Abstract. The purpose of this paper is to compare the performance and accuracy of several clustering algorithms in text clustering tasks. The text preprocessing were realized by using the Term Frequency - Inverse Document Frequency in order to obtain weights for each word in each text and then obtain weights for each text. The Cosine Similarity was used as the similarity measure between the texts. The clustering tasks were realized over the PAN dataset and three different algorithms were used: Affinity Propagation, K-Means and Spectral Clustering. This paper presents the results in comparative tables: ID of the task, ground truth clusters and the clusters generated by the algorithms. A table with precision, recall and f-measure scores is presented.

Keywords. Affinity propagation, f-measure, k-means, spectral clustering, PAN.

1 Introduction

The task of grouping a set of objects in a cluster where the objects inside are more similar to each other in the same cluster (group) than objects in other clusters is called Cluster Analysis or Clustering, the cluster analysis is one of most important research areas at present, as a part of data science or data mining, clustering is used in many fields like pattern recognition, machine learning and image analysis.

A main task of Data Mining is to process the natural language, the cluster analysis is essential in the natural language processing, today exists many algorithms built to make the hard work of grouping texts more accurate and efficient, is essential to make a comparison of the algorithms in order to know the strengths and weaknesses of each of them. Is important to know that notion of a "cluster" cannot be precisely defined, which is one of the reasons why there are so many clustering algorithms [2].

There is a common denominator: a group of data objects. However, different researchers employ different cluster models, and for each of these cluster models again different algorithms can be given. The notion of a cluster, as found by different algorithms, varies significantly in its properties.

Understanding these "cluster models" is the key to understand the differences between the various algorithms.

2 Related Work

Due to the large number of existing clustering algorithms, experimental evaluations in specific fields are useful, in this case, the tests were focused on the Natural Language Processing field.

There are some interesting papers that made a comparison of different clustering algorithms
applied to Document Clustering, in [11] a comparison between Agglomerative and Partitional algorithms is made, in this paper the better results were obtained by partitional algorithms, and agglomerative clustering algorithms performs the worst results, the partitional algorithm used in [11] was K-Means, and was tested in a very large dataset.

On the other hand, in [10] the authors made a comparison between Bisecting K-Means, Regular K-Means and UPGMA in Hierarchical clustering, in this case the better results were obtained by Bisecting K-Means, followed by Regular K-Means, and the worse were the agglomerative hierarchical method UPGMA.

A more complete comparison is made in paper [9], where K-Means, Heuristic K-Means and Fuzzy C-Means were compared, the interesting point of this paper is that the authors use different pre-processing methods in texts, like tf-idf, tf and boolean representation schemes, in summary Heuristic K-Means obtained the best results, followed by K-Means, the best results in the paper comes from the combination of a partitional algorithm, tf.idf and making a stemming before cluster the documents.

This previous works evaluate algorithms with different procedures on the clustering process, algorithms from different categories and a comparison of the obtained results when using different methods in the pre-clustering process. Based on this works, this paper will show the outputs of three different partitional algorithms (the best in consulted literature), preparing texts with tf.idf and stemming.

3 Data Clustering Algorithms

This section presents a taxonomy of the different approaches to clustering algorithms as well as the theoretical explanation of each clustering algorithm used in this paper.

3.1 Taxonomy of Clustering Algorithms

Actually, there are so many clustering algorithms, and each one of them has different applications and characteristics, also, this algorithms can be categorized focusing on the technical details of the general procedures of the clustering process, a graphic representation of this categories is shown below (Fig. 1). An explanation of this taxonomy is [3]:

— **Partitioning-Based:** In this kind of algorithms, clusters are determined promptly, the *partitioning algorithms* divide the data into a partitions, where each partition represent a cluster. In this algorithms each cluster must contain at least one object, and each object must belong to exactly one group.

— **Hierarchical-Based:** This methods can be *agglomerative* or *divisive*, both organize the data in a hierarchical way. The dataset is represented by a dendrogram, where individual data is presented by leaf nodes.

— **Density-Based:** In this algorithms, elements are separated based on their regions of density, connectivity and boundary. They are closely related to point-nearest neighbors. A cluster is defined as a group of elements considered as neighbors depending of their density as a group, and grows in any direction that density leads to.

