap. This work tackles
two main problems: the design of an artificial
data generator for correlated 2D data, and the
study of the behavior of clustering algorithms and

their respective validity indices by varying the
rate of overlap between the mixture components.
We are interested in correlated data because of
the growing number of applications in computer
vision and image processing, as clustering is
used as the core solution to solve problems
such as segmentation and image matching. In
these applications, correlated data that revealed
useful when combined and could be used in
the clustering process are pixel gray-level, local
window gray-level, and local variance.

In this paper, we will show how the overlap
rate is quantified and its use as the basis block
in the artificial data generator. The rest of
this paper is organized as follows: section 2
briefly presents the Gaussian mixture; section 3
deals with components separation; section 4
presents the quantification of component overlap;
in section 5, the control of overlap is developed; the
generation algorithm and the experimental results
are shown in sections 6 and 7 respectively. Finally,
the conclusion is drawn with some perspectives.

2 Bivariate Correlated Gaussian
Mixture Model

Mixture models are widely used in many applica-
tions because many real and natural phenomena
as well as sets of data in many disciplines are
based on such distributions [14, 1, 3, 25, 30]. A
mixture of M Gaussian 2D components is given by:

P (x, y) =

M∑
j=1

κjGj(x, y, θj),

where
∑M
j=1 κj = 1 and θi = (µxj ,µyj ,σxj ,σyj , ρj)

denotes the parameters of the jth distribution Gj .
Gj is given by:

Gj(x, y) = A exp

(
− 1

2(1− ρ2
j )

[
t21
σ2
xj

+
t22
σ2
yj

− 2ρjt1t2
σxjσyj

])
,

where A = 1

2πσxjσyj

√
1−ρ2

j

, is real and strictly

positive. t1 = (x − µxj) and t2 = (y − µyj).
µxj ,µyj are the component center coordinates.
σxj and σyj are the standard deviations of the
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first and second dimension respectively. ρj is the
correlation coefficient between the two dimensions
X and Y .

3 Well Separated Components

Initially, the clustering methods and the validity
indices were evaluated by using well separated
data before using any other simulated data.
Most works are not based on a formal way to
generate artificial data and the main technique to
construct isolated mixture components is visual
inspection [35, 34, 11, 4].

The objective is to propose a definition that helps
qualify and quantify well separated components
by involving all the mixture parameters. Mixture
components are considered well separated if they
exhibit a minimum overlap between clusters [25,
26]; we define:{

xint = µ1 + 4σ1,
xint = µ2 − 4σ2,

(1)

where xint is not really the intersection point, but
for a value sufficiently far from the centers of the
two components, xint is approximated to be the
intersection point. To be more precise in our
description, xint is the unique intersection point
between C1 and C2 where C1 (respectively C2 )
is the projection of the intersection point between
component Γ1 (respectively Γ2) and the line ∆1 :
y = κ1√

2πσ1
e−8 (∆2 : y = κ2√

2πσ2
e−8). But, for

xint value sufficiently far from the center of the
two components, xint is approximated to take the
form of the equation 1. In a Gaussian cluster,
99.7% of the observations belong to the interval
]µ − 3σ,µ + 3σ[, which indicates that the above
minimum definition implies the presence of empty
spaces between data.

In [17], we presented in 2D the minimum overlap
between two components Γ1 and Γ2 so that the
intersection point after the projection satisfies: Γ1(xint, yint) = κ1

2πσ1xσ1y

√
1−ρ21

e−8,

Γ2(xint, yint) = κ2

2πσ2xσ2y

√
1−ρ22

e−8.
(2)

As in the 1D case, more than 99.7% of
the observations are located inside the ellipse

Fig. 1. An example illustrates the minimal overlap
between two components of a mixture. Γ1(0.4, 60, 40,
23, 12, 0.3); Γ2(0.6, 73.96, 167.98, 10, 20, -0.4)

defined by the intersection of the plane defined
by z1 = κ1

2πσ1xσ1y

√
1−ρ21

e−8 (respectively z2 =

κ2

2πσ2xσ2y

√
1−ρ22

e−8) and Γ1 (respectively Γ2), where

the condition of minimum overlap for the 2D data
guarantees the presence of empty space between
the data.

The probability density function of the generated
data (pdf ) is constrained to have the same
configuration for the well separated components
so that:

Definition 1: Two adjacent Gaussian
components Γ1(κ1, µx1, µy1, σx1, σy1, ρ1) and
Γ2(κ2, µx2, µy2, σx2, σy2, ρ2) are well separated
if the intersection point between C1 and C2 is
a unique point, where C1 is the projection of
the intersection points between Γ1 and the plane
T1 : z = κ1

2πσx1σy1

√
1−ρ21

e−8, and C2 is the projection

of the intersection points between Γ2 and the plane
T2 : z = κ2

2πσx2σy2

√
1−ρ22

e−8.

