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Abstract. Mobile Ad Hoc Networks (MANETs) are self-

configuring, infrastructure-less networks of mobile nodes 
connected through wireless links. Since MANETs 
comprise of mobile nodes, the nodes participating in the 
network usually need to be untethered, and thus 
powered by batteries, which provide limited energy. 
Reducing energy consumption during routing is one of 
the major issues of such mobile environments. This 
paper presents a new energy-efficient routing approach 
based on a genetic algorithm. In this approach, the 
genetic algorithm is applied to find a path with the lowest 
energy cost to the destination using a new fitness 
function based on a combination of multiple layer energy 
metrics, namely: Transmission and Reception power, 
Node connectivity index, and Remaining energy 
capacity. The outcome of our approach was compared 
with other recent studies, preliminary experimental 
results show the effectiveness of our proposed approach 
to solve the problem of energy consumption. 

Keywords. Mobile ad hoc networks (manets), energy 

efficiency, routing, genetic algorithms. 

1 Introduction 

Mobile Ad Hoc Networks (MANETs) can be 
defined as a collection of mobile nodes that 
dynamically form a temporary network without 
using any centralized network infrastructure to 
ensure communication [1]. In MANETs, the mobile 
nodes are connected through wireless links. Each 
mobile node can act both as an end node and as 
an intermediate node relaying packets for the 
benefit of other nodes [2]. 

Since MANETs comprise of mobile nodes, the 
nodes participating in the network usually need to 
be untethered, and thus powered by batteries, 
which provide limited energy. As mobile nodes are 

constantly communicating with each other, the 
energy dissipation rate is higher. Due to the limited 
capacity of mobile node batteries, energy 
conservation is a fundamental criterion when 
designing routing algorithms. Routing is one of the 
main factors affecting the energy dissipation rate in 
MANETs. Therefore, energy efficiency has drawn 
the attention of the researcher community. Most of 
the research work focuses on developing an 
accurate energy-efficient routing protocol. 

Energy-efficient routing protocols amend the 
shortest path by including energy as the criteria to 
select the best path. The current energy-efficient 
routing protocols perform two tasks: 

1. It tends to reduce the energy required 
for performing active communication 
when mobile nodes are receiving or 
transmitting the data packets. 

2. It tends to reduce the passive energy 
that the mobile nodes consume in its 
idle mode when they just communicate 
control messages and not data 
packets. 

It has been demonstrated that the energy-
efficient routing problem in Manets is an NP-hard 
problem [3], and therefore difficult to solve. 
Metaheuristic algorithms have been devised to find 
the proper solutions for the NP-hard problems in a 
reasonable time [4]. 

The population-based metaheuristic algorithms 
play a very important role in finding the best 
optimal paths in routing. Genetic Algorithm (GA) is 
a population-based metaheuristic algorithm, which 
is considered as a powerful tool to solve the NP-
hard problems [5]. 
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In this paper, we propose a new optimization 
approach for energy-efficient routing based on a 
Genetic Algorithm to find a path(s) with the lowest 
energy cost while routing data in MANETs. In the 
proposed approach, a new fitness function is 
designed. This function is based on three multiple-
layer energy metrics: (1) Transmission and 
Reception Power, (2) Node connectivity index, and 
(3) Remaining energy capacity. 

Due to the mobility of nodes in MANETs, new 
energy-efficient path need to be constantly 
recalculated. Genetic Algorithm makes possible 
maintaining a backup of paths that consume 
minimum power. Therefore, our approach also 
aims to find alternative paths, which can substitute 
the original path found when it is no longer 
operational. Our proposed approach solves 
two problems: 

1. Finding an optimal energy-efficient path 
to transfer data between mobile nodes. 

2. Providing alternate paths when one path 
gets failed. 

Experiments have proved that our approach is 
effective and efficient. The remainder of this paper 
is structured as follows: In section 2, we provide a 
short discussion of related work. In section 3, we 
detailed and present the proposed approach. 
Section 4, the experimental results are discussed 
and compared with existing approaches. Section 5, 
conclusion and some perspectives are drawn. 

2 Related Work 

Minimizing energy consumption is a very important 
issue in MANETs. During the last decade, the 
researcher community has made considerable 
efforts to develop energy-efficient routing protocols 
based on genetic algorithms. Therefore, we 
propose some of the work carried out in this field. 

