
Personalized Sentence Generation using Generative Adversarial
Networks with Author-Specific Word Usage

Chenhan Yuan, Yi-chin Huang

University of Electronic Science and Technology of China,
National Pingtung University,

China

yuanchenhan@std.uestc.edu.cn, ychin.huang@gmail.com

Abstract. The author-specific word usage is a vital
feature to let readers perceive the writing style of
the author. In this work, a personalized sentence
generation method based on generative adversarial
networks (GANs) is proposed to cope with this issue.
The frequently used function word and content word are
incorporated not only as the input features but also as
the sentence structure constraint for the GAN training.
For the sentence generation with the related topics
decided by the user, the Named Entity Recognition
(NER) information of the input words is also used in the
network training. We compared the proposed method
with the GAN-based sentence generation methods, and
the experimental results showed that the generated
sentences using our method are more similar to the
original sentences of the same author based on the
objective evaluation such as BLEU and SimHash score.

Keywords. Generative adversarial networks,
personalized sentence generation, author-specific
word usage.

1 Introduction

Text generation, as a basic task of natural
language processing, has many applications, such
as dialogue robots [11], machine translation [9],
paraphrasing [15] and so on. In previous
works, many researchers [15] extracted grammar
rules from text and used them to generate new
texts. These works are capable of generating
semantically rich and grammatically correct text,
but due to the fixed grammar rules, the differences
between generated sentences are quite limited.
With the rise of deep learning [22, 20, 7,

12], researchers have tried to introduce neural
networks to generate sentences.

Long Short-Term Memory (LSTM [8]) is used
as a sequential neural network model to generate
sentences. It can judge the generation of the next
word based on the words that have been generated
before. The use of neural networks to generate text
has greatly increased the variation of text. Lately,
the Generative Adversarial Networks (GAN) [6] has
been introduced, and several variants of the GAN
model for generating text have been proposed.

These GAN variants yield good performances
in the context of generating short texts, such as
SeqGAN [20], RankGAN [12], TextGAN [22].

To generate long text, in [7], they introduced
LeakGAN to enable the discriminator leaks
features extracted from its input to generator,
which uses this signal to guide the outputs in
each generation step. They built a hierarchical
Reinforcement Learning (RL) [17] framework as a
generator, in which the module named MANAGER
accepts the leaked feature to form a goal vector,
which is help guiding another module named
WORKER to generate the next word.

However, one application of the text generation
has not been explored extensively, which is
text generation with personalized writing style.
The personalized writing style could be helpful
for various applications. For example, in the
scenario of responding to an email or message
automatically, if we want to let the receivers
convinced that the reply is written by the person,

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

ISSN 2007-9737



the writing style of that email should be similar to
that of the user.

Another example would be generating a para-
graph of a specific topic and is written by a
well-known author. Therefore, we would like to
let the user to define the topic of the generated
text, which means the text generated by our
method should be related to the user-defined topic
and the collected texts form a specific author
are used to extract the personalized writing style
information as the author-specific feature, which is
fed into the GAN framework to guide the GAN to
generate text with personalized writing style and
user defined topic.

2 Related Work

2.1 Language Features

The syntactic and content information from text
is a long-standing topic in natural language pro-
cessing. The syntactic structure of one sentence
is often closely related to the part-of-speech
(POS) sequence corresponding to that sentence;
therefore, many efforts are made to improve the
performance of labeling POS tag automatically.
In [18], they used cyclic dependency network
to consider the POS context to obtain higher
POS tagging accuracy. Named Entity Recognition
(NER), which refers to the identification of entities
with specific meaning in the text, is an important
analysis process to obtain text content information.

In order to improve the accuracy of NER
process, another work [5] is based on the
conditional random field model, using Gibbs
sampling to adopt the structure of long sentence
instead of only local feature. In addition,
the relationship between each word is also an
important characteristic of text. Researchers
attempt to represent words in text using vectors,
so that the relationship between words can be
determined by calculating the cosine similarity
between vectors. The Word2vec algorithm is
proposed in [13], which includes two architectures:
Continuous Bag-of-Words Model and Continuous
Skip-gram Model, to calculate continuous vector
representations of words.