Formally, Γ1 and Γ2 are well separated if:

 Γ1(xint, yint) = κ1

2πσx1σy1

√
1−ρ21

e−8,

Γ2(xint, yint) = κ2

2πσx2σy2

√
1−ρ22

e−8,
(3)

where (xint, yint) is the coordinate of the highest
intersection point from among the infinity of
intersection points between the two components.
Figure 1 shows a mixture of two well sepa-
rated components.
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Fig. 2. Overlap Between Three Components of the
Mixture in the Three Cases. (a): Total overlap between
Γ1(0.3, 60, 40, 23, 12, 0.3), Γ2(0.3, 72, 64, 23, 12,
0.2) and Γ3 (0.4, 110, 55, 15, 15, 0.5); (b): Maximum
overlap between Γ1(0.3, 60, 40, 23, 12, 0.3), Γ2(0.3,
72.69, 64.15, 23, 12, 0.2) and Γ3 (0.4, 110.15, 58.13,
15, 15, 0.5); (c): Partial overlap between Γ1(0.3, 60, 40,
23, 12, 0.3), Γ2(0.3, 74.59, 69.27, 23, 12, 0.2) and Γ3

(0.4, 117.58, 63.63, 15, 15, 0.5)

3.1 Components Overlap

During the generation of a large set of data,
it is important to ensure that the generated
mixture components are not in a case of total
overlap. Components in a case of total overlap
violate the two criteria of internal cohesion and
external isolation.

To better explain the meaning of total overlap, let
us examine the example of figure 2. In figure 2
(a), the mixture is composed of three components;
however, only two are visible; the total overlap can
only be detected by visual inspection. A case of
maximum overlap is shown in figure 2 (b). We can
still distinguish that there are three components. In
figure 2 (c), there is a partial overlap between the
three components of the mixture. It is clear that the
mixture is composed of three components:

It is meaningless to evaluate clustering algo-
rithms on total overlapped structures.

Fig. 3. Generalization and illustration of the condition (3)
for two mixture equivalent components. (a) Total overlap:
Γ1 (0.5, 60, 40, 23, 12, 0.3) and Γ2 (0.5, 72, 62, 23, 12,
0.3); (b) Maximum overlap: Γ1 (0.5, 60, 40, 23, 12, 0.3)
and Γ2 (0.5, 74.86, 64, 23, 12, 0.3); (c) Partial overlap:
Γ1 (0.5, 60, 40, 23, 12, 0.3) and Γ2 (0.5, 78, 66, 23, 12,
0.3)

Two components in a case of total overlap
indicate that these two components form a
unique component having different distribution
parameters, hence it important to avoid this case.

3.2 Overlap Between Two Equivalent Bivariate
Gaussian Components

In order to control components overlap, a formal
quantification is needed.

In a bivariate space, let us consider two
components Γ1(µx1, µy1, σx, σy, ρ1) and Γ2(µx2,
µy2, σx, σy, ρ2), where (µx1,µy1) and (µx2,µy2)
represent the centers of the first and the second
components. σx and σy represent the standard
deviations along each axis; ρ1 and ρ2 are the
correlation coefficients and satisfy the equality
|ρ1| = |ρ2|.

For two equivalent components, we propose the
following condition for the maximum overlap:
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Γ1(xint, yint) = Γ2(., .) =
0.5

2πσxσy
√

1− ρ2
e−1/2,

(4)

where (xint, yint) represents the coordinate of the
highest intersection point that has the highest
value. Figure 3 illustrates the three situations
related to our condition. In figure 3 (a), the value at
the intersection point is higher than the value of the
condition given in equation (4), which is indicative
of a case of total overlap; it is impossible to visually
distinguish between the two mixture components.
In figure 3 (b), the intersection point obeys the
condition (4). We consider this situation as the
case of maximum overlap or a limit case between
the total and the partial overlap. In figure 3 (c), it is
clear the mixture consists of two components. The
two components are in partial overlap.

The value at the intersection point is lower than
the value given in condition (4). This results
form a relationship between the visual inspection
and the formal quantification. We will propose
in the next section a definition characterizing the
overlap cases. In the rest of this paper, we
will use the notation Γi(κi,µxi,µyi,σxi,σyi, ρi) to
describe the parameters of the ith component
Γi where κi denotes the mixture coefficient,
(µxi,µyi) are the coordinates of the components’
centers, σxi and σyi are the standard deviations,
ρi is the coefficient of correlation between
the two component dimensions and Si =

κi

2πσxiσyi

√
1−ρ2

i

e−1/2.

4 Formal Quantification of the Overlap

We propose the definition of the maximum overlap.
Later we formalize the degree of overlap by the
notion of rate. This definition is similar to that
proposed in [17] except that in our case, the
definitions are more general in order to support
correlated and uncorrelated data. The overlap
between components must be controlled to avoid
the case of total overlap. We consider the overlap
only between the two adjacent components. We
will exploit the results of the previous section to
propose the definitions.

Fig. 4. Example illustrating the maximum overlap
between two bivariate Gaussian mixture components,
Γ1(0.4, 60, 40, 23, 12, 0.3) and Γ2(0.6, 88.27, 69.27,
23, 12, 0.6)

4.1 Maximum Overlap

The maximum overlap is considered as a limit
between the undesirable case of total overlap and
the case of partial overlap. The condition of
equation (4) is extended to support non-equivalent
components and we set the following definition.