In the study of Ibukunola et al. [6], the objective 
is to describe the Geographical Adaptive Fidelity 
(GAF) energy model, which is one of the best-
known topology management models used to 
improve energy efficiency in MANETs by grouping 
network nodes into virtual grids. In order to 
minimize the energy consumption, the authors 
used the genetic algorithms and the simulated 

annealing metaheuristics in MANETs modeled by 
rectangular GAF and compare them. 

Sonia Ahuja et al. [7], present an energy-
efficient hybrid routing algorithm in MANETs using 
genetic algorithms and ACO Ant colony 
optimization. To select the optimized path between 
the mobile nodes, the proposed genetic algorithm 
depends on the minimum cost of the multicast tree 
and bounded end-to-end delay. 

Brindha et al. [8], proposed an energy-efficient 
unicast routing protocol using genetic algorithms in 
MANETs. The proposed work considers multiple 
QoS metrics such as end-to-end delay, bandwidth, 
hop count and energy as important metrics for 
effective and reliable path selection. 

Antipathy et al. [9], presented an energy and 
mobility aware route optimization technique based 
on genetic algorithms. For selecting the optimal 
path, the proposed route optimization technique 
applied a fitness function based on three metrics, 
namely: the estimated geometrical distance 
(EGD), min-max battery capacity (MMBC) and 
node connectivity index (NCI). 

Pawan et al. [10], proposed a new routing 
protocol in MANETs using genetic algorithms to 
select a path that consumes less energy to ensure 
the communication between the source and the 
destination node. The authors assume that every 
node has all the information about their neighbors. 
The fitness of a path is based on the transmission 
power of a path, which depends mainly upon the 
distance between two mobile nodes. 

Farden Far et al. [11], used genetic algorithms 
to increase the efficiency of the OLSR routing 
protocol and it aims at better energy conservation 
in MANET. The most optimal path was selected 
based on the remained energy of each node and 
the distance between the nodes. The authors used 
the weight factor which has been determined 
based on energy consumption combined with 
shortest paths. 

Renu Choudhary et al. [12], proposed a new 
power-aware routing protocol for MANETs using 
genetic algorithms to find a path that consumes 
minimum power while routing data in MANETs. 
The proposed algorithm is based on table-
driven protocols.  

Each node in the network manages a table that 
allows it to store the information concerning the 

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1107–1119
doi: 10.13053/CyS-24-3-3348

Saïd Khelifa, Zoulikha Mekkakia Maaza1108

ISSN 2007-9737



 

paths to route data to all the other 
neighboring nodes. 

Two metrics are used to calculate the fitness of 
a path: (1) Average Remaining Battery Power of all 
the nodes in the path (2) Number of nodes selected 
in that path. 

We report in Table 1 the main common and 
different points between our work and some of 
those mentioned above. 

The feature of the proposed work comparing to 
those referred to in Table 1 is that we introduce in 
this article a combination of energy routing metrics 
from multiple layers. In this work, we propose a 
new function to calculate the fitness of the path 
based on this combined metric. The proposed work 
aims also to provide alternate paths when one path 
gets failed. 

3 Proposed Approach 

The energy efficiency problem we are concerned 
about is cast as an optimization problem. During 
the last decade, various optimization metaheuristic 
methods have been proposed to solve NP-hard 
problems in MANETs. Genetic algorithms have 
found a special place among those optimization 
methods. Genetic algorithms are described as one 
of the most effective metaheuristics widely used in 
MANETs for solving convoluted optimization 
problems, such as the dynamic multicast problem, 
routing optimization problem, QoS route selection 

problem, Energy-efficient based multicast routing 
problem [13], etc. 

Our proposed approach provides energy 
efficiency for MANETs by using Genetic Algorithms 
to select the path(s) with the lowest energy cost to 
transfer data between two mobile nodes. The aim 
of using the Genetic Algorithms based routing is 
that complexity in finding the least costly energy 
path does not increase rapidly with the number of 
nodes of the network, which in contrast to other 
optimization algorithms has also been considered 
as an advantage [11]. New hardware 
implementations of genetic algorithms [14] have 
shown their ability to fast computation. In this 
regard, the Genetic algorithms are quite promising 
for energy-efficient routing in MANETs. 

3.1 Overview of Genetic Algorithm 

Genetic Algorithms are evolutionary algorithms 
that use techniques inspired from the Darwinian 
theory of evolutionary [15], The mode of operation 
of a GAs is modeled on biological principles of 
natural selection and survival of the best adapted 
to the environment individuals. GAs were proposed 
and investigated by John Holland [16], leading to 
his book “Adaptation in Natural and Artificial 
Systems”, 1975. 