2.2 Text Generation Using GAN

With the development of deep learning, many
text generation works have begun to use neural
networks in recent years. For example, Generative
Adversarial Networks (GAN) [6] provides a novel
way to generate text, which consists of a generator
and a discriminator. Discriminator determines
whether the input data is real or generated, and
Generator generates data and try to convince
the discriminator that the generated data is
real. However, in context of discrete data input,
discriminator cannot propagate the gradient back
to the generator as in standard GAN training.

To address this problem to generate text via
GAN, some researchers employ Long Short-term
Memory (LSTM [8]) and convolutional neural
network (CNN [10]) for adversarial training to
generate realistic text and optimize a new feature
distance when training the generator [22]. A
method is inspired by the Reinforcement Learning
(RL)[17] reward signal come from the GAN
discriminator judged on a complete sequence,
which is passed back to the intermediate
state-action steps using Monte Carlo search [20].

To generate long text, LeakGAN [7] is introduced
to enable discriminator leak features extracted from
its input to generator, which will use this signal
to guide the outputs for each word generation
step. They built a hierarchical RL framework as a
generator, in which the module named MANAGER
accepts the leaked feature to form a goal vector
to guide another module named WORKER to
generate the next word.

Those variants of the GAN framework are
helpful for text generation and the performance
is superior than the conventional rule-based
methods. Nevertheless, to collect a text corpus
of a specific author with various topics is hard to
achieve, since one author usually write only limited
amount of articles with similar topics. Therefore,
the main goal of the proposed method is try to use
all texts collected from different authors for training
the GAN model in order to let the covered topics as
many as possible. More importantly, the generated
sentences should be perceived as written by a
specific author.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Chenhan Yuan, Yi-chin Huang18

ISSN 2007-9737



Fig. 1. The term frequency distributions of structure words from different authors

We first implemented NER on all collected
articles to determine which articles contain
information related to user-defined topics and
save them as the training set. Besides, the
bigram language model of the POS tag and
the corresponding structural words of the target
author are extracted as the author’s personalized
writing habit.

These frequently used syntactic structure infor-
mation is helpful for text generation module as the
personalized features. Also, the frequently used
words of each author are extracted to represent
another part of personalized information.

Here, the text generation module is inspired by
the LeakGAN method, because we would like to
let the generator use the personalized features to
generate each word while the discriminator leaks
the information of the previous generated words to
the generator.

In order to let the LeakGAN model to adopt
the personalized feature for each epoch of word
generation, we modified the structure of its CNN
and the input and output of the generator.

3 Proposed Method

Generally speaking, the writing style of an author
could be defined by the frequently used syntactic
structure and the word usage. Here, we collected
texts written by different authors and compare the
term frequency of the structure words. As shown
in Figure 1, the term frequency distributions of
the structure words of different authors are quite
different, which suggests that the structure word
usage should be taken into account for generating
sentences as written by a specific author.

The system framework of the proposed method
is depicted in Figure 2. First, the structural words
and their corresponding part-of-speech (POS)
information are extracted to construct a bigram
grammar model to represent syntactic structures.
Besides, the frequently used content words of the
target author are extracted from the corresponding
texts based on the term frequency. For guiding
the GAN to generate the sentences, the list
of structural words used by the author and his
unique bigram grammar model will be fed into
the discriminator. When the discriminator judging

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Personalized Sentence Generation using Generative Adversarial Networks with Author-Specific Word Usage 19

ISSN 2007-9737



Fig. 2. The system framework of the proposed method for generating personalized sentences

whether the sentence is real or generated, these
information will be used.

Then, the frequently used words of the target
author and the syntactic structure features will
be combined with the leaked feature of the
discriminator as a new feature to feed the manager
module of the generator to help guiding the next
word generation. For the worker module of the
generator, the word embedding vector generated
by the previous step and its corresponding POS
embedding vector will be combined as the input
features. When generating the next word,
the syntactic structure is considered to let the
generated word sequence become more similar
to the sentence structure that the target author
prefer to use.

Another vital feature of the proposed method is
the user-defined topic. For the sentences of the
generated text to be related to the user-defined
topic, we implement named entity recognition
(NER) to filter the training corpus. The texts of all
author that are qualified for the NER filter will be
used as a training corpus to train our model.