Definition 2: Two adjacent Gaussian bivariate
components Γ1 and Γ2 are in case of maximum
overlap if the value at the highest intersection point
Γ1(xint , yint) = min(S1,S2). Figure 4 illustrates
an example of maximum overlap between two
Gaussian components.

4.2 Rate of Overlap

In the literature, the notion of overlap is not
quantified in a way that an artificial data can
be constructed. On the other hand, there
are many indices proposed to measure the
shared observations or resemblance between
clusters. For the most popular model, the
Gaussian model, an interesting description of the
fretquently used indices for computing the overlap
rate between clusters is presented in [12, 32].
The Mahalanobis distance, DMah = ((µ1 −
µ2)TΣ−1(µ1 − µ2))1/2, assumes that the two
clusters have the same covariance matrix and the
same mixture coefficients [16]. The Bhattacharyya
distance is an extension of the Mahalanobis
distance, DBhatt = 1

8 (µ1 − µ2)T [Σ1+Σ2

2 ]−1(µ1 −
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µ2) + 1
2 ln |Σ1+Σ2|√

|Σ1||Σ2|
[7]. It is difficult to use such

an index because of its computing complexity,
so it replaced by its upper bound BBhatt =√
α1α2e

−DBhatt in practical applications [16]. Other
measures use the PDF to extract a measure
for the overlap and similarity between clusters,
for example the Kullback-Leibler distance Dkl =

p1(x) ln(p1(x)
p2(x)dx) [21]. The major inconvenience

of this kind of index is that it is not symmetric.
The proximity measures presented are relative and
assume some conditions on the data which are in
most cases simply not verified (like the equality of
the components’ coefficients or matrix covariance).

We propose the definition of overlap rate λ by
modeling the partial overlap. This concept is based
on the following points:

— The rate of overlap takes values between 0
and 1, so that the value of 1 implies the
presence of maximum overlap and the value
of 0 implies that the two components are
”well separated”.

— The overlap rate must include all the
parameters of the two components: the
mixture coefficients, the centers, the standard
deviations and the coefficients of correlation.

Definition 3: The rate of overlap between two
adjacent bivariate Gaussian components is defined
as the ratio of the value at the highest intersection
point to the value at the highest intersection point
in the case of maximum overlap. Formally, the rate
of overlap can be written as:

λ =
min(S1,S2)

min(S1max,S2max)
.

These three definitions are very interesting
because they employ visual inspection as a basis
for the generation and verification of artificial
data. Additionally, the rate of overlap definition
involves symmetrically all the parameters of the
two adjacent Gaussian components. We propose
an algorithm for generating artificial data in
order to avoid the case of total overlap and
control the overlap rate λ. The parameters
of the initial component are randomly generated
and the parameters of the second component

Fig. 5. Partial overlap between two bivariate Gaussian
components Γ1 : (0.4, 60, 40, 23, 12, 0.3) and Γ2 : (0.6,
63.67, 98.13, 10, 20, -0.4) with λ = 0.5.

are computed in accordance with one of the
three definitions depending on which case is to
be reproduced.

5 Controlling Mixture Overlap

As mentioned above, we randomly generate
the parameters of the first component - the
mixture coefficients, the standard deviations and
the coefficients of correlation with the other
components. We also introduce the angles of
intersection between the components randomly.
The angles of intersection are used to measure the
deviation of the intersection points from the x axis.
After that, we fix the centers of the components,
one at a time, according to the rate of overlap.

5.1 Fixing Partial Overlap Rate

For two components Γ1(κ1,µx1,µy1,σx1,σy1, ρ1)
and Γ2(κ2,µx2,µy2,σx2, σy2, ρ2), we know all
the parameters of Γ1 and κ2,σx2,σy2, ρ2 and we
compute the center of the second component
(µx2,µy2) according to the rate of overlap λ. We
apply the definition of the overlap rate on the two
components. There are two cases: S1 ≥ S2 and
S1 < S2.

Case 1: For Γ1, after applying the overlap rate
definition, we find:

Γ1(xint, yint) = S2,
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which means that:

Γ1(xint, yint) =

A1exp
(
− 1

2(1−ρ21)

[
t211
σ2
x1

+
t212
σ2
y1
− 2ρ1t11t12

σx1σy1

])
= A2exp(−1/2),

where: Ai = κi

2πσxiσyi

√
1−p21

and i ∈ {1, 2}.
t11 = (xint − µx1) and t12 = (yint − µy1).

We have:

a1(xint − µx1)2 + b1(yint − µy1)2+

c1(xint − µx1)(yint − µy1)− 1 = 0, (5)

where:

e1 = 1− 2 ln

(
λκ2σx1σy1

√
1−ρ21

κ1σx2σy2

√
1−ρ22

)
,

a1 = 1
(1−ρ21)σ2

x1e1
,

b1 = 1
(1−ρ21)σ2

y1e1
,

c1 = − 2ρ1
σx1σy1(1−ρ21)e1

.