GA is an evolutionary optimization technique, 
which uses special operators such as selection, 
crossover, and mutation to solve problems, which 
are difficult to solve by using conventional 
approaches. GAs maintain a population of 
candidate solutions, where each candidate 
solution is usually coded and it corresponds to a 
chromosome. A set of chromosomes forms a 
population, where characteristics of one population 
are forwarded into the next population. 

GAs calculate the fitness of all individuals in the 
population using a fitness function. The fitness 
evaluation function is defined in terms of metrics to 
optimize; it plays an important role in GAs because 
it provides information about how good is each 
solution. To improve results, GAs select the best 
solutions using a selection operator. The major 
operation of GAs (Figure. 1) is as follows [17]: 

1. The beginning of GAs is a set of solutions 
generate randomly called the initial population. 

 

Fig. 1. The genetic algorithm steps 
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2. The evolution from one generation to the next 
one involves mainly three steps 

a. Fitness evaluation: compute the 
fitness of each solution. 

b. Selection: GAs select "parents" (fittest 
solutions) proportional to their fitness 
values from the current population to 
participate in crossover for creating the 
next generation. 

c. Crossover and/or mutation: GA 
reproduces "children" from selected 
parents using crossover and/or 
mutation operators. 

3. The different genetic operators can be applied 
to the population repeatedly. GAs stops when 
an acceptable solution is found, when 

convergence criterions met, or when a 
predetermined limit number of iteration 
is reached. 

3.2 Energy Efficiency Metrics Considered in 
our Approach 

Before selecting an appropriate metric for energy-
efficient routing, we must first focus on the causes 
of energy depletion. In MANETs, a mobile node 
consumes its battery energy based on the 
operations it performs. There are four energy 
consumption modes, which consumes different 
levels of energy [18]: 

1. Transmission Mode: when a node is 
transmitting a packet to another node. 

Table 1. Summary of Works using Genetic Algorithms 

Authors Resolution methods Description 
Routing Metrics 
Considered 

Sonia Ahuja et 
al. (2014) 

‒ Genetic algorithms 
‒ ACO Ant colony 

optimization 

Present an energy-efficient hybrid 
algorithm for routing in MANETs by 
using genetic algorithm and ACO Ant 
colony optimization to select the 
optimized path between the mobile 
nodes 

‒ Bounded end-to-end 
delay 

‒ The minimum cost of 
the multicast tree 

Ganapathy et 
al. (2017) 

‒ Genetic algorithms 

Present an energy and mobility aware 
route optimization technique based on 
genetic algorithms for selecting the 
optimal path 

‒ Estimated geometrical 
distance 

‒ Min-max battery 
capacity 

‒ Node connectivity 
index  

Pawan et al. 
(2018) 

‒ Genetic algorithms 

Propose a new routing protocol in 
MANETs using genetic algorithms to 
select a path that consumes minimum 
energy to route data between two 
nodes in the networks. 

‒ The transmission 
power of a path 

Renu 
Choudhary et 
al. (2019) 

‒ Genetic algorithms 

Propose a new power-aware routing 
protocol for MANETs, which use 
routing tables to get information about 
different nodes and apply genetic 
algorithms to find a path with less 
energy cost while routing data 

‒ Average Remaining 
Battery Power of all 
the nodes in the path  

‒ Number of nodes 
selected in the path 

 Our study ‒ Genetic algorithms 

We present a new energy-efficient 
routing approach based on genetic 
algorithms to find a path with the 
lowest energy cost to the destination 

‒ Transmission and 
Reception power 

‒ Node Connectivity 
Index 

‒ Remaining 
Energy Capacity 
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2. Reception Mode: when a node is receiving a 
packet from another node. The receiving node 
may be the destination node or just an 
intermediate node. 

3. Idle /Overhearing Mode: even when no 
messages are being transmitted over the 
medium, the nodes keep listening to the 
medium with listening energy. 4. Sleep 
Mode: when the radio is temporary switched off 
(no communication is possible). The node 
spends sleep energy. 

Energy-efficient routing protocols use energy 
metrics to select the most efficient path. According 
to Waheb A. Jabbar et al. [19], the energy-efficient 
routing algorithms use different energy metrics to 
select a path, those metrics can be classified into 
four categories: (1) transmission power, (2) 
Remaining Energy capacity, (3) Estimated node 
lifetime and (4) Combined energy metrics. 

