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Abstract. Skin cancer is one of the most common types 

of cancer in humans, it covers about one third of all 
neoplasms. Within skin cancer we find basal cell 
carcinoma (BCC), this being the most frequent type of 
cancer worldwide. Solutions with convolutional neural 
networks generally use the Softmax layer (classic 
model) to perform a BCC classification, however, in 
other similar fields such as image classification of 
microscopic bacteria they have replaced this Softmax 
layer with a support vector machine (SVM) achieving a 
better result. Given this, we propose a hybrid model of 
convolutional neural network and a support vector 
machine (CNN+SVM) to classify the BCC. Our model is 
composed of 4 convolution blocks with 32, 64 and 128 
filters to carry out the extraction of characteristics and 
then pass it to the classifier, to which the L1-SVM loss 
function is implemented. The average results obtained 
for the CNN+SVM hybrid model were measured with the 
precision, accuracy, recall and F1-score metrics, 
obtaining 96.200%, 96.200%, 96.205% and 96.200% 
respectively compared to the classical model for the 
metrics of precision, accuracy, recall and F1-score 
where 95.661%, 95.673%, 95.661%, 95.660% 
respectively were obtained. The results show that the 
hybrid model achieves better results than the classic 
model to classify the BCC. 

Keywords. Basal cell carcinoma, convolutional neural 

network, support vector machine, deep learning. 

1 Introduction 

Artificial intelligence algorithms are being applied 
in different solutions: recommendations [32], in 

semantic search [30], augmented reality [31], 
questions and answers [28] and with greater 
emphasis they are applied in the detection of 
diseases [29, 27]. 

Skin cancer is one of the most common types 
of cancer in humans, it covers about one third of all 
neoplasms; where two large groups are 
distinguished: malignant melanoma skin cancer; 
the latter includes basal cell carcinoma (BCC) is a 
malignant epithelial tumor that originates from 
pluripotential epithelial cells and is characterized 
by slow growth, but is locally invasive; although it 
has a low metastatic potential (cancer reproduction 
to another part of the body), it has local destructive 
capacity and compromises extensive areas of 
tissue, cartilage and even bones, in the most 
severe clinical forms [1]. 

Globally, the prevalence of melanoma skin 
cancer accounts for only 1% of skin cancer cases, 
so it can be deduced that 99% of skin cancer cases 
are non-melanoma. In addition, within non-
melanoma cancer, eight out of ten cases are from 
BCC [2, 3]. 

Continents such as North America and Europe 
are places where the highest number of new cases 
of non-melanoma were found in 2018, with the 
United States, Germany and Australia being the 
first three countries that report a greater number of 
new cases of non-melanoma skin cancer (with 436 
869, 77 272 and 59 278 new cases respectively); 
in Latin America, countries such as Brazil, 
Colombia and Argentina reported a greater 
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number of new cases of non-melanoma cancer in 
2018 (with 32 107, 4 685 and 4 003 new cases 
respectively). In the case of Peru, this is ranked 
fifth in new cases of non-melanoma cancer in Latin 
America with 2 527 new cases [4]. 

Dermatoscopy has improved the diagnostic 
accuracy of melanoma by 10% to 27% compared 
to eye exams. However, the accuracy of 
dermatoscopy image analysis still depends on the 
experience of a doctor. 

A consensus diagnosis is recommended in 
which two or more experts participate to obtain the 
highest possible diagnostic accuracy [5], 
furthermore it is indicated that a dermatologist not 
trained in reading dermatoscopy images may be 
less precise than the analysis at a glance [6]. 

For the reading of images of non-melanoma 
cancer, specifically for basal cell carcinoma (BCC), 
Artificial Intelligence has been used to diagnose 
BCC, for example [7, 8] used dermotoscopic 
images, [9, 10] used images such as images of 
cancerous areas, oral tissue or clinical images. 
Among the techniques used to classify BCC, it has 
been reviewed that researchers [7] used ResNet, 
in research [8] they used Random Forest, [9, 10] 
used a classic convolutional neural network. 

Currently, in the medical field, it is sought to 
achieve high classification results using artificial 
intelligence techniques, since an erroneous 
diagnosis given by a false positive or a false 
negative can seriously affect the health of patients. 
According to [11] a series of studies involving deep 
learning approaches have already performed a 
considerable number of tasks. 