This is because the NER filter can guarantee
that the text used for training contains information
related to the user-defined topic so that the
generated text will also have relevant information.
In the following section, the detail information of the
personalized information and how to we applied the
information to guild GAN is introduced.

3.1 Personalized Related Information
Extraction Model

3.1.1 NER FILTER

In order to enable the generated sentences contain
information related to the user-defined topic, NER
filter is used to select all the texts that meet the
requirements and are served as the training set.
We perform named entity recognition (NER) on
the text of all authors. When the named entity
contained in the article is the same as the named
entity decided by the user, the text is included in
the training set.

Because for the news corpus, the named entity
contains most of the important information in an

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Chenhan Yuan, Yi-chin Huang20

ISSN 2007-9737



article, the training set ensures that the generated
text will contain information related to the user’s
topic. Compared to conventional generative
adversarial networks, which directly adopt all
collected text as a training corpus, although the
number of texts decreases after passing the NER
filter, the generated sentences are more related to
a particular topic.

3.1.2 Personalized Information Extractor

In general, the personalized writing style mainly
consists of specific word usage, which contains
all the words the author prefer but may not
commonly used by others, as well as the preferred
syntactic structure of the author. For example,
when writing an article, an author might prefer
to use “film” instead of “movie.” An author may
also like to use the “..., thus...” syntactic structure
instead of “because..., ...”. Therefore, our approach
extracts the personalized information from words
and syntactic structures which is frequently used
by an author. The detail personalized information
extraction are described as follows.

Frequent Word Extractor: We calculate the
ratio of the term frequency to determine whether
a specific word is a frequently-used word for an
author. Equation 1 calculates the mean value of
the i-th word in the collected texts. Equation 2 then
calculates the the ratio of the i-th word for each
author. TFword(i,j) represents the term frequency
of the i-th word written by j-th author in all texts.
Then, a threshold is used to decided whether a
word is a author preferred word or not.

For example, if a threshold is set to 0.3, then
when the calculated result of eq. 2 is greater than
0.3, that means the i-th word is a preferred word
for the j-th author. In such case, the greater result
indicates that the j-th author prefers to use the i-th
word than other authors. Otherwise, the i-th word
is a common word, when means this word is used
by each author:

TFmean word i =

∑
j

TFword ij∑
i
TFword ij

j
, (1)

TFword ij∑
i
TFword ij

− TFmean word i

TFmean word i
. (2)

Bigram Extractor: In statistical machine
translation, bigram language model [21] is a useful
probability distribution, which preserves the phrase
characteristics of the text. Since the training text
set is decided by the NER filter, the author-specific
syntactic structure is not preserved in such training
set. Therefore, we adopt the bigram language
model based on the structure word and its
POS tag. The author-specific syntactic structure
information could be defined by the POS tag rather
than directly using the word information.

The POS bigram probability distribution and the
language model are extracted using Eq. 3 where
POSk represents the k-th bigram POS combination
that exists in the texts. In order to deal with out-
of-data problem in the bigram POS combination,
we adopted the add-delta method when calculating
the probability distribution. Here, the EmptyPOSl

indicates the l-th bigram combination that does
not occurred in the collected texts, and is the
smoothing parameter, which is set to 0.5 based on
our experimental result:

POSbigram k =
POSk∑

k POSk +
∑

l δ × EmptyPOSl
.

(3)
Word2Vec and POS2Vec: In order to generate

sentences containing personalized word usage of
the target author, the cosine similarity of the word
vectors is applied. Here we measure the distance
between frequently used word of the target author
and those words which are more commonly used
among all authors in the collected training set.
By applying this information to the generator of
GAN framework, the proposed method replaces
the suitable word based on algorithm described in
Section 3.1.

Instead of using the word embedding directly
from the GAN model, we trained a word embedding
by Word2Vec [13] algorithm using the features
extracted from the personalized related information
extraction phase to determine word similarity. This
would ensure the personalized word usage to guild
the GAN training and could reducing the number of
training epoch.

Besides, the syntactic structure is represented
using the POS vector and served as the part of
the input for the generator. This is achieved by

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Personalized Sentence Generation using Generative Adversarial Networks with Author-Specific Word Usage 21

ISSN 2007-9737



Fig. 3. The flowchart of the modified discriminator CNN

Fig. 4. The flowchart of the modified sentence generator

automatically labeling the POS tags of an author
and then apply the word2vec algorithm to obtain
the POS embedding.