It is no longer appropriate to use only one metric 
to determine the path cost. The different 
approaches based on a single metric, are 
nearsighted and do not take into account all the 
possible causes of energy depletion in the network. 
In order to avoid this, it is best to use a combination 
of multiple energy metrics to find the path with the 
lowest energy cost to the destination. 

Therefore, we consider three multiple-layer 
energy metrics in our energy model to calculate the 
path cost: 

1. Transmission and Reception Power: These 
parameters aim to choose paths that have low 
transmission and reception power. In MANETs, 
the transmission and reception power of a path 
depends mainly upon the distance between 
the nodes. 

2. Node connectivity index: The connectivity index 
of a node is the number of direct neighboring 
nodes with one-hop. By avoiding nodes with 
several direct neighbors, the node gains in 
listening energy. 

3. Remaining energy capacity: This parameter is 
important to select the next-hop node because 
we want to select paths, which include less 
depleted nodes. 

This energy model minimizes the energy 
consumed during an active communication when 
mobile nodes are transmitting or receiving packets 

in the network, as well as during an inactive 
communication when mobile nodes stay idle, but 
they are in a listening state. 

3.3 Fitness Function 

In this paper, our insight is to determine a set of 
multiple layer energy metrics. We focus on 
designing a novel combined energy metric based 
on the described metrics and integrate it into our 
fitness function. 

Here, for each metric used in our approach, we 
always consider a k-hop Path P= N0, N1, · · ·, Nk 
from the source node N0 to the destination node 
Nk. The following notations listed in Table 2 are 
used in the rest of this paper. 

In order to calculate the energy cost of a node, 
we use the above metrics, where every metric is 
assigned with a weight value to adjust the impact 
of each routing metric as shown in the equation (1). 

The energy cost function of a node is a single 
function that is formed by combining the weighted 
metrics and it aims at minimizing the 
weighted sum: 

𝐶𝑛(𝑖) = 𝛼1 (
𝑃𝑇(𝑙)

𝑃𝑇𝑚𝑎𝑥
+

𝑃𝑅(𝑙)

𝑃𝑅𝑚𝑎𝑥
) + 𝛼2

𝑁

𝑁𝑚𝑎𝑥

+ 𝛼3 (1 −
𝐸𝑟(𝑖)

𝐸0
) , 

(1) 

{
∑ 𝛼𝑖 = 1,

3

𝑖=0

0 ≤ 𝛼𝑖 ≤ 1.

   (2) 

The basic idea of this approach is to optimize 
the energy efficiency by selecting the (1) minimum 
of Transmission and Reception Power, (2) 
minimum of Node connectivity index and (3) 
minimum of consumed energy, which is nothing 
more than the maximum of Remaining 
energy capacity: 

Econs (i)

E0
=  

E0 − Er (i)

E0
= 1 −

Er (i)

E0
 . (3) 

The metric of optimization is the path cost 
between the source node and the destination 
node. The objective is to find the path with the 
minimum total cost. The new node’s energy cost 
function computed in equation (1) is used to 
calculate the paths costs between every source 
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and destination nodes. Our proposed Fitness 
function is shown in Equation (4): 

CP(Pi)  =  ∑ Cn (i),

𝑛

𝑖=0

 (4) 

where n indicates the number of nodes in the path. 

3.4 Genetic Algorithm for Energy 
Efficient Routing 

In this paper, a new algorithm using GAs has been 
proposed to find the best solution by identifying the 
energy-efficient path(s) between the source node 
and the destination node. The proposed algorithm 
also finds alternate paths, which can be used when 
the original path found is no longer operational. 
The adaptation of the genetic algorithm in our 
approach is as follow: 

‒ Input:  Network Topology, Source 
Node, Destination Node. 

‒ Output: Optimal Solution Routing Path. 

1. Generate a random initial population of 
feasible routing paths. 

2. Calculate the fitness function of all paths 
belonging to the population. 

3. Repeat steps 4 to 8 until an optimal 
solution is reached. 

4. Select random parent’s paths, which will 
participate in crossover to generate 
new paths. 
5. Perform cross over to generate new 
children paths and calculate the fitness of 
every newly generated path. 
6. Sort population by fitness after adding the 
newly generated children paths 
in population. 
7. Remove the worst paths from 
the population. 
8. Perform mutation and a new population is 
generated for the next iteration. 

