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Abstract. In this work, we present the design and
implementation of an assistive device for people with
hearing disabilities, which allows words from Mexican
Sign Language to be translated into verbal language.
The device consists of a wearable embedded computer
with a camera and a pair of gloves. The system captures
the hand-gesture images, extracts features from the
gloves, and runs an Artificial Neural Network as a
classifier. Our system achieves an average precision of
88% and an average recall of 90% on 20 signals.

Keywords. Assistive devices, Mexican sign language,
computer vision.

1 Introduction

The social inclusion of people with hearing
disabilities is a current issue. On occasions,
they continue to be excluded in the social
environment due to their economic situation,
physical characteristics, and communication lim-
itations. In this work, we designed and
implemented a prototype to help users with
deaf-mute disabilities. The prototype consists
of an embedded device that uses computer
vision techniques and artificial neural networks

to identify, characterize, classify, and recognize
words from the Mexican Sign Language. The
device’s fundamental purpose is to allow essential
communication between a hearing person who
does not know Mexican Sign Language and a
deaf-mute person by translating hand signs to
speech in order to assist communication.

2 Related Work

There are different technologies to support the
communication of people with hearing disabilities.
Among them are mobile applications, such as
Okisign [5], an application for educational purposes
with a 581-word dictionary of Mexican Sign
Language (MSL). This app includes a module
to convert text to voice and vice versa, to
communicate deaf and hearing. However, it
is an application in development that cannot
fully translate MSL. Also, it requires an internet
connection to function and is ineffective for people
with hearing disabilities who cannot read and write.
Another application is Signamy [16], a mobile
application that facilitates the learning of Sign



Language to improve communication between deaf
and hearing people. This tool uses a virtual
mediator that allows viewing categories and words
of the Mexican Sign Language (MSL) and the
American Sign Language (ASL), in addition to
having a website to learn them. The work
developed by [7], is a mobile application based on
the Android operating system, focused mainly on
facilitating the learning of the alphabet, verbs, and
pronouns of the Mexican sign language.

However, the problem with the aforementioned
mobile applications and websites is that even
when they translate or teach MSL interactively,
only a few listeners are interested in learning it.
Consequently, they do not often visit websites and
also don’t download the apps.

Other technologies are based on electronic
systems and Artificial Intelligence techniques, such
as sign-translating gloves, which use sensors
to identify and reproduce in text or audio the
movements of the hand made by a person with
hearing problems [17, 9, 14, 11].

In the proposal presented by [13], the segmen-
tation of images that contains the Mexican sign
language alphabet is performed and is used to
train a neural network that allows each sign to
be automatically recognized to control the tasks
of a service robot. In other words, each sign is
associated with a task that the robot must perform.

In 2010, Microsoft launched the Kinect sensor, a
motion detection device that provides synchronized
color and depth data and the user’s body skeleton.
Due to its low cost and accessibility, the Kinect
sensor has been widely used in various works
to identify hand gestures, for example, in [19],
the recognition and verification of phrases of
the American Sign Language were achieved for
educational games focused on deaf children.

Regarding the use of neural networks for
the recognition of static single-handed alphabets
of MSL, in [13], a camera-based system was
developed for data acquisition and the use
of neural networks to control a service robot
using MSL. Twenty-three alphabet signs were
segmented using active contours and obtained an
accuracy of 95.80%. In 2015, in the work of Galicia
et al. [4] proposes a system that converts Mexican
Sign Language into Spanish speech.

They used the Kinect sensor to capture 867
images that were trained using decision trees
and neural networks with an accuracy of 76.19%.
Another approach that uses the Kinect sensor
for MSL single/double-handed word recognition is
presented in [6]. They collected 700 samples
of 20 Mexican words, from which skeleton data
was extracted and forwarded to the training phase.
The signs were then classified using dynamic
time warping algorithm achieving an accuracy of
98.57% on real-time data.

According to the study developed in [18]
regarding the different data acquisition techniques
used by MSL systems, 33% use cameras, and
67% Kinect. In this work, we recognize a subset
of MSL using a system based on a collar with
a camera. The processing is performed on an
embedded computer. We use Scale Invariant
Feature Transform (SIFT) for feature extraction and
a neural network for classification. Our system
achieves an f1 score of 88%.