(6)

From the inequality S1 ≥ S2, we conclude that
κ1

σx1σy1
√

1−ρ1
≥ κ2

σx2σy2
√

1−ρ2
. This means that 0 <

κ2σx1σy1

√
1−ρ21

κ1σx2σy2

√
1−ρ22

≥ 1. With 0 < λ ≥ 1, it is clear

that e1 > 0. So, we deduce that a1 and b1 are also
strictly positive.

For the second component, by applying the
same reasoning, we find:

a2(xint − µx2)2 + b2(yint − µy2)2+

c2(xint − µx2)(yint − µy2)− 1 = 0, (7)

where: 
e2 = 1− 2 ln(λ),
a2 = 1

(1−ρ22)σ2
x2e2

,

b2 = 1
(1−ρ22)σ2

y2e2
,

c2 = − 2ρ2
σx2σy2(1−ρ22)e2

.

(8)

e2, a2, b2 are also real and strictly positive.

Case 2: In this case, we find the same
equations (5,7), but with these parameters for the
first component:

e1 = 1− 2 ln(λ),
a1 = 1

(1−ρ21)σ2
x1e1

,

b1 = 1
(1−ρ21)σ2

y1e1
,

c1 = − 2ρ1
σx1σy1(1−ρ21)e1

.

(9)

and these parameters for the second component:

e2 = 1− 2 ln

(
λκ1σx2σy2

√
1−ρ22

κ2σx1σy1

√
1−ρ21

)
,

a2 = 1
(1−ρ22)σ2

x2e2
,

b2 = 1
(1−ρ22)σ2

y2e2
,

c2 = − 2ρ2
σx2σy2(1−ρ22)e2

.

(10)

In this case, a1, b1, e1, a2, b2 and e2 are all real
and strictly positive.

In the plane defined by the equation (T ) :
z = min(S1,S2), the two equations 5 and 7
are characteristic equations of two ellipses with
centers respectively at (µx1,µx2) and (µx2,µx1).
This means that fixing the center of the second
component fixes the center of the second ellipse.
First, we compute the value of the intersection
point after we compute the center of the second
component. We proceed to some transformations
in the referential (R), we will translate the
referential after we rotate it so that the major axis
of the ellipse will be parallel to the X axis of the
new referential.

We proceed to translate the referential (R) by the
vector ~m(µx1,µy1). Equation (5) becomes:

a1x
2
int + b1y

2
int + c1xintyint − 1 = 0. (11)

We obtain an ellipse which center is the center
of referential. After translating the referential, we
proceed to the rotation in which the major axis of
the ellipse will be parallel to the X axis - let us
call this new referential R1. Figure 6 illustrates
the referential and the angles used for the rotation.
We consider the rotation angle φ1. Rotation in a
bivariate space is given by:{

x′ = x cos(φ1)− y sin(φ1),
y′ = x sin(φ1) + y cos(φ1),

(12)
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Fig. 6. Illustration of the ellipses’ intersection, the
different references and the angles used for the rotation

where x′, y′ are the coordinates in the new
referential. To have a referential in which the major
axis of the ellipse is parallel to the x axis, the
characteristic equation of the ellipse must have the
following form in the new referential:

a′1x
′ + b′1y

′ − 1 = 0, (13)

where a′1 and b′1 are real and strictly positive
because the rotation function is isometric: it
preserves the distance which means that the
ellipse stays an ellipse after rotation.

From equations 11, 12, and 13 and after some
transformations, we have:

φ1 = 0.5 arctan( c1
b1−c1 ),

b′1 = b1 cos2(φ1)−a1 sin2(φ1)
cos(2φ1) ,

a′1 = a1 cos2(φ1)−b1 sin2(φ1)
cos(2φ1) ,

(14)

where the angle θ, chosen by the user, represents
the deviation of the intersection point Pint from the
X axis. The intersection angle θint is used for
two reasons. The first one is to fix one solution
for computing the center of the second component
as there are an infinity of solutions in which the
intersection point satisfies the condition imposed
by the overlap rate; the second reason is to avoid
the ternary overlap between three components.
The intersection angle in the new referential (R1),
after the rotation, is given by:

 θint = φ1 + θ,
if θint ≥ π/2 then θint = 4π/10,
if θint ≤ −π/2 then θint = −4π/10.

(15)

To avoid the ternary overlap, Pint is treated in
the interval ] − π/2,π/2[. For this reason, we add
the two conditions cited in the equation (15) and
we choose the interval [−4π/10, 4π/10] as a limit.
In [17], there are no conditions on the intersection
point interval because, for uncorrelated data, the
mixture components have by definition their axes
parallel to the referential axis and there is no
need for rotation; the intersection angle θint is
always within the interval ] − π/2,π/2[. From
the parametrical equation of the ellipse, Pint
coordinates x1 and y1 in the referential (R1) are
given by:


t = arctan(

√
b′1
a′1

tan(θint)),

x1 = cos(t)√
a′1

,

y1 = sin(t)√
b′1

.