![Fig. 1. An overview of taxonomy of clustering algorithms](image-url)
— **Grid-Based:** The space of the data objects is divided into grids. The accumulated grid-data make grid-based clustering techniques independent of the number of data objects that employ a uniform grid to collect regional statistical data, and then perform the clustering on the grid, instead of the database directly.

— **Model-Based:** Such a method optimizes the fit between the given data and some (predefined) mathematical model. It is based on the assumption that the data is generated by a mixture of underlying probability distributions.

The three algorithms to be analyzed on this paper belongs to *Partitioning-Based* category.

3.2 Affinity Propagation

Affinity Propagation forms clusters by sending messages between pairs of instances until convergence and considers all data points as potential exemplars, this algorithm can determine the number of clusters by itself unlike *K-Means* or *Spectral Clustering*.

The algorithm proceeds by sending messages in two steps, between two matrices [2]: a *R* matrix called “responsibility matrix”, with \(r(i, k) \) values, that quantify how well suited \(x_k \) is in way to serve as a exemplar for \(x_i \), comparing it with the other candidate exemplars for \(x_i \), and an *A* matrix called “availability matrix” with \(a(i, k) \) values, that shows how “appropriate” it would be for \(x_i \) to pick \(x_k \) as its exemplar, considering all other points’ preference to take \(x_k \) as an exemplar [4]. Both matrices can be viewed as log-probability tables, and are initialized with zeros, then the algorithm realize the next updates iteratively:

\[
 r(i, k) \leftarrow s(i, k) - \max_{k' \neq k'} \{ a(i, k') + s(i, k') \},
\]

where responsibility matrix updates are sent around and (2), (3) are the way to update the availability matrix:

\[
a(i, k) \leftarrow \min \left(0, r(k, k) + \sum_{i' \notin \{i,k\}} \max(0, r(i', k))\right), \tag{2}
\]

for \(i \neq k \) in 2:

\[
a(k, k) \leftarrow \max(0, r(i', k)). \tag{3}
\]

Once the cluster boundaries stop changing over a number of iterations, the algorithm extracts the exemplars and clusters from the final matrices as those whose “responsibility + availability” be positive, (i.e \((r(i, i) + a(i, i)) > 0 \)).

3.3 K-Means

This algorithm was first proposed by Stuart Lloyd in 1957 [6]. *K-Means* uses vector quantization methods in order to get a partitioning of the data space into Voronoi cells returned as clusters. *K-Means* commonly uses a random initial points called “seeds” and then proceeds by alternating between two steps to select new cluster centroids.

The partitioning of the observations according to the Voronoi diagram generated by the means, is calculated as:

\[
S_i^{(t)} = \{ x_p : ||x_p - m_i^{(t)}||^2 \leq ||x_p - m_j^{(t)}||^2 \}, \tag{4}
\]

where 4 must be fulfilled \(\forall j, 1 \leq j \leq k \). In equation 4 each \(x_p \) is assigned to exactly one \(S_i^{(t)} \), even if this \(x_p \) could be assigned to more than one \(S_i^{(t)} \).

Calculating the new centroids within the new clusters is realized with the following equation:

\[
m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|}.
\]

The algorithm has converged when assignments stop changing, that means what the Voronoi cells(clusters) are complete. The use of heuristic algorithms implies that the results could not be the optimum.
3.4 Spectral Clustering

Spectral Clustering algorithm uses the eigenvalues of a similarity matrix obtained from the data, to realize dimensionality reduction and then it makes clustering in less dimensions. The similarity matrix passed as a parameter to the algorithm gives a quantitative assessment of the similarity of each pair of points in the data, like an adjacency matrix used for graphs.

Spectral Clustering works on relevant eigenvector of a Laplacian Matrix of A, this algorithm project the data into a lower-dimensional space (the eigenvector domain) where they are easily separable with other methods like *K-Means*, once the dimensionality reduction is complete, the process for cluster the data in this lower-dimensional space is the same that *K-Means*.

4 Weighting and Measuring Methods

This section presents the followed processes to achieve the preprocessing, weighting and measuring the similarity of the texts.