These include, among others, image 
classification, natural language processing, voice 
recognition and text classification. The models 
used in these tasks use the Softmax function 
(classic model) in the classification layer. 

However, studies have been conducted that 
analyze an alternative to the Softmax function for 
classification is the use of the support vector 
machine, in an artificial neural network architecture 
produces relatively better results than the use of 
the conventional Softmax function, by what is 
possible to propose a hybrid model to 
diagnose BCC. 

On the other hand, there are already 
researchers, who made comparisons and 
improved their results using the hybrid model of 

convolutional neural network (CNN) with a support 
vector machine (SVM) versus the classic model 
(Softmax) to classify images of microscopic 
bacteria [12]. Also in [13], they propose a hybrid 
model and they managed to classify the wear of 
drills based on images of perforated holes, in 
another work they present a hybrid model in the 
classification of a person’s gender by the way they 
walk [14]. 

Based on the reviews of other research and 
seeing the improvement using a hybrid model. 

In this research, we propose a hybrid model of 
CNN+SVM that allows classifying basal cell 
carcinoma (BCC).  

The rest of this document is organized as 
follows. Section 2 addresses works related to this 
research. In section 3, we include the 
methodology. Section 4 describes our 
experimental evaluation and results; the 
conclusions are presented in the final part. 

2 State of the Art 

Conducting a review of the scientific literature on 
the diagnosis of skin cancer in general using 
Artificial Intelligence, there are investigations that 
sought new methods and ways to solve this 
problem, especially in melanoma-like skin cancer. 
Within melanoma-focused research, there are 
researchers such as [16, 17, 18, 19, 20, 21, 22, 23, 
24], who focused on dermatoscopic images, while 
[25] used facial images where the treatment of 
these differ somewhat to dermatological images. 
Of the used techniques, the vast majority are 
oriented to Deep Learning, using convolutional 
networks [17, 22, 23] or adopting specific neural 
network architectures [16, 17, 18, 20, 25, 21, 24] 
and several of these investigations focus on 
classification using the classic neural network 
with Softmax. 

The diagnosis of skin cancer, among which is 
basal cell carcinoma, has attracted the attention of 
several researchers, who applied different 
machine learning techniques to solve this problem, 
among these we found that [8] presented a 
segmentation method for Accurate removal of 
cutaneous blood vessels in dermatoscopic images 
for BCC classification. 
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For this, the authors used a dataset composed 
of 659 images of normal dermatoscopy and cancer 
lesions, this dataset was made up of different data 
sources, among which were “Atlas of 
dermoscopy”, the University of Missouri and 
“Vancouver Skin Care Center”. 

In addition, for the classification the Random 
Forest technique was used with 100 trees each 
constructed considering 4 random characteristics 
to perform a classification of two kinds of 
cancerous versus benign lesions. 

In the investigation [7], the authors proposed a 
residual neural network method that seeks to 
diagnose BCC automatically. For this purpose, 
they used two datasets, a public dataset called 
“Skin Lesion Analysis towards Melanoma 
Detection” of the ISBI 2016 and the second of the 
International Skin Imaging Collaboration (ISIC). As 
the method, they used a segmentation technique 
and a deep residual network (ResNet) to perform 
the classification where the output was encoded 
with a range of 0 to 1 that represents a probability 
of whether an image is BCC or not. 

In another study [9], they presented a 
convolutional neural network architecture to detect 
BCC using optical coherence tomography (OCT) 
images. Their data consisted of 40 full-field optical 
coherence tomography (FFOCT) images. For the 
classification, they developed a classical 
architecture of a multilayer convolutional neural 
network. Although they used a classic neural 
network they took advantage of VGG ideas, such 
as: 1) convolutional blocks, consecutive 
convolutional layers to capture larger inputs with a 
spare parameter; 2) abandonment layer, a fraction 
of neurons is removed at random to avoid 
overfitting; 3) rectified linear unit (ReLU) as an 
activation function used to accelerate 
the calculations. 

In the research [26], the authors develop a 
mitotic cell segmentation scheme for automatic 
recognition of microscopic images of oral 
squamous cell carcinoma. To achieve this 
objective, they collected data from the Department 
of Pathology, Minadpur Medical College and 
Hospital India. In total, they collected 15 samples 
of oral tissue from patients from which five images 
of each sample were taken. As the next step, to 
identify the possible candidate cells, the images 
were converted to a gray scale, then segmented 

and filtered the images to have a series of 
candidate cells and eliminate other cells. 