Step1: Encoding Population 

In our proposed approach, a feasible solution 
corresponds to a path, which is represented by a 
succession of nodes. We adopt a decimal-coded. 
Very intuitively, each chromosome represents a 
path. Any existing feasible path is encoded by a 
sequence of positive integers representing the 
identifiers of nodes through which a routing path 
passes. The first locus gene is always reserved for 
the source node and the last locus for the 
destination node. Though the length of each 
chromosome is a variable, it should not exceed the 
total number of nodes present in the network. To 
avoid creating loops, the same node must appear 
only once in a chromosome. An example of path 
encoding is shown in Fig.2. 

Step2: Initial Population 

A small population size leads to rapid convergence 
before reaching an acceptable solution. Contrarily, 
if the population size is too large, this leads to 
unnecessary computations. In this study, the 
appropriate population size is obtained such that 
the optimum reached cannot be improved easily. 
After several trials and experiments, we use a set 
of 100 feasible routing paths generated randomly 
as an initial population. 

Step3: Fitness Evaluation 

The fitness function takes a single solution as a 
parameter and returns a value indicating how good 
the solution is. After generating the initial 
population, we will select the best individuals, who 

Table 2. Explanation of the notations 

Notations Meaning 

Cp (Pi) Cost of path Pi 

Cn(i) Energy Cost of node Ni 

PT (i) Transmission power of node Ni 

PTmax Maximum transmission power 

PR (i) Receiving power by node Ni 

PRmax Maximum receiving power 

Er (i) Remaining energy capacity of node Ni 

E0 initial energy capacity of node Ni 

Econs (i) Consumed energy by node Ni 

N Node Connectivity Index of node Ni 

Nmax Number of nodes in the network 
minus one 
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will participate in the improvement of our 
population. The selection of individuals depends 
on fitness function values. In this work, we consider 
Equation (4) as the fitness function. 

Step 4: The Selection of Individuals 

This step is about selecting the best parents from 
the population and forming a mating pool. Whether 
a parent is selected from the population is a matter 
of probability. There are different methods of 
selection in GAs literature [20]. The well-known is 
the "roulette wheel" method, the "elitist" method 
and the "tournament" method. In our approach, we 
used the elitist method to select the best 
individuals according to their fitness values. 

Step 5: The Crossing of Individuals 

The crossing consists of combining two individuals 
(called parents) of the mating pool to bring out two 
new individuals (called children), with 
characteristics from both parents but not 
necessarily better than the parents.  

Many crossover operators exist in GAs 
literature [20]. The main ones are "single-point 
crossover", "double-point crossover", "Multi-point 
crossover", "Uniform crossover". The single-point 
crossover is the most common. 

In our approach, we apply a single-point 
crossover. We can assume that any two parents 
are chosen for the crossover process. These two 

parents should contain at least one common 
intermediate node, which is considered as a 
meeting point to perform crossover. To generate 
child1, we copy all the nodes from parent A into 
child A up to the meeting point, and then copy 
remaining nodes from parent B into child A.  Same 
process is done for generating child B, we copy all 
the nodes from parent B to child B up to the 
meeting point and then copy remaining nodes from 
parent A into child B. An example of Single-Point 
Crossover is shown in Fig.3. 

Step 6: Mutation 

The mutation is usually applied after the process of 
crossover. This operator is applied to children to 
improve their fitness value by randomly modifying, 
with a small mutation probability, the value of a 
component of the individual. The mutation is 
traditionally considered a marginal operator 
although it somehow confers on genetic algorithms 
the property of ergodicity (i.e. all points in the 
search space can be reached). This operator is 
therefore of great importance. It has a dual role in 
performing a local search and/or exit a trap (remote 
search). 

In our approach, to perform the mutation over 
an individual, instead of randomly selecting a gene, 
as in standard GA, we select the node in the 
chromosome, which dissipates the maximum 
energy. The purpose of selecting this node for 
mutation is to reduce the total energy dissipation 
by the node and hence, to increase the network 
lifetime. This can be done by decreasing the node 
connectivity index of the selected node. 

Step 7: Convergence 

The Genetic Algorithm starts with a random initial 
population. The steps of GAs are repeated until 
reaching an end criterion. Once the maximum 
number of generations reached, we get a 
population of best solutions.  

This can be overcome by setting an appropriate 
number of iterations for the genetic algorithm. In 
our approach, the number of iterations is set to 30 
after carrying out some preliminary runs on each 
data set. 

 

Fig. 2. Routing Path Encoding 

 

Fig. 3. Example of Single-Point Crossover 
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4 Results 

MATLAB R2010a software has been used to 
implement the proposed Genetic Algorithm 
approach. Our studies involve a random network of 
10 nodes. In this study, node 1 is set as the source 
node and node 6 is the destination node.  