3 Method

This section describes the methodology used for
the design and construction of the assistance
device that allows the translation of twenty words
from the MSL. The words are street, field, house,
downtown, movie theater, city, address, building,
school, party, hospital, hotel, church, garden,
graveyard, park, restaurant, supermarket, theater,
and university. These words were selected to
achieve communication in concurrent places. The
assistive device performs three main tasks (see
Figure 1), which consist of:

— Capture the image. We acquire the image
containing the signal made by the person
with hearing problems using a camera,
as indicated in the conceptual design in
Figure 2a.

— Image processing. We used a Raspberry
Pi to perform image processing and sign
recognition.



— Sign-to-speech synthesis. Once the sign
is recognized, the Raspberry Pi synthesizes
the speech. It is worth mentioning that the
receiver is a person without hearing problems
and who does not know the MSL.

3.1 Conceptual Design

To select the most suitable design that fits
the end-user, in this case, a person with
hearing impairment who uses sign language
to communicate, we proposed three designs
where we consulted a sign language expert to
determine the prototype’s design characteristics
based on motion sensitivity and camera stability for
image acquisition, field of view, adaptation of the
embedded system with the camera, ergonomics,
cost, and accessibility. The proposed designs, are
the following:

— A collar (see Figure 2a).

— Glasses (see Figure 3a).

— A Miner headlamp (see Figure 4a).

3.2 Design Features

This section describes the technical characteristics
and usability of each design.

3.2.1 Motion Sensitivity and Camera Stability

To determine the stability of the three designs: a
collar, glasses, and miner headlamp; we developed
a test that measures the camera movement when
gesturing a MSL signal. For this, we used a
gyroscope MPU5060, and measured the angular
velocity in radians/sec expressed in the graph in
degrees/sec for the three rotation values: yaw,
pitch, and roll.

In the case of the collar, we placed the
sensor at the chest height (see Figure 2a),
resulting in a suitable option because the camera
is located at the height where the signs are
performed. Also, regarding camera stability, when
the person communicates with someone else, the
body’s involuntary movements may not significantly
influence the camera motion and allow the system

to acquire images correctly. It can be seen in
Figure 2b, that the oscillations x, y, z are minimal.
Yaw (rotation on the x-axis) is shown in red,
pitch in green (rotation of the y-axis), and roll in
yellow (where it rotates on its axis representing the
z-axis).

Figure 3a shows the glasses design. The main
disadvantage of this design is the camera position
since many words in MSL are expressed at the
abdomen’s level. Figure 3b shows the camera
stability expressed as the gyroscope oscillations in
the three axes. It rarely stabilizes due to involuntary
head movements when expressing a word in MSL.

In the miner headlamp design (see Figure 4a),
the location of the camera is not feasible due to the
high height making it difficult to capture the hands
correctly. Figure 4b shows the camera stability
expressed with the camera motion in the three
axes. In this design, there is even more oscillation
than the glasses design.

3.2.2 Camera’s Field of View

We evaluate the camera’s field of view in each
of the proposed designs. The tests involved
placing the camera in the area considered for each
conceptual design and record hand signs. We
concluded that the camera installed in the collar is
the one with the best field of view.

3.2.3 Camera Connection with the Embedded
System

An essential part of this research project is to
achieve portability and comfort to the user. The
camera must be of adequate size so that it is
not invasive for the user and properly capture the
sign images. When testing with potential users
of the prototype, the glasses design achieved the
lowest rating. Even though the camera is small, it
covers part of the glasses and reduces the user’s
visibility. In addition, the wiring from the camera to
the embedded board is not feasible for lenses and
the miner headlamp.



Fig. 1. IDEF-0 diagram level A0

(a) Collar design (b) Camera stability

Fig. 2. Conceptual design. (a) Collar design with a
camera. (b) The graph shows the three orientation
values, the red plot represents the yaw (the rotation on
the x-axis), the green plot depicts the pitch (the rotation
on the y-axis), and the yellow plot is the roll (rotation on
the z-axis)

3.2.4 Ergonomics, Portability and Cost

Ergonomics is one of the essential points to
consider since the prototype is meant to be used
by users who communicate using MSL. For this
reason, we interviewed experts in sign language.
Among the main conclusions of the interviews
is that the device should not interfere in the
area, where the hard of hearing person exercises
his/hers speech.