(16)

In order to compute the second component’s
center, we need the value of the obliqueness at
the intersection point. The obliqueness tangent is
the tangent of the angle between the line tangent
at the intersection point and the X axis. We have
three cases; case 1: θint ∈]0,π/2[; case 2: θint ∈
] − π/2, 0[ and case 3: θint = 0. For the first case,
the function representing this ellipse is given by:

f(x) =

√
1− a′1x′2

b′1
.

The value of the tangent obliqueness δ1 in
Pint is:

δ1 = − a′1x1

b1
√

1− a′1x2
1

. (17)

For the second case, we find that the function
presenting this part of ellipse is:

f(x) = −

√
1− a′1x

2

b′1
,
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and the obliqueness of the line tangent on Pint is:

δ1 =
a′1x1

b′1
√

1− a′1x2
1

. (18)

For the third case, where θ = 0, the value of
the tangent obliqueness δ = ∞. The direction
vector of the tangent is parallel to the Y axis. In
this situation, there is no need to compute the
obliqueness tangent.
Pint(x0, y0) coordinates and the obliqueness of

the tangent δ0 in (R) are computed as:


x0 = x1 cos(−φ1)− y1 sin(−φ1) + µx1,
y0 = x1 sin(−φ1) + y1 cos(−φ1) + µy1,

δ0 = sin(−φ1)+δ1 cos(−φ1)
cos(−φ1)−δ1 sin(−φ1) .

(19)

In (R1), the direction vector of line tangent is
~v(1, δ1). We apply the rotation function to ~v
to obtain:{

vx = cos(−φ1)− δ1 sin(−φ1),
vy = sin(−φ1) + δ1 cos(−φ1),

where vx and vy are the coordinates of the direction
vector after the rotation. The obliqueness is δ0 =
vy
vx

.
We proceed to compute the intersection point

Pint and the tangent. After some transformation to
the tangent line at the intersection point, we extract
the coordinate of Pint in a new referential (R2). The
new referential (R2) has as origin the center of the
second ellipse, and its axes are parallel to the axes
of this ellipse. Next, the second mixture component
center (µx2,µy2) is derived in the referential (R).

The treatment of the second ellipse is identical to
that of the first ellipse (result of the projection of the
component onto the xy plane). The referential (R)
is translated by the translation vector ~v(µx2,µy2).
We compute the angle φ2 so that the resultant
referential (R2) has an axis X parallel to the
major axis of the second ellipse. After these
transformations, we have:

φ2 = 0.5 arctan( c2
b2−c2 ),

b′2 = b2 cos2(φ2)−a2 sin2(φ2)
cos(2φ2) ,

a′2 = a2 cos2(φ2)−b2 sin2(φ2)
cos(2φ2) ,

(20)

where the strictly positive real numbers b′2 and a′2
verify that the resultant characteristic equation of
the second ellipse after the rotation is:

b′2y
′2 + a′2x

′2 = 1.

The value of the line obliqueness δ2 in (R2) is
given by:

δ2 =

{
− cos(φ2)

sin(φ2) , if (θint = 0),
sin(φ2)+δ0 cos(φ2)
cos(φ2)−δ0 sin(φ2) , otherwise

(21)

For the special case where θint = 0, the
obliqueness tangent δ0 = ∞ (the direction vector
is parallel to the referential Y axis). It is easy to
compute δ2 by rotating the direction vector ~V (1, 0).
The intersection point is finally given by: (x2, y2)
in (R2): 

x2 = −
√

δ22b

δ22b2a2+a22
,

y2 =
√

1−a2x2
2

b2
if δ2 < 0,

y2 = −
√

1−a2x2
2

b2
if δ2 > 0.

(22)

x2 can take positive values but in order to ensure
that there is no total overlap between adjacent
components, we choose the negative values.

We compute the coordinates x2 and y2 in (R)
on function of µx2 and µy2 by applying the inverse
rotation with −φ2 and by translating with ~l(µx2,µy2)
afterwards. Finally, µx2 and µy2 are given by:

µx2 = x2 cos(−φ2)− y2 sin(−φ2) + x0,
µy2 = x2 sin(−φ2) + y2 cos(−φ2) + y0.

(23)

It is possible to substitute λ = 1 in the
previous development to get the maximum overlap,
which is a particular case of the partial overlap.
Figure 7 shows five mixture components in case
of maximum overlap.

By applying the definition of well separated
components to the two components Γ1 and Γ2,
we have:

a1(xint − µx1)2 + b1(yint − µy1)2+

c1(xint − µx1)(yint − µy1)− 1 = 0,
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Fig. 7. Maximum overlap between five components of
the mixture

where: 
e1 = 16,
a1 = 1

(1−ρ21)σ2
x1e1

,

b1 = 1
(1−ρ21)σ2

y1e1
,

c1 = − 2ρ1
σx1σy1(1−ρ21)e1

.