Word POS Mapping: Because each word
vector in tensorflow [1] flows as a tensor in
the graph, it is difficult to dynamically label

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Chenhan Yuan, Yi-chin Huang22

ISSN 2007-9737



POS on newly generated words while generating
sentences. Therefore, we map each word to a
unique POS at this stage. Based on the statistics
of the training corpus, more than 80% of the word
can be labeled as a specific POS tag. Therefore,
our operation will not only not adversely affect the
results, but also avoid passing the error generated
in labeling POS on word process to GAN. Finally,
we got a POS mapping table of each word to feed
into GAN.

3.2 Modified Generative Adversarial Networks
Model

The proposed GAN-based method is inspired by
LeakGAN with several modifications to let the
generated sentences could be perceived as written
by a specific author. First, we introduce a con-
volutional neural network (CNN) as discriminator
and two Long Short-Term Memory (LSTM) as the
hierarchical structure of generator. In each step of
generation process, the discriminator will leak the
features of personalized information to generator
as a guide signal. The generator accepts this
signal to adjust the output when generating the
next word. In order to allow GAN to accept
personalized information as part of the input, we
changed the structure of CNN and the in/output of
the generator.

3.2.1 Discriminator CNN

The flowchart of the modified discriminator is
illustrated in Fig. 3. To enable the discriminator
has the ability to judge whether the generated
sentences has the frequently used syntactic
structure of the target author, the bigram language
model for the target author is applied here.

The values of the feature vector is weighted
based on the occurrence frequency of the POS
tags for input sentences. For example, the POS
sequence of the phrase “I want” is “NN VP” and
the occurrence frequency of that POS combination
in the bigram language model is 0.03, then 0.03
is served as the weight to the word embedding
vectors of those two words.

Second, for the max-pooling step of the
discriminator, the max values of the filters are

usually chosen. However, in our goal, the structure
words, which represents the syntactic structure
information of the target author, should be treated
with higher priority. Therefore, when a sentence
is input into CNN, our model will first determine
whether the sentence contains a structure word. If
the sentence contains a structure word, the CNN
will select the value corresponding to the window
containing the convolution result of the structure
word in the max-pooling layer. As a result, the
structure word will be stored as the most important
value in the max-pooling layer. Otherwise, the CNN
model still uses the maximum value in each filter to
the max-pooling layer.

Other than structure word, the frequently used
words of the author is also one important
information that represent the personalized writing
style. Therefore, the feature leaked from the
discriminator should contain this feature to guide
the generator. Our model scans for word
embedding vector corresponding to these words. If
there are frequently used words in the sentence,
some of them will be concatenated with output
of max-pooling layer. For example, the output
dimension of the max-pooling layer is N × M ,
where N is the number of filters and M is the
number of window sizes. After concatenating,
this matrix becomes (N + L) × M , where L is
the dimension of the word embedding vector. If
there is no word that target author prefer to use
in the sentence, then two vectors whose elements
are zeroes and are concatenated with output of
max-pooling layer.

3.2.2 Generator

Based on the LeakGAN, an LSTM module named
MANAGER in the Generator accepts guide signal
leaked from discriminator and outputs a goal
vector. Another LSTM named WORKER module
uses the goal vector as the guide signal when
generating the next word. As shown in the Fig.
4, when generating a new word for the sentence,
the generator will use the embedding vector of
the already generated word sequence as the input
conventionally. However, the proposed method
add the POS embedding of the word sequence
in order to let the syntactic structure of the target

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Personalized Sentence Generation using Generative Adversarial Networks with Author-Specific Word Usage 23

ISSN 2007-9737



author. Therefore, at each generation step, the
length of the input vector for WORKER is 2 ×M ,
where M is the dimension of word embedding
vector, and 1×M is the word embedding vector and
the other 1 ×M is the POS vector corresponding
to the word sequence.