4.1 The Weighting TF-IDF Algorithm

The Term Frequency - Inverse Document Frequency (TF-IDF) [5] is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus [8]. This method weights the words in a text or a set of texts, the TF-IDF value increases proportionally to the number of a word appears in the corpus, with this quantization of the words, can be created a mathematical model of each text in the corpus. A word that appears a lot of times in the corpus is less important for the texts than word that appears just a few times in the corpus, which is more important for TF-IDF is the product of the following two statistics:

1. Term Frequency: Is calculated by counting the times that a term appears in a text (raw frequency), for better results can be used the “Augmented Frequency”, this is the raw frequency of a term divided by the raw frequency of the most occurring term in document, and is described as follow:

\[
tf(t, d) = \frac{f_{t,d}}{\max\{f_{t',d} : t' \in d\}}.
\]

2. Inverse Document Frequency: It is obtained by dividing the total number of documents by the number of documents containing the term, and then taking the logarithm of that quotient, this process is called “logarithmically scaled inverse fraction”, and is described as follow:

\[
idf(t, D) = \log \frac{N}{1 + |\{d \in D : t \in d\}|}.
\]

In this equation \(N\) is total number of documents in the corpus \(N = |D|\) and \(1 + |\{d \in D : t \in d\}|\) is the number of documents where the term \(t\) appears, plus 1 in case that the term appears zero times in corpus.

Once the algorithm have obtained the Term Frequency and the Inverse Document Frequency, the TF-IDF values are the product of the Term Frequency values and the Inverse Document Frequency values, this operation is calculated as:

\[
tfidf(t, d, D) = tf(t, d) \cdot idf(t, D).
\]
In data clustering, the cosine similarity is commonly used to know how similar two documents are, in this field, each term is notionally assigned a different dimension and a document is a vector where the value in each dimension corresponds to the number of times the term appears in the document. With two vectors of attributes, A and B, the cosine similarity uses a dot product and magnitude as:

$$
\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},
$$

where A_i is a component of vector A, and B_i is a component of vector B.

Once the cosine similarity was already calculated for each pair of texts in corpus, the similarity matrix of texts is complete, this matrix gives the similarity measure of each text with each text.

5 Preparing the Corpus

5.1 Tokenizing and Stemming Texts

Assuming D as the corpus, d as a text in corpus and t as a term in the text, the tokenizing process consists in separate each t term in the text from the others in order to obtain a data structure containing each item. Stemming or lemmatization is the process of grouping together the inflected forms of a word so they can be analyzed as a single item.

The voc list of stemmed and tokenized terms of d will be used to obtain weights with TF-IDF. These tasks were realized with the porter stemmer and tokenizer tools of the Natural Language Toolkit\(^2\) in Python. The result of this task is a list of vocabularies for each text d in D.

5.2 Weighting Terms and Texts with TF-IDF

Once the texts have been processed and standardized, it is necessary to obtain the weights (relevance) for each word in the corpus D, this is possible using TF-IDF algorithm in D.

The output of the tf-idf algorithm will be used to build the similarity matrix using the cosine similarity method. See the Algorithm 1.

Algorithm 1: Obtaining weights for terms in corpus D

<table>
<thead>
<tr>
<th>Data:</th>
<th>complete_voc: A list of vocabularies for each text d in D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result:</td>
<td>A list of lists: one value for each term for each text in corpus.</td>
</tr>
<tr>
<td>begin</td>
<td>filtered_vocabulary ← list of non-repeated terms of complete_voc</td>
</tr>
<tr>
<td>for text in complete_voc:</td>
<td></td>
</tr>
<tr>
<td>for term in text:</td>
<td>/* Usage of equation 8 with equation 6 as tf and equation 7 as idf */</td>
</tr>
<tr>
<td>tfidf ← output of equation 8 with term as t, text as d and complete_voc as D</td>
<td></td>
</tr>
<tr>
<td>append tfidf in tfidf_values</td>
<td></td>
</tr>
<tr>
<td>append tfidf_values in weighted_texts</td>
<td>/* weighted_texts is a list of lists: each list inside corresponds to one text in corpus */</td>
</tr>
<tr>
<td>return weighted_texts</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Building the Similarity Matrix using Cosine Similarity

To build a similarity matrix of the corpus D with the Cosine Similarity measure, and using the output of Algorithm 2: weighted_texts, the process is described in Algorithm 2.