Then the authors used “the seven moments of 
Hu’s” to discriminate the mitotic cells of the 
remaining candidate cells that were used as input 
for the classifier. For classification they used 
CART, which is a non-parametric decision tree 
model, they show results with the accuracy, 
sensitivity and F-score metrics of 83.8%, 73.5% 
and 78.3% respectively. Comparing with the 
results of [9] they obtained the best results, which 
were measured according to the accuracy, 
sensitivity and specificity with results of 95.35%, 
95.2% and 96.54% respectively. 

As for skin cancer [16], the authors present a 
framework for the recognition of dermatoscopic 
images using Deep learning and a local descriptor 
coding strategy. For this purpose, they used the 
ISBI 2016 dataset, which contains 1,279 images of 
dermatoscopic lesions and they selected images 
that contained melanoma by taking 173 images 
and 75 test images. These images were resized 
(224x224 pixels), normalized and the technique for 
the data increase with rotations and translations 
was applied. 

Then the images passed through a Deep 
residual neural network (ResNet) for feature 
extraction. The authors demonstrated that they can 
accelerate the convergence of the deep network 
and maintain accuracy gains. In addition, they 
used the architectures of AlexNet and VGG16 to 
evaluate and compare their results, evaluated 
mainly with the metrics of precision and AUC for 
the architectures of AlexNet with 84.70% and 
82.02%; VGG16 with 84.43% and 81.18%; 
ResNet50 86.54% and 81.49% respectively. 

In the study [10], the authors propose a method 
based on a stacked scattered autoencoder 
(SSAE), which is an unsupervised learning method 
with a fully connected architecture, to detect the 
translucent areas of BCC clinical image patches 
using as input images clinics, understood as 
images of the lesion that can be seen with the 
naked eye. 

For this purpose, 32 clinical images of BCC 
from 32 patients of the Vancouver Skin Care 
Center were used. These images had a dimension 
of 3008x2000 pixels, of these images captured the 
translucency, which is defined as a jelly-like 
appearance, which is an important characteristic 
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feature of BCC at an early stage because the 
characteristic can be easily observed and for the 
classification they used a convolutional neural 
network with Softmax. 

In the literature on the diagnosis of skin cancer, 
there are already several proposals. These 
investigations [7, 17, 18, 19, 20] were based on 
dermatoscopic images using public datasets such 
as PH2, ISBI, MED-NODE and ISIC. On the other 
hand, studies in [8] were based on dermatoscopic 
images and the research [10] was based on clinical 
images, when the authors took the images of the 
lesion that can be seen with the naked eye. They 
captured the image without any specialized 
instruments. In this case, the authors got their data 
from private institutions such as the University of 
Missouri or Vancouver Skin Care Center. 

As for preprocessing, [7, 17, 18,] performed 
some standard steps such as resizing images, 
increasing data or segmentation, [10] used 
techniques such as ROI mask and stacked 
scattered autoencoder (SSAE), [19] used the 
technique of Superpixel based fine-tuning, [20] 
used the HSV and GLCM (gray level matching 
matrix) color model and [8] used Independent 
Component Analysis (ICA). 

Among the techniques for classification we can 
note that [10, 19] used a convolutional neural 
network, [7, 17] used ResNet, [18] used VGG16, 
ResNet50 and InceptionV3, [20] used SVM and [8] 
used a Random Forest classifier. Of these works, 
the one that obtained the best result was [20] with 
95%, compared to [7, 10, 17, 18, 19] with 93%, 
83.2%, 85%, 93%, 92.3%, in [8] they reached 
82.7% accuracy. 

In research [21, 22, 23, 24, 25], the authors 
propose models to diagnose skin cancer. Among 
the techniques used for classification we can note 
that [25] tested using different types of 
architectures such as ResNet-50, Inception-v3, 
DenseNet121, Xception and Inception-ResNet-v2. 
In the investigation [21], the authors used 
ResNet50, in [22, 23] they used convolutional 
neural networks, and [24] they used the 
VGG16  architecture. 