Finally, after generating a new sentence, the
“alter word process” module is adopted to check
the generated sentence and enhance it. If the
generated word is a commonly-used word among
all authors or the word that the target author
preferred, then the generated word will be kept.
Otherwise, the word embedding vector for the
generated word will be obtained by looking up the
pre-trained word embedding, which is generated
during the personalized information extraction
phase. The closest word that is frequently used by
the author will be substituted based on the cosine
similarity of the word embedding vector. Then, the
sentence generation is done and the generated
sentence will be decided whether or not a good
generation by the discriminator.

4 Experimental Analysis

In order to evaluate the performance of the
proposed method, the LeakGAN algorithm is
served as the baseline system for comparison. We
used the news corpus crawled from the world view
section of Washington Post as the experimental
corpus. Our model was compared with two kinds
of LeakGAN. One is trained with texts of all authors
that are qualified NER filter, and the other is trained
with all texts of one author. We evaluate the
similarity between the generated sentences and
the original text of the target author. Another
evaluation is focused on the topic relation of the
generated sentences and the user-defined topics.

4.1 Data and Model Preparation

Because each news reporter has his or her own
different writing habits when writing articles, and
most of the news events reported by the authors
in the same period of time have strong correlation,
we use news corpus as the training corpus of
our model. We crawl the news covered nearly
one year of ten reporters from the “worldviews”

section of the Washington Post, which has a total
of 1,013 articles.

Because the news text needs to quote what
others say in order to reflect objectivity, which does
not represent the author’s personalized writing
habits, we deleted the long quotes. According to
our statistics, the distributions of sentence length
of all authors fit to the normal distribution, and its
mean is 23.01 standard deviation is 11.93, so the
maximum length of the sentence we reserved is
46. For better generating sentence, we tokenized
the text set, including deleting punctuation marks
such as the period and question mark. The total
number of words in all articles is 33,961.

We set two different size of CNN kernels: 2,
3, and the number of filters for each size is 125.
The dimension of the word embedding vector that
used as input of CNN is 75. We use dropout as
proposed in [4], which maintains at 0.75, and L2
regularization to avoid overfitting. As part of the
input to the WORKER module of the generator,
the dimension of the word embedding vector in
generator is 32, which is the same dimension as
the POS embedding vector produced during the
personalized information extraction stage. The
StanfordNERTagger [5] is adopted to extract the
named entities that appear in each article. The
StanfordPOSTagger [19] is also applied to perform
the POS tagging of articles to get the occurrence
distribution of the bigram structural words. To
get word embedding and POS embedding, we
use genism [16] to implement the Word2vec
algorithm. The Texygen tool [23] is a benchmark
platform that integrates several GAN models for
text generation, such as MaliGAN [3], RankGAN
[12], LeakGAN [7], etc. Because Texygen is
an open source software, which allows us to
change some source codes to perform experiment
efficiently, we use the LeakGAN module in Texygen
as a baseline system.

4.2 Personalized Sentence Similarity
Evaluation

In the proposed method, the main idea is to let
the user decide what topic they want for sentence
generation. Therefore, we first compare the
difference between baseline system without NER

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Chenhan Yuan, Yi-chin Huang24

ISSN 2007-9737



Fig. 5. Sorted occurrence frequency of structure words for comparing methods and original texts from the target author

Table 1. Personalized sentence similarity for comparing
methods. (Note that lower SimHash score indicates
better similarity, and higher Bleu-3 score is better)

SIMHASH BLEU-3
LEAKGAN 21.73 0.14
LEAKGAN-ER 22.06 0.09
PERSONGAN 20.16 0.20

information. The first system is Leak-GAN, which is
trained using texts of the target author. The second
system is LeakGAN-NER, which is trained using
the text set of NER filtered sentences.

Here we adopt two popular objective measure-
ments to evaluate the sentence similarity. The
first one is SimHash [2]. SimHash is one widely
used effective way to remove duplicate text. The
feature vector of each word is obtained from a
given sentence first, and weights are set for each
feature vector, which indicates the importance of
that vector. Then, the hash value of each feature
vector is calculated by a hash function. In this way,
the sentence becomes a series of values.

The hash value and the weight are positively
multiplied when 1 is encountered, and the hash
value is multiplied by the negative value when the
0 is encountered. The weighted results of the
above respective feature vectors are accumulated
to become only one sequence. For the cumulative
result of the n-bit signature, if it is greater than
0, it is set to 1, otherwise it is set to 0, so that
the simhash value of the sentence is obtained.
Finally, we can determine the sentence similarity
according to the Hamming distance of SimHash
values of different sentences, which is the number
of different digits of SimHash value.