(a) Glasses de-
sign

(b) Camera stability

Fig. 3. Conceptual design. (a) Glasses design with
a camera. (b) The graph shows the three orientation
values, the red plot represents the yaw (the rotation on
the x-axis), the green plot depicts the pitch (the rotation
on the y-axis), and the yellow plot is the roll (rotation on
the z-axis)

Regarding portability, it is more feasible to wear
a collar, than glasses which the user considers
may interfere with her vision, or in the case of the
miner headlamp, it is annoying to wear it after a
certain time.

Concerning cost, we took into account the
hardware mount, such as the collar, the glasses,
the headlamp, and the electronic equipment such
as the embedded card, the camera, battery, and
LED indicators. We found the collar as the
cheapest design.



(a) Miner headlamp design (b) Camera stability

Fig. 4. Conceptual design. (a) Miner headlamp design
with a camera. (b) The graph shows the three orientation
values, the red plot represents the yaw (the rotation on
the x-axis), the green plot depicts the pitch (the rotation
on the y-axis), and the yellow plot is the roll (rotation on
the z-axis)

Fig. 5. Random pattern used to generate highly
detectable features for pattern recognition

3.2.5 Accessibility

We performed a feasibility analysis for the
acquisition of the required hardware to build the
prototype.

Table 1 shows the results obtained regarding the
design specifications.

In conclusion, through our analysis involving
the technical and usability specifications of each
design, the most suitable is the collar, which can
be adjusted to the area where the hand-signs
are produced without influencing the involuntary
movements of the person who wears it. Also,
placing the collar at the chest level allows the user
to freely move their arms to produce the signs,
besides being ergonomic and portable.

Fig. 6. Signs in Mexican Sign Language (MSL)

Table 1. Specifications of each design

Features Collar Glasses Miner headlamp

Ergonomics 3 5 5

Cost 3 5 5

Accessibility 5 5 5

Motion sentivity 5 3 2

Camera adaptation 5 2 3

Camera’s field of view 5 1 2

Total 26 21 22

*Where five is the best and one is the worst

3.3 Glove Design for Pattern Recognition

To recognize the hand gestures automatically, we
designed a custom glove. We analyze which parts
of the hand are visible from the collar camera
perspective when gesturing each word using the
MSL and place patterns that allow robust feature
extraction for each sign. Figure 5 shows the
pattern that we used to generate highly detectable
features using SIFT/SURF [12, 2]. This pattern
was designed by Li et al. [10] to calibrate multiple
cameras. However, in this work, we use it to
characterize each sign gestured in the MSL.

From the analysis made to the twenty signs (see
Figure 6) that will be translated by the device, we
obtained eighteen zones around the gloves, as
shown in Figure 7.



Table 2. Input and output vectors of the neural network

Sign Input Output

CALLE [d1,d2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CAMPO [0,0,0,0,0,0,0,0,0,0,0,0,0,0,d15,0,0,0,0] [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CASA [0,0,d3,0,0,0,0,0,0,0,d11,0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CENTRO [0,0,0,d4,d5,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CINE [0,0,0,0,0,d6,d7,0,0,0,0,0,0,0,0,0,0,d18,0] [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

CIUDAD [0,0,0,0,0,0,0,d8,0,0,0,0,0,d14,0,0,0,0,0] [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

DIRECCIÓN [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,d19] [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

EDIFICIO [0,0,0,0,0,0,0,0,0,0,d11,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]

ESCUELA [0,0,0,0,0,0,0,d8,0,0,0,0,d13,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]

FIESTA [0,0,d3,0,0,0,0,0,0,0,0,0,0,0,0,d16,0,0,0] [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]

HOSPITAL [0,0,0,0,0,d6,d7,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]

HOTEL [0,0,0,0,0,0,0,d8,d9,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]

IGLESIA [0,0,0,0,0,0,0,0,0,d10,d11,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]