\(^2\)https://www.nltk.org/
Algorithm 2: Obtaining the similarity matrix of corpus

Data: weighted_texts: Output of Algorithm 1
Result: A similarity matrix of texts with cosine similarity measure.

begin
for text₀ in complete_voc:
 for text₁ in complete_voc:
 append the output of equation 9 with text₀ as A and text₁ as B in similarity_list.
/* similarity_list contains a similarity measure for each pair of texts, with values between 0 and 1, where 1 means equal texts and 0 completely different texts. */
return similarity_list
end

6 Clustering the Texts

The algorithms to be tested were described in 3.2, 3.3 and 3.4, a very complete implementation of each algorithm is available in the scikit-learn\(^3\) Python library, specifically the sklearn.cluster class\(^4\), the test were realized in this implementations by sending the matrices obtained with the previous algorithms as parameters. Each implementation has a set of customizable options that can help to improve the results.

6.1 Clustering with Affinity Propagation

The Affinity Propagation algorithm is interesting because of its ability to obtain the number of clusters by itself based on the data, as described in 3.2. Complexity is the main drawback of Affinity Propagation, well this one has a complexity of the order \(O(N^2T)\) where \(N\) is the number of samples and \(T\) the number of iterations until convergence.

Affinity Propagation is effective when: exists many clusters, when there is an uneven cluster size, the data is in a non-flat geometry or for a unknown number of clusters.

6.2 Clustering with K-Means

K-Means unlike Affinity Propagation, needs a defined number of clusters as a parameter, this is why will be used the number of clusters obtained by Affinity Propagation, this increases the autonomy of the tests by avoiding the human intervention and gives a more computer-made clusters.

K-Means can be used effectively when: there is an even cluster size, the data is in a flat geometry or there are too many clusters, the accuracy of K-Means when converging in the optimum will depends on the initial centroids, which are randomly selected.

For this tests, the initial centroids will be determined by k-means ++ [1] algorithm, the n-clusters will be the Affinity Propagation n-clusters, to increase de accuracy, the algorithm will be run 300 times with different centroid seeds, the results will be the best output of this consecutive runs.

6.3 Clustering with Spectral Clustering

Spectral Clustering as explained in 3.4, does a low-dimension embedding of the affinity matrix between samples, followed by a K-Means in the low dimensional space. Spectral Clustering like K-Means, requires the number of clusters to be specified, this n_clusters will be the Affinity Propagation n-clusters to avoid the human intervention, for improve the results, once the dimensionality reduction is complete, K-Means will be run 100 times with different centroid seeds. This algorithm is useful when: there are few clusters, there is an even cluster size or the data is in a non-flat geometry.

7 Evaluation of the Algorithms

7.1 The Corpus

The supervised corpus was taken from the PAN\(^5\), which consists in 60 problems, each problem contains 20 texts and have the gold standard. Each algorithm’s set of clusters will be compared with the supervised corpus, the tables will have 3 columns:

\(^3\)http://scikit-learn.org/stable/
\(^4\)http://scikit-learn.org/stable/modules/clustering.html#clustering
\(^5\)https://pan.webis.de/clef18/pan18-web/author-identification.html
corpus is a set of 20 texts, ground truth with the expected results and the algorithm column, with the obtained set of clusters.

The structure of each set of clusters is the following: Cluster \(x \) : \[\text{text_a, text_b, ..., text_c} \] where \(x \) is the cluster number, and the texts inside the brackets belongs to the \(x \) cluster. \(n_{\text{clusters}} \) is the number of clusters of the corpus. The set of clusters obtained as an output of the algorithms will have a \(n_{\text{clusters}} \) value which indicates the total number of clusters and a execution time in seconds which indicates the total time the execution took, besides, for each analyzed corpus there are a precision average that indicates the average (of each cluster score) of how many of the selected items are relevant, a recall average.

Which indicates how many relevant items are selected, and an f-measure value which is the harmonic mean that combines the precision and recall values [7], in this 3 averages, a score of 1 means that the algorithm-made clusters are exactly equal to the supervised corpus and 0 score means that they are completely different. Although the proposed method works for any corpus and was tested in more than sixteen different corpus, for illustrative purposes each table will contain the comparison of 2 corpus with their respective set of clusters both supervised and algorithm-made.

7.2 Affinity Propagation Clusters

Table 1 contains two comparison examples of the Affinity Propagation clusters with their respective execution time, precision average, recall average and f-measure average.