The second measurement is the Bleu score [14].
Bleu score measures the fluency and translation
quality of generated text by measuring the similarity
between the generated text and the reference text.

We calculated the unigram, bigram, and trigram
language models and give each language model
the same weight. The target author’s sentence
which contains the NER-related words are served
as the reference sentences set to test the average
of Bleu and SimHash score. The results are shown
in Table 1. The Bleu score of LeakGAN-NER is

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Personalized Sentence Generation using Generative Adversarial Networks with Author-Specific Word Usage 25

ISSN 2007-9737



Fig. 6. Evaluation of the proposed PersonGAN method for each epoch

slightly worse than that of Leak-GAN, the possible
reason is that when calculating the Bleu score, the
reference sentences are collected from the texts of
the target author.

Since a large portion of the training corpus
used by LeakGAN-NER are collected from other
authors, the generated sentences would not be
similar to the target author; especially the usage
of the structure words. We further analyzed
the occurrence frequencies of the structure words
using comparing methods and the original texts
from the target author.

As shown in Fig. 5, the occurrence frequency
of structural words generated by LeakGAN is
more similar to that of the original text than the
LeakGAN-NER, which suggests that the syntactic
structure of the generated sentences by LeakGAN
is more similar to the original text.

Based on the previous results, it seems that if
the user-defined topic is not collected from the
target author, the generated sentence will not

similar to the original texts of the target author.
Here, we further compare our proposed method
with the LeakGAN baseline system, to see under
the condition of the user-defined topic, how the
performance of the proposed method in terms of
sentence similarity. The proposed method is based
on the LeakGAN-NER, however, by applying the
guiding information such as weighted features from
bigram structure word for generator, as discussed
in the previous Section, are named PersonGAN.

Fig. 6 shows the SimHash score and Bleu
score of each training epoch for PersonGAN. The
final value of SimHash of PersonGAN is 20:16
and Bleu is 0:20, which are slightly better than
the LeakGAN system. It can be seen that the
Bleu score has increased significantly after the
beginning of the completely randomly generated
sentence. And after a few epoch, Bleu score of
the text generated by PersonGAN is comparable
to that of the LeakGAN and even slighly better as
shown in Table 1, which indicates that the proposed

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Chenhan Yuan, Yi-chin Huang26

ISSN 2007-9737



method is helpful for guide the GANs to generate
sentences similar to the original texts, even though
the training texts are written by other authors.

4.3 Named Entity Recognition Evaluation

To evaluate topic similarity of the generated
sentences by the comparing methods to the
user-defined topics, the named entities of those
topics are used to find similar words based on the
cosine similarity obtained by Word2Vec algorithm.
Note that only content words are considered here
to evaluate the performance. Then, the occurrence
ratio of each sentences is calculated to see if the
similar words generated in the sentence. As a
result, the ratio is 0.093 in LeakGAN and 0.113 in
PersonGAN.

These results indicate that the sentence gen-
erated by PersonGAN is more topic-related than
LeakGAN because the training set of PersonGAN
is collected from the topic-related texts.

5 Conclusion and Future Work

In this paper, we proposed a personalized
sentence generation method for user-defined
topic based on GAN framework. By modifying
the word embedding feature vector using the
guiding information of bigram structure words
for generating words, it indeed helps generating
sentences with similar word usage of the target
speaker, even when the training text set is collected
from other authors. The named entity recognition
is also helpful for generating sentences consist
of related words to the user-defined topics. We
will further investigate the possibility of generating
sentences with higher level sentence hierarchy
in order to let the generated sentences could
construct a paragraph.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z.,
Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., & others (2016). Tensorflow:
A system for large-scale machine learning. 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pp. 265–283.

2. Charikar, M. S. (2002). Similarity estimation
techniques from rounding algorithms. Proceedings
of the Thiry-Fourth Annual ACM Symposium on
Theory of Computing, ACM, pp. 380–388.