As for the preprocessing in [22, 25,] they 
resized the images in this way they managed to 
increase data, in [21] they applied a series of 
techniques: “Median Color Split Algorithm”, 
“Atypical Pigment Network Detection”, “Cheng 

vessel detection”, in [23] they added the use of the 
ROI mask, in [24] they used a convolutional-
deconvolutional architecture to obtain a 
tumor  mask. 

Regarding the results in [25], the authors show 
sensitivity and accuracy metrics respectively for 
Resnet50 74.2% and  60.4%, for InceptionV3 
79.2% and 45.5%, for DenseNet121 76.9% and 
57.5%, for Xception 83.1% and 65.9%, for 
Inception-ResnetV2 89.2% and 63.7. In [21], the 
authors showed higher results with 90% of AUC for 
the fusion of their two proposed methods. In [22], 
the authors evaluated with the metric precision for 
the functions of activation ReLU, tangent and APL 
and the results were 93.25%, 91.76% and 95.86% 
respectively. In [23], the obtained results were 
measured with the metrics of accuracy, sensitivity 
and specificity with the results of 92%, 94% and 93 
% respectively. In [24], the authors used VGG16 
being the results 79.7%, 76.3%, 45.4%, 34.1%, 
90.7% for the metrics precision, accuracy, 
sensitivity, specificity and AUC respectively. 

Of the investigations focused on basal cell 
carcinoma, in [7, 8] the authors used 
dermatoscopic images. [7] used the ISBI 2016 
dataset and for the preprocessing they performed 
some standards steps such as image resizing, 
data augmentation or segmentation and a ResNet 
neural network, obtaining the highest results with 
precision, sensitivity and specificity of 93%, 97% 
and 96% respectively. In [8], the authors used 
three different sources of data from “Atlas of 
dermoscopy”, the University of Missouri and 
“Vancouver Skin Care Center”, which formed its 
dataset. For pre-processing, they used 
Independent Component Analysis (ICA) and a 
Random Forest classifier obtaining 82.7% 
accuracy and 82.4% sensitivity. In [9], the authors 
used optical coherence tomography images 
obtained by the same researchers and a 
convolutional neural network to which they 
adapted ideas from the VGG architecture, 
obtaining results that were measured based on 
accuracy, sensitivity and specificity with results of 
95.35%, 95.2% and 96.54% respectively.  

On the other hand, in [10], the authors obtained 
their data from private institutions such as the 
university of Missouri and Vancouver Skin Care 
Center, where 32 clinical images of BCC were 
obtained. For the pre-processing, the ROI mask 
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and stacked scattered autoencoder (SSAE) were 
used. Further, they used a convolutional neural 
network for classification, obtaining the results that 
were measured according to precision, sensitivity 
and specificity with 93%, 77% and 
97.1%  respectively. 

3 Design of the Hybrid Model for BCC 
Classification 

In this section, we present the methodology to be 
performed to combine a convolutional neural 

network plus support vector machine to classify 
basal cell carcinoma. 

The model proposed in this research for the 
classification of basal cell carcinoma (BCC) is 
composed of three parts: pre-processing, feature 
extraction and classification. In pre-processing, the 
image is prepared to serve as input for the neural 
network. This is done in order for the network to be 
trained efficiently. 

For the extraction of characteristics, the images 
of BCC and non-BCC pass through four layers of 
convolutional with 3x3 filters and then pass through 
four layers of max pooling with 2x2 filters to obtain 

 

Fig. 1. Model for classifying BCC at high leve 

 

Fig. 2. CNN+SVM hybrid model to classify the BCC 
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the filters that allow identifying the BCC. Then for 
classification, the images pass through the fully 
connected layer composed of two dense layers of 
512 neurons and 256 neurons to finally reach a 
dense layer with 2 neurons, where, in the latter, the 
L1-SVM and the linear activation functions are 
used to perform the classification. In figure 1, it is 
shown the representation of the high-level model 
of the present investigation. 

3.1 Dataset 

The dataset used is HAM10000, which is a data set 
of dermatoscopic images of pigmented skin lesions 
from two different sites, the Department of 
Dermatology of the Austrian University of Medicine 
of Austria and Skin Cancer Practice of Cliff 
Rosendahlen in Queensland, Australia.  