The performance of the Genetic Algorithm is 
greatly affected by several parameters, such as the 
population size, the selection rate, the crossover 
and mutation rates. Several experiments are 
conducted to study the impact of those parameters 
on the performance of our approach.  

In our experiments, we have observed that the 
performance of our proposed Genetic Algorithm 
can be improved when the selection rate is 
increased up to 0.6–0.9, the mutation rate is 
increased up to 0.4–0.6, and the crossover rate is 
increased up to 0.7–0.9.  

The genetic parameters used in our approach 
are as follows: 

Selection Rate:               0.8, 

Crossover Operator sed: One-point crossover, 

Crossover Rate:       0.7, 
Mutation Rate:       0.05, 
Individual Number:       100, 
Iterations Number:        30. 

Table 3. The Initial Population 

Individuals Routing Path 

 Node 
1st 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
6th 

Node 
7th 

Node 
8th 

Node 
9th 

Node 
10th 

Indv01 1 2 10 9 5 4 3 6 0 0 

Indv02 1 2 4 5 9 3 6 0 0 0 

Indv03 1 7 2 10 3 5 6 0 0 0 

Indv04 1 7 2 4 3 9 10 8 6 0 

Indv05 1 2 4 3 9 10 7 6 0 0 

Indv30 1 2 7 10 8 5 9 3 6 0 

Indv31 1 5 8 10 2 7 9 4 6 0 

Indv32 1 5 4 7 2 10 8 6 0 0 

Indv98 1 3 4 5 9 7 2 10 8 6 

Indv99 1 3 4 9 5 8 10 2 7 6 

Indv100 1 3 4 2 7 9 10 8 5 6 

Table 4. Population evaluation 

Individuals Routing Path Fitness 

 Node 
1st 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
6th 

Node 
7th 

Node 
8th 

Node 
9th 

Node 
10th 

 

Indv01 1 2 10 9 5 4 3 6 0 0 40,49833 

Indv02 1 2 4 5 9 3 6 0 0 0 25,936 

Indv03 1 7 2 10 3 5 6 0 0 0 30,266 

Indv04 1 7 2 4 3 9 10 8 6 0 42,72033 

Indv05 1 2 4 3 9 10 7 6 0 0 48,3203333 

Indv30 1 2 7 10 8 5 9 3 6 0 51,7266667 

Indv31 1 5 8 10 2 7 9 4 6 0 33,4463333 

Indv32 1 5 4 7 2 10 8 6 0 0 38,214 

Indv98 1 3 4 5 9 7 2 10 8 6 59,7383333 

Indv99 1 3 4 9 5 8 10 2 7 6 44,506 

Indv100 1 3 4 2 7 9 10 8 5 6 43,6196667 
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Step1: Initial Population 

The initial population of 100 individuals is shown in 
Table 3. 

Table 3 illustrates: 

‒ Horizontally: Individuals forming the 
initial population and representing the 
feasible routing paths. 

‒ Vertically: positive integers that 
represent the IDs of nodes through 
which a routing path passes. 

‒ A '0' will appear in a row as an element 
to signify a blank space. 

Step2: Fitness Evaluation 

This step is to evaluate each individual in the 
population according to equation (4) as shown in 
Table 4. 

‒ The initial population cost is 41.235 and 
the cost of the best path is 25,936. 

‒ Best Path of the population: Path No 2. 

‒ Path cost = 25,936. 

Table 5. The Selected Population 

Individuals Routing Path Fitness 

 Node 
1st 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
6th 

Node 
th7 

Node 
8th 

Node 
9th 

Node 
10th 

 

Indv02 1 2 4 5 9 3 6 0 0 0 25,936 

Indv13 1 2 4 7 5 3 6 0 0 0 28,98666 

Indv03 1 7 2 10 3 5 6 0 0 0 30,266 

Indv31 1 5 8 10 2 7 9 4 6 0 33,4463333 

Indv32 1 5 4 7 2 10 8 6 0 0 38,214 

Indv01 1 2 10 9 5 4 3 6 0 0 40,49833 

Indv04 1 7 2 4 3 9 10 8 6 0 42,72033 

Indv99 1 3 4 9 5 8 10 2 7 6 44,506 

Indv30 1 2 7 10 8 5 9 3 6 0 51,7266667 

Table 6. The Cross Population 

Individuals Routing Path Fitness 

 Node 
1st 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
th6 

Node 
th7 

Node 
8th 

Node 
9th 

Node 
10th 

 