(24)

For the second component, we find that:

a2(xint − µx2)2 + b2(yint − µy2)2+

c2(xint − µx2)(yint − µy2)− 1 = 0, (25)

where: 
e2 = 1− 0.5 ln(λ),
a2 = 1

(1−ρ22)σ2
x2e2

,

b2 = 1
(1−ρ22)σ2

y2e2
,

c2 = − 2ρ2
σx2σy2(1−ρ22)e2

.

(26)

The two equations 24 and 26 are characteristic
equations of two ellipses in the plane (T ) : z = 0.
We follow the same equations to find the coordi-
nates of the second component center (µx2,µy2)
that satisfies components well separatedness.

6 Generation Algorithm for Gaussian
Bivariate Artificial Correlated Data

In this section, the algorithm of generation of
the artificial data is summarized. The general
algorithm starts by introducing random values to
the parameters of the first component.

We also introduce the mixture coefficients,
the standard deviations of the components, the
coefficient of correlation and the deviation angles

Table 1. Generator initialization to obtain mixture of four
components according to the variation of the overlap rate

mixt coef σxi σyi ρi angle
comp 1 0.25 23 12 0.3 1.016
comp 2 0.25 25 20 0.2 0
comp 3 0.35 15 15 0.4 -1.016
comp 4 0.15 15 20 -0.2 —

Table 2. The centers obtained after the generation of
bivariate artificial data

λ 0 0.5 075 1
comp. 1 µx1 60 60 60 60

µy1 40 40 40 40
comp. 2 µx2 111.34 82.50 79.25 76.53

µy2 167.97 93.74 85.23 77.95
comp. 3 µx3 241.93 143.40 133.05 125.63

µy3 159.82 87.97 79.47 71.80
comp. 4 µx4 327.64 186.94 172.74 163.47

µy4 129.27 73.46 66.5 59.89

of the other components. The components’ centers
are derived afterwards.

In order to avoid the overlap between three
components, we suggest to introduce the deviation
angles θ in the interval ]− 1π/3, 1π/3[. We suggest
also an interval of generation ]1,σmax[ for the
standard deviations.

Figures 8 and 9 show a mixture of four
components for each rate of overlap. If we
exclude the centers of the components, the
mixture components have the same parameters.
Table 1 shows the generator initializations. The
columns represent the mixture coefficients κi, the
first dimension standard deviation, the second
dimension standard deviation, the correlation
coefficient and the intersection angle θint. θint in
the table represents the angle between the current
component and the next one. These parameters
are obtained by varying the rate of overlap to take
the values of 0, 0.5, 0.75 and 1.

We choose to give the same first component
center µ1 = (60, 40) for each of the experiments.

Table 2 illustrates the centers computed by
the generator according to the different overlap
rate values. Figures 8 and 9 show both the
probability density function pdf and the density
scatter plots. We can clearly observe that
the scatter approaches each other as λ moves
towards 1. It is also shown in [17] an example
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a)λ = 1

b)λ = 0.75

Fig. 8. Mixture of 4 components. Overlap rate of 1 and
0.75. Density and distributions

c)λ = 0.5

d)λ = 0

Fig. 9. Mixture of 4 components. Overlap rate of 0 and
0.5. Density and distributions
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Algorithm 1 Bivariate correlated Gaussian mixture

1: Number of comp.: M ; overlap rate: λ; 1st
comp. parameters: κ1, µx1 µy1, σx1, σy1, ρ1.

2: for all i = 2, . . . ,M do
3: Generate κi, σxi, σyi, ρi and θi /

∑M
i=1 κi = 1;

θ ∈ [−1π/3; 1π/3] to inhibit the third overlap.
4: end for
5: for all i = 2, . . . ,M do
6: if λ = 0 then
7: Compute params a1, b1, c1 and e1 (24).
8: Compute params a2, b2, c2 and e2 (26).
9: else

10: if (η =
κi−1σxiσyi

√
1−ρ2

i

κiσxi−1σyi−1

√
1−ρ2

i−1

) ≥ 1 then

11: Parameters values a1, b1, c1, e1 as in (6).
12: Second comp. params as in (8).
13: else
14: Calculate the parameter of the first

ellipse by using equation (9).
15: Compute the parameters of the second

ellipse from (10).
16: end if
17: end if
18: Deduce the parameter of the second ellipse,

resulting form translating and rotating the
referential R as in (14).

19: Get the intersection angle θint from (15).
20: Get the intersection point PR1

int from (16).
21: if θint ∈]0,π/2[ then
22: Use (21) to compute θ1.
23: end if
24: if θint ∈]− π/2, 0[ then
25: Use (22).
26: end if
27: Pint and δ1 in the referential (R) (19).
28: Compute the second comp. parameters in

referential (R2) (21).
29: Compute P (R2)

int from (22).
30: Compute the center of the second comp.

(µxi,µyi) as in (23).
31: end for

of four component mixture by varying λ values;
however, in the current work, the example is more
general, as it is based on a general algorithm and
includes unconstrained Gaussian bivariate artificial
correlated data.