This dataset consists of 10,015 images with 
different skin diseases among which we can find 
actinic keratosis (akiec), basal cell carcinoma 
(bcc), seborrheic keratosis (bkl), dermatofibroma 
(df), melanocytic nevus (nv), melanoma (mel), 
vascular lesions (vasc). 

3.2 Image Pre-Processing 

The images of the HAM10000 are labeled with 
different abbreviations according to the type of skin 
cancer. To load the data, BCC images are labeled 
“bcc” and all non-BCC images have been labeled 
“nobcc”. Then the images are resized to a size of 
64 x 64 pixels. As there is a large imbalance of data 
(514 bcc and 9501 of nobcc), we proceed to 
perform the data augmentation technique for the 
bcc group, applying 9 random rotations, 9 random 
zooms, vertical and horizontal turns for each 
image. In this way, we practically remove the 
imbalance between these two classes, finally 
obtaining 9,766 for bcc and 9,501 for nobcc.  

These were then normalized before moving to 
the convolutional neural network. The 
normalization consisted of dividing each of the 
pixels of the image by the value of 225. This is 
done for obtaining that each pixel has a value 
between 0 and 1, because entries with large values 
can slow down the learning process. 

3.3 Feature Extraction 

After the images are loaded and preprocessed, the 
model presented in Figure 2 is implemented. The 
64x64x3 images (64x64 pixel image with 3 color 
channels) pass through the convolution layers, 
where the convolution operation is performed 
between the input image and the predefined filter 
or kernel to obtain the feature map: 

𝑧(𝑡) = (𝑓 ∗ 𝑔)(𝑡) =  ∫ 𝑓(𝑦)𝑔(𝑡 − 𝑦)𝑑𝑦
∞

−∞
. 

Convolution operation, where: 

– The z function is the feature map of the BCC. 

– The f function is the input image of the 
HAM10000. 

– The g function is the filter. 

– t is the displacement. 

In the first convolution layer, 32 filters with a 
dimension or kernel size of 3x3 are defined and the 
ReLU activation function is applied in this layer to 
increase non-linearity. Since it is normal for BCC 
images to have non-linear elements, this 
convolution layer is followed by a max pooling layer 
with a dimension of 2x2 and a dropout of 0.1. Then 
two convolution layers with 64 filters are followed 
with a 3x3 kernel size with the ReLU activation 
function each with its respective 2x2 max pooling 
layer and also followed by a dropout of 0.1. 

Finally, there is a final convolution layer with 
128 filters with a 3x3 kernel size with the ReLU 
activation function followed by a last 2x2 max 
pooling layer to which a 0.1 dropout is also applied. 
At the end of the convolution phase, flattening is 
applied, obtaining a one-dimensional vector that 
connects to the fully connected layer with 512 
input neurons. 

3.4 Classic Classification 

After the convolution layers, there are two fully 
connected layers of 512 and 256 neurons that 
have the ReLU activation function plus a dropout 
of 0.5, followed by the last fully connected layer 
with 2 neurons (since we have a binary 
classification), but in this case Softmax activation 
function is used. The Softmax activation function is 
given by the following equation: 
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𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 ;  𝑝𝑎𝑟𝑎 𝑖 = 1, … . , 𝐾; …,  

where: 

– 𝑧𝑖 is the output of the last layer. 

– K is the number of the classes to classify the 
BCC, in this case it is 2. 

Then the cross-entropy loss function is used, 
which is given by the following formula: 

𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝑠𝑖) …

𝐶

𝑖

,  

where: 

– 𝑡𝑖  𝑦 𝑠𝑖 are the expected label and the score for 
class i, 

– C is the number of classes to classify. 

3.5  Classification with the Hybrid Model 
Proposed in our CNN+SVM Research 

After the features in the convolutional layer are 
extracted, two fully connected layers of 512 and 
256 neurons follow with the ReLU activation 
function and a dropout of 0.5, followed by a last 
fully connected with 2 neurons since we have a 
binary classification. Then the linear activation 
function is used, which its output is proportional to 
the input received, and in our case, the input is the 
output of the last layer. 

To perform the classification in the final layer, 
we have implemented the SVM classifier, and as 
indicated in [11, 15], it is sufficient to implement the 
loss function of the L1-SVM standard in the 
last layer: 

𝑚𝑖𝑛
1

𝑝
𝑤𝑇𝑤 + 𝐶 ∑ 𝑚𝑎𝑥(0,1 −  𝑦𝑖

′(𝑤𝑇𝑥𝑖 + 𝑏)).