Indv02 1 2 4 5 9 3 6 0 0 0 25,936 

Indv101 1 2 10 3 5 6 0 0 0 0 28,94366 

Indv13 1 2 4 7 5 3 6 0 0 0 28,98666 

Indv03 1 7 2 10 3 5 6 0 0 0 30,266 

Indv31 1 5 8 10 2 7 9 4 6 0 33,4463333 

Indv32 1 5 4 7 2 10 8 6 0 0 38,214 

Indv01 1 2 10 9 5 4 3 6 0 0 40,49833 

Indv102 1 7 2 10 9 5 4 3 6 0 42,506 

Indv04 1 7 2 4 3 9 10 8 6 0 42,72033 

Indv99 1 3 4 9 5 8 10 2 7 6 44,506 

Indv30 1 2 7 10 8 5 9 3 6 0 51,7266667 
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‒ Route = [1, 2, 4,5, 9, 3, 6]. 

‒ The number of active nodes = 7. 

Step 3: Since Nbr = 0 < Nbrmax = 30, we proceed 
to step 4. 

Step 4: Selected Population 

In this step, we select 80 percent of the individuals 
forming the initial population as shown in Table 5. 
In our study, individuals are sorted in descending 
order according to their fitness value. 

Step 5: Cross Population 

70 percent of the selected individuals are used to 
do cross over. Take the following example From 
Table 6: 

‒ Parent1 = Path No 1= [1, 2, 10, 9, 5, 4, 
3, 6]. 

‒ Path cost = 40, 49833. 

‒ Parent2 = Path No 3 = [1, 7, 2, 10, 3, 
5, 6] 

Table 7. The Mutated Population 

Individuals Routing Path Fitness 

 Node 
1st 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
th6 

Node 
7th 

Node 
8th 

Node 
9th 

Node 
10th 

 

Indv02 1 2 4 5 9 3 6 0 0 0 25,936 

Indv101 1 2 10 3 5 6 0 0 0 0 28,94366 

Indv13 1 2 4 7 5 3 6 0 0 0 28,98666 

Indv03 1 7 2 10 3 5 6 0 0 0 30,266 

Indv31 1 5 8 10 2 7 9 4 6 0 33,4463333 

Indv32 1 5 4 7 2 10 8 6 0 0 38,214 

Indv01 1 2 10 9 5 4 3 6 0 0 40,49833 

Indv102 1 7 2 10 9 5 4 3 6 0 42,506 

Indv04 1 7 2 4 3 9 10 8 6 0 42,72033 

Indv99 1 3 4 9 5 8 10 2 7 6 44,506 

Indv30 1 2 7 10 8 5 9 3 6 0 51,7266667 

Table 8. Best Individuals 

Routing Path Fitness 

Node 
st1 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
6th 

Node 
th7 

Node 
8th 

Node 
9th 

Node 
10th 

 

1 5 4 6 0 0 0 0 0 0 21,985 

1 7 2 4 6 0 0 0 0 0 23,18366 

1 7 4 6 0 0 0 0 0 0 21,807 

1 7 10 8 6 0 0 0 0 0 23,7576667 

1 5 9 7 6 0 0 0 0 0 22,456667 

Table 9. Optimal Solution 

Routing Path Fitness 

Node 
st1 

Node 
2nd 

Node 
3rd 

Node 
4th 

Node 
5th 

Node 
6th 

Node 
th7 

Node 
8th 

Node 
9th 

Node 
10th 

 

1 7 4 6 0 0 0 0 0 0 21,807 
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‒ Path cost = 30,266. 

‒ Node Selected for Cross Over = 10. 

‒ Child1 = Path No 101 = [1, 2, 10, 3, 5, 6]. 

‒ Path cost = 28, 94366. 

‒ Child2 = Path No 102 = [1,7,2,10,9,5, 4, 
3, 6].  

‒ Path cost= 42,506. 

It can be observed that the crossover operation 
generates a new path (child 1), which have less 
path cost as compared to both of the parents. 

Step 6: Mutated Population 

As shown in Table 7, this step is for performing 
mutation. In this example, a mutation with 
probability 0.05 for all individuals is performed. 

The fitness of the population is improving after 
each iteration. The resulting population becomes a 
new population. We increment the generation Nbr 
by 1 and we proceed to step 3. 

Step 7-a: Best Individuals 

The average path cost in this population after 30 
iterations is minimized to 23.0427 and the cost of 
the optimal path is 21,807. 