7 Experimental Results

In this section, we present the experimental
protocol and results. We propose to use k-Means,
Fuzzy C-Means (FCM) and FCM-based splitting
Algorithm (FBSA) [27, 19]. For validity indices,
we propose to use R-Square (RS), Partition
Coefficient (PC), Davies-Bouldin (DB), Xie-Benie
(XB), WSJ and Classification Entropy (CE) [40].

7.1 Determination of the Number of
Components

As mentioned previously, the influence of the
overlap rate on clustering results is discussed. The
ability of the clustering methods and the validity
indices to determine the number of components is
also examined.

In order to give equal opportunity to all the
clustering methods to reach the correct cluster
structure, we use a unique configuration for
choosing the initial centers. We arrange the set
of observations according to the first dimension.
The kth element is assumed to be the center
of the kth cluster so that k = N/C + g where
N represents the number of observations, C the
number of clusters and g = NmodC. Tables 3
and 4 show the experimental results obtained by
the proposed algorithm for 3 components and 5
components, respectively.

Tables 3 and 4 illustrate the results obtained by
the proposed algorithm.

The first column represents the clustering
methods used in this study: FCM, FBSA and
K-Means. The second column contains the value
of validity indices RS, PC, DB, XB, WSJ and CE.
For each components’ number, we compute the
result in group according to the rate of overlap
λ ∈ {0, 0.5, 0.75, 1}. Figures 8 and 9 represent
the constructed data in form of clusters. As seen
in Tables 3 and 4, we can easily observe that
the indices RS, PC and WSJ give always the
same results which means that these indices are
not monotonous. For a number of observations
which is sufficiently large relative to the number
of components, these indices do not produce
decent results.
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Table 3. Results for three components

3 components
λ = 0

rs pc db xb wsj ce
fbsa 2 10 3 3 10 3
fcm 2 10 3 3 10 3

db rs
k-means 3 2

λ = 0.25
rs pc db xb wsj ce

FBSA 2 10 3 3 8 3
FCM 2 10 3 3 8 3

db rs
k-means 3 2

λ = 0.5
rs pc db xb wsj ce

FBSA 2 10 4 10 10 2
FCM 2 10 4 9 10 2

db rs
k-means 2 2

λ = 0.75
rs pc db xb wsj ce

FBSA 2 10 2 2 10 2
FCM 2 10 2 2 10 2

db rs
k-means 2 2

λ = 1
rs pc db xb wsj ce

fbsa 2 10 2 2 8 2
fcm 2 10 2 2 10 2

db rs
k-means 2 2

In previous contributions [26, 17], we obtained
the same result for the uni-variate and uncorrelated
data. In [33], a study concerning the WSJ is
presented. It is based on Bersdak suggestion,
where the number of observations N =

√
Cmax.

The proportion N/Cmax in that study assures good
results but in our case where the number of
observations N = 3000, it’s clear that WSJ is not
monotonous. For the same reason, PC and RS
aren’t monotonous.

We also show that by increasing the number of
components or the overlap rate, the quality of the

Table 4. Results for 5 components

5 components
λ = 0

rs pc db xb wsj ce
fbsa 2 10 5 2 10 3
fcm 2 10 5 2 10 2

db rs
k-means 2 2

λ = 0.25
rs pc db xb wsj ce

fbsa 2 10 3 3 8 3
fcm 2 10 3 3 8 3

db rs
k-means 3 2

λ = 0.5
rs pc db xb wsj ce

fbsa 2 10 3 3 10 3
fcm 2 10 3 3 10 3

db rs
k-means 2 2

λ = 0.75
rs pc db xb wsj ce

fbsa 2 10 2 2 10 2
fcm 2 10 7 8 10 2

db rs
k-means 2 2

λ = 1
rs pc db xb wsj ce

fbsa 2 10 2 2 10 2
fcm 2 10 2 2 10 2

db rs
k-means 2 2

results decrease. If we look at the experimental
results in Table 3, we observe that the validity
indices DB, XB, PC determine the component
number to be 3, but with the same overlap rate in
Table 4 the above validity indices do not have the
ability to identify the true number of components.

A large number of components means that there
are relatively a large number of global minima to
locate, so that between these global minima a
large set of local minima exist where the clustering
methods could wrongly converge.
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From Table 3, we can easily observe that the
determination of the component number becomes
less and less accurate as the overlap rate
increases.

From the results illustrated in Table 3, we find
that all the non-monotonous validity indices are
able to find the number of components when the
overlap rate λ = 0; but, none of them can find the
exact number of components with an overlap rate
λ = 1. These results are confirmed by examining
Table 4.

Contrary to the 1D experiences presented
in [26], the process of clustering, in this case,
cannot converge towards the true models. The
curse of dimensionality affects the process for
two main reasons. The first one concerns the
frequency of dispersion of the data.

For the same number of observations, in
1D space, the data is distributed only on one
dimension which causes the data to be more
compact and the pdf appears as a continuous
function with fewer local minima. However, in 2D,
the data is distributed on two axes. Analytically,
these spaces are viewed as local minima, and
in the pdf representation, they appear as noise.
The second reason concerns the overlap between
more than two adjacent components.