𝑝

𝑖=1

  

where: 

– C is the penalty parameter (it can be an 
arbitrary value, or a value selected through the 
hyperparameter setting).  

– y' is the real label of the BCC. 

– 𝑤𝑇𝑥 + 𝑏 is the predictive function. 

– 𝑤𝑇𝑤 is the Manhattan Standard (also known 
as L1 standard). 

4 Results and Discussion 

The classic model (convolutional neural network 
using Softmax) has been designed and another 
CNN+SVM hybrid model has been designed. We 
evaluate the results of both models in the BCC 
classification and compare which of them gives 
better results. 

As mentioned in Section 3, the images used for 
training, validation and testing of the neural 
network were provided with the HAM10000. The 
dataset initially had 10,015 dermatoscopic images, 
but with the data augmentation technique, 19,267 
images were available, dividing this data into 
10,837 training images, 3,613 validation images 
that are used for training evaluation and the rest 
4,817 were used for the test evaluating the model 
with metrics of precision, accuracy, recall and 
f1- score.  

To compare the performance of the classic 
model (Softmax) and the CNN+SVM hybrid model, 
the configurations for both cases are presented. 

The training configuration for the classic model 
(Softmax) to classify the BCC is: 

– Epochs: 150, 

– Batch size: 80, 

– Optimizer: Adam, 

– Activation function in the last layer: Softmax, 

– Loss function: Cross entropy. 

The training configuration for the CNN+SVM 
hybrid model to classify BCC is: 

– Epochs: 150, 

– Batch size: 80, 

– Optimizer: Adam, 

– Activation function in the last layer: Linear, 

– Loss function: L1-SVM. 

4.1 Results and Evaluation of the Classic 

Model to Classify the BCC 

For training evaluation, training data were used 
with 10,837 images and validation with 3,613 
images, where precision and losses are evaluated. 
They were measured on a graph with the number 
of epochs vs. precision and another graph with the 
number of epochs vs. losses. 

As it can be seen in Figure 3, the training of the 
validation data tends to increase from epoch 0 to 
epoch 40 to 94%, but then starting from epoch 40 
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training tends to remain constant with 
certain  fluctuations. 

In Figure 4, it can be noted that the losses of 
the validation data tend to decrease until about 
epoch 20 and then begin to rise gradually with 
abrupt fluctuations. The classic model has quite 
acceptable training with approximately 94% 
precision, but Figure 4 losses tend to rise sharply 
giving a less stable convergence.  

In Figure 3 and in Figure 4, a great overfit is 
being evidenced in the classic model. With this, we 
do not ensure that the model when receiving new 
BCC images can correctly classify whether or not 
the BCC is presented. 

The classic model is then evaluated using the 
4,817 test or testing data to calculate the precision, 
accuracy, recall and f1-score metrics, which are 

obtained with the confusion matrix, from which we 
extract 2328 True Positive (TP), 2280 True 
Negatives (TN), 85 False Negatives (FN) and 124 
False Positives (FP). 

From the TP, TN, FN and FP, we can obtain the 
precision metric, in which 95.66% was obtained, 
which is understood as the total positive 
observations correctly predicted among the total of 
the data and for the following metrics of accuracy, 
recall and F1-Score. The results are summarized 
in Table 2, where they are divided into metrics for 
“BCC”, “Non-BCC” or a weighted average of 
these  metrics. 

The average accuracy is 95.67%, which is 
understood as the relationship between the 
positive observations correctly predicted and the 
total positive observations correctly predicted and 

 

Fig. 3. Precision evaluation for the classic model 

 

 

Fig. 4. Loss evaluation for the classic model 

 

Fig. 5. Precision evaluation for the CNN+SVM 

hybrid model 

 

Fig. 6. Loss evaluation for the CNN+SVM 

hybrid model 
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the total positive observations (true positives and 
false positives). With the recall metric, 95.66% was 
obtained, which is the proportion of positive 
observations correctly predicted to all observations 
in the expected class. For F1 score, the result of 
95.66% was obtained, which is the weighted 
average of accuracy and sensitivity. 