7.3 K-Means Clusters

Table 2 contains two comparison examples of the K-Means clusters with their respective execution time, precision average, recall average and f-measure average.

7.4 Spectral Clustering Clusters

Table 3 contains two comparison examples of the Spectral Clustering clusters with their respective execution time, precision average, recall average and f-measure average.

8 Results

As it is shown on the results of the performed tests, the most efficient algorithm in time terms was Affinity Propagation which complete the clustering with a time average of 0.148 seconds, next was
clusters: 5
Cluster 1: [7]
Cluster 2: [8, 9, 10, 11, 14, 15, 16, 19, 20]
Cluster 3: [2, 4, 5, 6, 12, 13]
Cluster 4: [3]
Cluster 5: [1, 17, 18]

clusters: 5
Cluster 1: [5, 7, 19]
Cluster 2: [1, 4, 14, 16, 20]
Cluster 3: [10, 11]
Cluster 4: [2, 3, 5, 6, 15, 18, 19]
Cluster 5: [1, 17, 18]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affinity Propagation</td>
<td>0.704</td>
<td>0.606</td>
<td>0.651</td>
</tr>
<tr>
<td>Spectral Clustering</td>
<td>0.694</td>
<td>0.833</td>
<td>0.758</td>
</tr>
<tr>
<td>K-Means</td>
<td>0.619</td>
<td>0.747</td>
<td>0.677</td>
</tr>
</tbody>
</table>

Spectral Clustering with a time average of 0.317 seconds, and K-Means was the worst on time terms with a time average of 0.342 seconds.

On the other hand there are the precision, recall and F-measure averages, in Precision terms the better average was obtained by Affinity Propagation with 0.704 of precision, the second was Spectral Clustering with an score of 0.694, and the worst was K-Means with an average of 0.619, in recall terms, Spectral Clustering obtained a 0.833 score, the next was K-Means with an average of 0.747, the last was Affinity Propagation which obtained a 0.606 score, finally the better F-measure average was obtained by Spectral Clustering with an score of 0.758, the next was K-Means with an average of 0.677, at the end was Affinity Propagation with an average score of 0.651, this is showed in Table 4, where the Spectral clustering algorithm has the best result.

9 Conclusion and Future Work

While Affinity Propagation had the best precision average, Spectral Clustering had the highest recall and F-measure averages, being K-Means the worst of the three algorithms. In this paper the algorithms were tested with small datasets, possibly this is a reason why Spectral Clustering got the best results because it works better with few clusters while Affinity Propagation works better with many clusters and large datasets. K-Means uses heuristic algorithms to converge in a possible local optimum, which can cause poorly results depending on the initial random seeds that K-Means choose, even if K-Means works well with few clusters.

K-Means works with flat geometry while Spectral Clustering and Affinity Propagation works with non-flat geometry, due to the nature of the data and the probabilistic nature of how words are distributed, any two documents may share many of the same words, theoretically with the non-flat geometry of documents Spectral Clustering and Affinity Propagation must have given the best results, but is important to remember that the size of the tested datasets wasn’t the appropriate for Affinity Propagation.

Finally is important to analyze why Spectral Clustering was the best in F-measure average; this algorithm realize a dimensionality reduction using the eigenvectors of the similarity matrix before clustering in fewer dimensions (converting the data into a flat geometry), this gives to the K-Means phase of Spectral Clustering a compressed version of the dataset but without loss of information, practically, Spectral Clustering transform a non-flat geometry into a flat geometry that is the appropriate for K-Means algorithm.

The experimental evaluation of the algorithms, shows that for small datasets with a non-flat geometry Spectral Clustering gives the best results in comparison with K-Means or Affinity Propagation however is important to remember that Affinity Propagation calculate the number of clusters by itself unlike the other two algorithms, in the tests both Spectral Clustering and Affinity Propagation gave good results, obviously those results were conditioned to the nature of the analyzed datasets (size, distribution, number of terms, etcetera). Spectral Clustering works well...

with few clusters and responds well to a non-flat geometries, better that K-Means with a previous dimensionality reduction.

Acknowledgements

We would like to thank to the vice-rectory of research and postgraduate studies (VIEP) of the Benemérita Universidad Autónoma de Puebla for the economical support.

References

Article received on 29/10/2019; accepted on 04/05/2020.
Corresponding author is Rafael Gallardo García.