JARDÍN [0,0,0,0,d5,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]

PANTEÓN [0,0,0,0,0,d6,d7,0,0,0,0,d12,0,0,d15,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

PARQUE [0,0,0,0,0,d6,d7,0,0,0,0,d12,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]

RESTAURANTE [0,0,d3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

SUPERMERCADO [0,0,0,0,0,0,0,0,0,0,0,d12,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]

TEATRO [0,0,0,0,0,0,0,d8,d9,0,0,0,0,0,0,0,d17,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]

UNIVERSIDAD [0,0,0,0,0,0,0,0,d9,0,0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Fig. 7. Glove design according to the characteristics of
the words in MSL that we want to recognize. (a) Design
of inner part glove, (b) Design of outer part glove, (c)
Design of outer side part glove, (d) Design of inner side
part glove

Figure 8 shows a Mexican sign language of
the word “calle” and its adaptation in the glove to

Fig. 8. Mexican sign language of the word “calle” and
its adaptation in the gloves to characterize it. The red
boxes show the chosen areas to place the patterns to
characterize this sign

characterize it. In the figure, the red rectangles
show the chosen zones that characterize this



Fig. 9. Feature detection and matching between the
fixed pattern for the sign “calle” (left) and the same sign
performed afterwards

particular sign. The supplementary material
sections shows the rest of the ten signs. We used
the Scale Invariant Features Transform (SIFT)
algorithm to find features in the gloves and match
them with fixed sign patterns. Figure 8 shows that
this sign has three defined zones; these zones
are used to characterize the signal by finding
enough SIFT feature matches inside these zones,
as shown in Figure 9. We then compute the
centroids of the points lying inside each zone. For
example, for the “calle” sign, we compute three
centroids, as shown in Figure 10.

We then compute normalized distances between
the centroids and fixed hand locations. For
example, Figure 11 shows the distances between
the centroids obtained on two fingers zones and
the wrist zone. The supplementary materials
sections shows the rest of the twenty signs.

The Euclidean distance is computed with
equation 1, where the centroid of one regions is
represented as (xi, yi) and the centroid of the fixed
region is represented as (xj , yj):

d =
√
(xi − xj)2 + (yi − yj)2. (1)

For each sign, we compute a total of 19
distances generating a 19-dimensional sparse
vector that is used as input for the neural network.

3.4 Neural Network Design

To classify the signs, we used a supervised
fully-connected feed-forward network shown in
Figure 12. We use Rectified Linear Units (ReLU)
as activation functions on the hidden layers and a
softmax activation at the output layer.

Fig. 10. Zones centroids. Each blue box represents a
zone and the red marker indicates the centroid of the
feature matches found inside each zone

Fig. 11. Euclidean distances between the centroids of
two finger zones and the left wrist zone

The input, represented by the first layer, contains
19 input values, each corresponding to the
labeled distances. For example, the “calle”
sign is represented as a vector with the form:
[d1, d2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] where
d1 and d2 are the distances found for that sign.
Using the validation data, we empirically conclude
that three hidden layers with 40 neurons give the
optimal results for this task. Finally, the output is of
size twenty, to be able to classify among the twenty
different signs.

Table 2 shows the shape of the input and output
vectors for each of the signs to classify.



Fig. 12. Feed-forward Neural Network used to classify
the signs

Fig. 13. Design of the board and camera enclosure. This
enclosure is held by a pendant along the neck

4 Results

4.1 Prototype

Given the specifications of the project, we planned
the usage of the device for the search of places,
that is why the main characteristic that the design
of this prototype must meet are: wearable,
comfortable and flexible for the user.

4.1.1 CAD Design

Figure 13 shows the design of the board and
camera enclosure. To power the embedded board,
we use a portable battery, to which we also design
a holder shown in Figure 14. Figure 15 shows the
complete hardware device as it is intended to be
worn by the users.

Table 3 shows the hardware specifications.