Therefore, this score takes into account both 
false positives and false negatives. Intuitively, it is 
not as easy to understand as accuracy, but F1 is 
usually more useful than accuracy, especially if it 
has an unequal class distribution. In our data set, 
there is a small imbalance between the classes 
“BCC” and “Non-BCC”, thus, this metric is taken 
into consideration.  

4.2 Results and Evaluation of the Hybrid Model 

(CNN+SVM) for BCC Classification  

In the case of the CNN+SVM hybrid model, training 
is also evaluated, where training data with 10837 

images and validation with 3613 images are used, 
to analyze the precision and losses achieved, 
which we measure with a number graph of epochs 
vs precision and another graph with the number of 
epochs vs losses 

As can be seen in Figure 5, at the beginning of 
the training the precision of the validation data 
fluctuates between 85% and 90% and the 
precision begins to rise from the epoch 40, then the 
precision increases along with the number of 
epochs until reaching the 100th epoch with 95% 
precision approximately where the precision 
achieved by the validation data is stabilized.  

In the same way for Figure 6, the losses of the 
validation data tend to fluctuate until epoch 40 and 
then the losses are gradually stabilized as the 
number of epochs progresses. 

Then the CNN+SVM hybrid model was 
evaluated using the 4817 test or testing data to 
calculate the precision, accuracy, recall and f1-
score metrics. These metrics are obtained from the 
confusion matrix, where we obtain 2334 True 
positive (TP), 2300 True negative (FN), 79 False 
negative (FN) and 104 False positive (FP). 

From the TP, TN, FN and FP we can obtain the 
average of the precision metric in which 96.2009% 
was obtained and for the following accuracy, recall 
and F1-Score metrics Table 4 is presented, where 
they are divided into metrics for “BCC”, “Non-BCC” 
or a weighted average of these metrics. 

Then, from the average results obtained from 
the CNN+SVM hybrid model with the metrics of 
precision, accuracy, recall and f1-score, we obtain 
96.200%, 96.200995%, 96.205860% and 
96.200955% respectively. 

4.3 Comparison of the Classic Model Versus 

the Hybrid Model to Classify the BCC  

As shown in Table 5 below, a comparison of the 
metrics obtained by both models is presented. 

It is clearly seen that the CNN+SVM hybrid 
model achieves better results to classify the BCC 
in all the proposed metrics, with an improvement of 
approximately 1% for all the metrics, also if we 
evaluate the graphs of losses of both models 
(Figure 4 and Figure 6) we can conclude that the 
CNN+SVM hybrid model has a much smaller 
overfitting and does not tend to rise and therefore 
has a better generalization capacity, so we can 
conclude that the CNN+SVM hybrid model 

Table 1. Confusion Matrix of the classic model 

BCC Classification 

Prediction 

BCC 
Non-
BCC 

Observation 

BCC 2328 85 

Non-
BCC 

124 2280 

Table 2. Metrics of the classic model 

 Accuracy Recall F1-score 

BCC 94.94% 96.48% 95.70% 

Non 
BCC 

96.41% 94.84% 95.62% 

Average 95.67% 95.66% 95.66% 

Table 3. Confusion matrix of the CNN+SVM 

hybrid model 

BCC Classification 

Prediction 

BCC 
Non-
BCC 

Observation 

BCC 2334 79 

Non-
BCC 

104 2300 
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exceeds the classic model both in metrics as in 
model training. 

4.4 Discussion 

The results obtained from our CNN+SVM hybrid 
model that classifies the BCC, has been compared 
against other works considered in the state of art. 
In Table 6, the comparison with other 
investigations is shown where the technique used, 
and the results achieved are described. 

The study carried out in [9] presents a 
convolutional neural network architecture to detect 
BCC using optical coherence tomography (OCT) 
images. These types of images are collected using 
laser scanner, originally their dataset only had 40 
images (30 normal and 10 with bcc) which was 
applied the technique of data increase reaching 
59,112 images labeled non BCC and 48,970 
images labeled BCC, it should be noted that in their 
results they obtained 95.35% and 95.2% for 

accuracy and recall metrics respectively. 
Comparing with our research, we use 10,015 
dermatoscopic images that are different. They 
were increased to 19,267 images. Compared with 
our results, we managed to improve accuracy and 
recall metrics with 96.20% and 
96.21%  respectively. 