3. Che, T., Li, Y., Zhang, R., Hjelm, R. D., Li, W.,
Song, Y., & Bengio, Y. (2017). Maximum-likelihood
augmented discrete generative adversarial net-
works. arXiv preprint arXiv:1702.07983.

4. Fang, H., Gupta, S., Iandola, F., Srivastava, R. K.,
Deng, L., Dollár, P., Gao, J., He, X., Mitchell,
M., Platt, J. C., & others (2015). From captions
to visual concepts and back. Proceedings of the
IEEE conference on computer vision and pattern
recognition, pp. 1473–1482.

5. Finkel, J. R., Grenager, T., & Manning, C. (2005).
Incorporating non-local information into information
extraction systems by gibbs sampling. Proceedings
of the 43rd annual meeting on association for com-
putational linguistics, Association for Computational
Linguistics, pp. 363–370.

6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A.,
& Bengio, Y. (2014). Generative adversarial nets.
Advances in neural information processing systems,
pp. 2672–2680.

7. Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., & Wang,
J. (2018). Long text generation via adversarial
training with leaked information. Thirty-Second AAAI
Conference on Artificial Intelligence.

8. Hochreiter, S. & Schmidhuber, J. (1997). Long
short-term memory. Neural computation, Vol. 9,
No. 8, pp. 1735–1780.

9. Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R.,
& Xing, E. P. (2017). Controllable text generation.
arXiv preprint arXiv:1703.00955, Vol. 7.

10. Kim, Y. (2014). Convolutional neural networks
for sentence classification. arXiv preprint
arXiv:1408.5882.

11. Li, J., Monroe, W., Shi, T., Jean, S., Ritter,
A., & Jurafsky, D. (2017). Adversarial learning
for neural dialogue generation. arXiv preprint
arXiv:1701.06547.

12. Lin, K., Li, D., He, X., Zhang, Z., & Sun, M.-T.
(2017). Adversarial ranking for language generation.
Advances in Neural Information Processing Sys-
tems, pp. 3155–3165.

13. Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Personalized Sentence Generation using Generative Adversarial Networks with Author-Specific Word Usage 27

ISSN 2007-9737



14. Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation of
machine translation. Proceedings of the 40th annual
meeting on association for computational linguistics,
Association for Computational Linguistics, pp. 311–
318.

15. Power, R. & Scott, D. (2005). Automatic generation
of large-scale paraphrases. Proceedings of the
Third International Workshop on Paraphrasing
(IWP2005).

16. Rehurek, R. & Sojka, P. (2010). Software
framework for topic modelling with large corpora.
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, Citeseer.

17. Sutton, R. S., McAllester, D. A., Singh, S. P.,
& Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation.
Advances in neural information processing systems,
pp. 1057–1063.

18. Toutanova, K., Klein, D., Manning, C. D., &
Singer, Y. (2003). Feature-rich part-of-speech tag-
ging with a cyclic dependency network. Proceedings
of the 2003 conference of the North American chap-
ter of the association for computational linguistics on
human language technology-volume 1, Association
for computational Linguistics, pp. 173–180.

19. Toutanova, K. & Manning, C. D. (2000). Enriching
the knowledge sources used in a maximum

entropy part-of-speech tagger. Proceedings of
the 2000 Joint SIGDAT conference on Empirical
methods in natural language processing and
very large corpora: held in conjunction with
the 38th Annual Meeting of the Association for
Computational Linguistics-Volume 13, Association
for Computational Linguistics, pp. 63–70.

20. Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017).
Seqgan: Sequence generative adversarial nets with
policy gradient. Thirty-First AAAI Conference on
Artificial Intelligence.

21. Zhai, C. & Lafferty, J. (2004). A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems
(TOIS), Vol. 22, No. 2, pp. 179–214.

22. Zhang, Y., Gan, Z., & Carin, L. (2016). Generating
text via adversarial training. NIPS workshop on
Adversarial Training, volume 21.

23. Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang,
W., Wang, J., & Yu, Y. (2018). Texygen: A
benchmarking platform for text generation models.
The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
ACM, pp. 1097–1100.

Article received on 22/12/2018; accepted on 05/03/2019.
Corresponding author is Chenhan Yuan.

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 17–28
doi: 10.13053/CyS-24-1-3350

Chenhan Yuan, Yi-chin Huang28

ISSN 2007-9737