In [26], in 1D, it is confirmed that the worst
situation in which clustering methods encounter
difficulty in determining the exact components
number is the one where there is a component with
a small deviation between two components with
large standard deviations. In these circumstances,
the first component overlaps beyond the second
adjacent component and reaches the third compo-
nent.

In 2D, there are more chances of such ternary
overlap. Suppose we have three 2D components
such that the intersection angle between the first
and the second components is θint = 0.45π, and
the intersection angle between the second and the
third components θint = −0.45π.

In this situation, the first component is so close
to the third component that they are in case of total
overlap. For this reason, we limited the intersection
angles to be within ]−π/3,π/3[, despite the fact that
this makes it more difficult to control in 2D.

7.2 Determination of the Clusters’ Centers

In this section, we study the ability of clustering
methods to determine the model parameters by
knowing the number of components. The model
parameters includes the mixture coefficients,
the centers, the standard deviations and the
correlation coefficients. The most important
parameter is the centers because a small deviation
from its real value has a significant influence on the
other parameters.

Another point to take into consideration is that
a given deviation of the components centers
in the case of minimal overlap does not have
the same influence in the case of maximum
overlap. Because the data in maximum overlap is
more compact, an error which appears negligible
in minimal overlap case results in significant
divergence in the mixture parameters in the
maximum overlap case.

For these reasons, we have introduced a new
measure ERavg for computing the deviation of
the mixture parameters form the real parameters.
ERavg is given by:

ERavg =

∑nc
i=1

√
(µxi − Cxi)2 + (µyi − Cyi)2

nc ∗ dmax
,

where nc represents the number of clusters; µxi
and µyi are the coordinates of the ith component;
Cxi and Cyi symbolize the ith cluster coordinates;
and dmax is the maximum distance between two
components centers.

Before computing ERavg, we must first associate
each component center to a cluster center. There
are two ways to do this. The first is to
associate each component center to the nearest
cluster center.

The second is to minimize the function defined
as min

∑
µi∈µ,Cj∈C d(µi,Ci), where µi is the ith

component center, µ is the components centers
set, and d(a, b) is the Euclidean distance between
a and b. Both methods produce similar results if
the errors in centers are relatively small. But, in
cases where the deviations in centers are large, the
second method is more robust and provides better
results. We use the same mixture that we used
for the determination of the number of components.
Table 5 illustrates the results.
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Table 5. Results ERavg of clustering methods

2 clusters
λ 0 0.25 0.5 0.75 1
k-
means

0.03 0.15 0.18 0.13 0.24

fcm 0.0205 0.024 0.0678 0.11 0.16
3 clusters

λ 0 0.25 0.5 0.75 1
k-
means

0.007 0.006 0.015 0.0178 0.0185

fcm 0.0025 0.0040 0.0055 0.007 0.0762
4 clusters

λ 0 0.25 0.5 0.75 1
k-
means

0.12 0.11 0.0723 0.0705 0.053

fcm 0.0812 0.00421 0.0051 0.00822 0.00842
5 clusters

λ 0 0.25 0.5 0.75 1
k-
means

0.00052 0.00481 0.0052 0.041 0.0026

fcm 0.0012 0.00551 0.015 0.0017 0.0183
6 clusters

λ 0 0.25 0.5 0.75 1
k-
means

0.054 0.0077 0.0033 0.049 0.018

fcm 0.044 0.0018 0.0241 0.035 0.032
7 clusters

λ 0 0.25 0.5 0.75 1
k-
means

0.004 0.0087 0.01 0.013 0.0048

fcm 0.004 0.00465 0.00612 0.0086 0.012

The results are proportional to the overlap
rate. As the overlap rate increases, the ERavg
increases. In Table 5, for 5 clusters we see that
ERavg = 0.0012 when λ = 0 and ERavg = 0.0183
when λ = 1.

A large value of λ means that there are
many shared observations between data which
makes the process of finding the true clusters
more difficult. For the same reason, we find
that increasing the number of components also
increases the ERavg.

8 Conclusion and Future Work

We have proposed an artificial data generator for
evaluating the performance of clustering methods.

The generator is used to produce artificial data
for the mobile centers methods. It also benefits
the hierarchical methods where the number of
observations is relatively important.

Our approach is based on a formal definition
and quantification of mixture components overlap.
These definitions are extracted by a formal
method in order to have a relationship between
visual inspection of the overlap and its formal
representation. We have selected three clustering
algorithms to be benchmarked (FCM, FBSA and
K-Means) and the validity indices RS, PC, DB, XB,
WSJ and CE are used in this study.

The experiments are conducted under the same
conditions including the initialization parameters
and the artificial mixtures. The experimental results
have shown the effectiveness and the accuracy
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of the produced observations especially when
the overlap rate increases between components:
some algorithms and validity indices outperform
others and the monotonic nature of the validity
indices is confirmed.
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