In the study conducted by [7], the authors 
proposed a residual neural network method that 
seeks to automatically diagnose BCC, they used 
two datasets, a public dataset called “Skin Lesion 
Analysis Towards Melanoma Detection” of the ISBI 
2016 and another dataset of the International Skin 
Imaging Collaboration (ISIC) in total they used 
12,160 dermatoscopic images, in their results they 
reached 93% precision. 

In contrast to our research, we used the dataset 
(HAM10000) with 19,267 dermatoscopic images 
and we achieved a better result of 96.20% 

Table 4. Metrics of the CNN+SVM hybrid model 

 Accuracy Recall F1-score 

BCC 95.73% 96.73% 96.23% 

Non-BCC 96.68% 95.67% 96.17% 

Average 96.20% 96.21% 96.20% 

Table 5. Comparison of metrics of the classic and CNN+SVM hybrid model 

 Accuracy Recall F1-score Precision 

Classic 95.67% 95.66% 95.66% 95.66% 

Hybrid 96.20% 96.20% 96.20% 96.20% 

Table 6. Comparison of results with other investigations that classifies the BCC 

Author Technique Precision Accuracy Recall F1-score 

D. Mandache [9] CNN 95.93% - 95.2% - 

H. Huang [10] CNN 93% - 77% - 

E. V. Putten [7] ResNet 93% - 97% - 

P. Kharazmi el al. [8] 
Random 

Forest 
- 82.7% 82.4% - 

Proposed Model CNN+SVM 96.20% 96.20% 96.20% 96.20 % 
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precision, in addition, we presented training graphs 
and the losses of the model. 

In the study carried out by [10], the authors 
propose a method based on a scattered stacked 
autoencoder (SSAE), which is an unsupervised 
learning method with a fully connected 
architecture. They manage to detect BCC in the 
translucent areas of clinical lesion images. They 
obtained results of precision 93% and recall 77%. 
Comparing to our research, we use dermatoscopic 
images, when it comes to results, we manage to 
overcome them in precision: we reach 96.20% and 
recall 96.21%. 

In the research carried out by [8], the authors 
present a segmentation method for the precise 
extraction of cutaneous blood vessels in 
dermatoscopic images for the classification of 
BCC. For this, they used a dataset composed of 
659 images of normal dermatoscopy and cancer 
lesions. In their results, they reached 82.7% and 
82.4% with the metrics of accuracy and sensitivity 
respectively, in addition, it is linked to the detection 
of blood vessels on skin lesions.  

In our investigation, we managed to overcome 
their results with accuracy 96.20% and sensitivity 
96.21%. As for the techniques used to classify the 
BCC as in [9], they used a convolutional neural 
network, which they adapted to VGG architecture 
ideas. In another investigation [10], a classical 
convolutional neural network was used, in [7], 
ResNet was used, and in [8], Random Forest was 
used, none of these proposals have proposed 
using a hybrid model to classify the BCC, 
comparing with our research, where we propose 
the CNN+SVM hybrid model and the results 
exceed the results of the classic model by 1%. 

There are proposals for the CNN+SVM hybrid 
models as can be seen in [12], but they are for 
classifying images of microscopic bacteria, in [13], 
with the hybrid model they classified the wear state 
of drills based on images of perforated holes and 
in [14] with the hybrid model, they classified a 
person’s gender by the way they walk. Previous 
research managed to overcome the classic 
Softmax model in terms of their results. Comparing 
our research, we classify the existence of the BCC 
with our CNN+SVM hybrid model, we also surpass 
the classic model by 1% and, in addition, our hybrid 
model has better convergence. 

5 Conclusions and Future Work 

In this investigation, we designed a CNN+SVM 
hybrid model to classify carcinoma (BCC). The 
hybrid model developed using the HAM10000 
dataset has demonstrated better performance than 
the classic convolutional neural network to classify 
the BCC, as could be seen with the results: our 
hybrid model achieved approximately 1% 
improvement in all the proposed metrics and a 
remarkable improvement in the convergence of the 
model. As future work, different image 
segmentation techniques can be tested, which 
allows increasing the accuracy of the CNN+SVM 
hybrid model. This model can also be adapted to 
classify other types of carcinoma. 
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