Step 7-b: Optimal Solution 

In this stage, we get the optimal path with the 
lowest energy cost. 

‒ Optimal path cost = 21,807. 

‒ Route = [1, 7, 4, 6]. 

‒ The number of active nodes = 4. 

Many energy-efficient routing approaches 
based on genetic algorithms have been developed, 
which are usually based on different energy routing 
metrics applied for selecting the optimized path. 
For effective benchmarking, we conducted a series 
of experiments varying the energy routing metrics. 
For that, we choose to consider the study 

performed by Pawan et al. [10], and the study 
performed by Choudhary et al. [12]. The reason for 
selecting these studies is because of the similar 
aim in finding the least costly energy path. Further, 
the selected studies used different energy 
routing metrics. 

In the study of Pawan et al. [10], The fitness of 
a path is based on transmission power as an 
energy metric. While, in the study of Choudhary et 
al. [12] the fitness of a path is based on two 
metrics: the average remaining battery power of all 
the nodes in the path, and the number of nodes 
selected in that path. However, the experimental 
environment, as well as the design parameters of 
Pawan et al. [10] and Choudhary et al. [12], differs 
from our approach, and for performing comparative 
analysis we required the similar testbed. 
Therefore, in order to compare the overall 
performance of our Genetic Algorithm, we 
implement the principle of the Genetic Algorithm 
introduced by Pawan et al. [10] and Choudhary et 
al. [12] using the same parameters as in 
our approach. 

When implementing the study of Pawan et al. 
[10], we get an optimal path with a number of 
nodes equal to 6 and path cost equal to 51.74633. 
We note that our proposed algorithm selects a path 
having 20% less number of active nodes with less 
path cost. However, when implementing the study 
of Choudhary et al. [12], we get an optimal path 
having a number of nodes equal to 5 and path cost 
equal to 36.23633. We note that our proposed 
algorithm selects a path having a 10% less number 
of active nodes with less path cost. 

Table 10 summarizes the results comparison of 
our approach with the other two 
implemented approaches. 

Our proposed approach offers better results 
than the other approaches studied. The results 
obtained confirm the potential of the proposed 
Genetic Algorithm. 

‒ Table 10. Results comparison 

Approaches Optimal path cost Route 
Number of active 

nodes 

Pawan et al. [10] 51.74633 [1, 2, 7, 9, 3, 6] 6 

Choudhary et al. [12] 36.23633 [1, 2, 10, 3, 6] 5 

Proposed approach 21,80700 [1, 7, 4, 6] 4 
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5 Conclusion and Future Work 

Energy consumption is a very challenging issue in 
MANETs. In this paper, in the context of optimizing 
the energy consumption while routing data in 
MANETs, a new energy efficiency approach based 
on genetic algorithms is proposed 
and implemented. 

The proposed approach can comprehensively 
assess three proposed multiple-layer energy 
routing metrics (Transmission and Reception 
Power, Node connectivity index, and Remaining 
energy capacity). These metrics are combined 
according to Equation (1) and used for calculating 
the energy quality of mobile nodes. Then, genetic 
operators such as selection/ crossover and 
mutation are applied for selecting an optimal path 
that consumes less energy to ensure the 
communication between the mobile nodes 
according to the minimum value of the fitness 
function. After several trials and experiments, the 
appropriate population size was determined and 
used with the selected GA operators rate to get the 
best fitness function value. 

Our proposed approach provides us a set of 
optimal paths with less energy cost to transfer data 
from the source node to the destination node. 
Since MANET are dynamic and links between 
nodes forming a path are likely to have a break at 
any time, our approach uses an alternate path for 
data transfer. 

Our approach is compared to other recent 
studies that solve the same instance. The 
proposed approach achieves a better performance 
than the study performed by Pawan et al. [10], and 
the study performed by Choudhary et al. [12]. The 
fitness value of the Optimal path generated by our 
approach is 21,80700 while Pawan et al. [10] and 
Choudhary et al. [12] studies generated a path cost 
of 51.74633 and 36.23633 respectively. The 
outcomes show the effectiveness of the proposed 
approach to solve the problem of 
energy consumption. 

Future studies will be conducted to implement 
our GA approach on a mobile ad hoc network 
having thousands of mobile nodes, and its 
performance can be checked. Also, future work 
may focus on comparing our approach to other 
metaheuristic algorithms like the firefly algorithm 
and Tabu search to check If they can equally 

minimize energy consumption effectively as GA 
achieved in this study. 
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