Fig. 14. Battery holder. The box contains the battery
inside that supplies power to the embedded board,
camera and the LEDs shown in this design. This battery
holder is attached to the pants’ belt

Table 3. Hardware Specifications

Hardware Length Width Height

Enclosure 80 mm 38 mm 25 mm

Battery holder 150 mm 20 mm 68 mm

Battery 138 mm 30 mm 61 mm

Camera 6 mm 3.5 mm 6 mm

Enclosure holder 120 mm 17 mm 48 mm

4.1.2 Electronic Design

For the embedded board, we use a Raspberry Pi
Zero W with the following specifications relevant to
our system:

— 1GHz single-core CPU.

— 512 MB de RAM.

— Micro USB power.

— CSI camera connector.

According to the specifications, the Raspberry
Pi Zero W consumes 150mA during typical use.
We placed a push-button to trigger the camera and
start the processing. We also put three LEDs, a
red LED to indicate when the Raspberry is on, a
yellow LED to indicate when the image is being
processed, and a green LED shows when the
sign-to-speech is played on the speaker. Each LED
consumes 10mA, the camera consumes 250mA at
5V . Adding up all the currents results in 430mA.
We chose a 10000mAh battery with a duration
given by (10000mAh/430mA) = 23.25hr



Fig. 15. Complete system. The image shows a user
wearing the full system. The board enclosure and
camera hanging on the neck, the battery holder attached
to the belt and the gloves

4.1.3 Camera and Speech Synthesis

To select a suitable camera, we considered
the field-of-view (FOV), resolution, and hardware
compatibility. After testing multiple cameras, we
decided to use the PiCamera V2 model with a
diagonal FOV of 79◦, and a working resolution of
640× 480 pixels.

For the speech part, we recorded the audio of
twenty words corresponding to each of the signs
and reproduce the audio files using the Pygame
library [15] when a known signal is detected.

4.2 Classification Results

We collected around 3600 images of hand signals
for training and 400 images for testing the neural
network. We train the model using Keras [3] and
Tensorflow libraries [1].

The testing data consists of around 20 samples
for each of the twenty signs performed by
multiple people.

To evaluate the performance of our method,
we calculate the Precision, Recall, and F1-score.
Table 5 shows these metrics for twenty words of
the Mexican Sign Language. These metrics are
based on the correctly/incorrectly classified signs
which are defined with the true positives (TP),
false positives (FP), true negatives (TN), and false
negatives (FN) described below [8]:

— True Positive (TP) refers to the number
of predictions where the classifier correctly
predicts the positive class as positive.

— True Negative (TN) refers to the number
of predictions where the classifier correctly
predicts the negative class as negative.

— False Positive (FP) refers to the number of
predictions where the classifier incorrectly
predicts the negative class as positive.

— False Negative (FN) refers to the number
of predictions where the classifier incorrectly
predicts the positive class as negative.

The Precision represents the proportion of
positive identifications that were actually correct.
For example, for the sign “hospital” (see Table 5),
a Precision of 0.9 means that when it predicts a
sign as “hospital”, it is correct 90% of the time. The
Precision is calculated with equation 2:

Precision =
TP

TP + FP
. (2)

The Recall represents the proportion of actual
positives correctly identified.



Table 4. F1 F1 score obtained with each experiment

2 hidden layers 3 hidden layers 4 hidden layers

20 30 40 50 20 30 40 50 20 30 40 50

Sign neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons neurons

Calle 0.896 0.820 0.923 0.938 0.935 0.936 0.952 0.885 0.857 0.897 0.744 0.875

Campo 0.966 0.740 0.966 1.000 0.909 0.952 0.947 0.929 0.968 0.889 0.889 0.806

Casa 0.877 0.910 0.897 0.760 0.857 0.806 0.808 0.735 0.774 0.769 0.500 0.654

Centro 0.889 0.830 0.889 0.929 0.909 0.919 0.949 0.893 0.909 0.873 0.967 0.889

Cine 0.817 0.760 0.707 0.706 0.769 0.736 0.800 0.718 0.641 0.800 0.875 0.812

Ciudad 0.812 0.850 0.767 0.789 0.691 0.737 0.862 0.778 0.875 0.800 0.848 0.824

Dirección 0.909 0.800 0.909 0.824 0.846 0.835 0.947 0.929 0.949 0.966 0.889 0.929

Edificio 0.786 1.000 0.627 0.794 0.733 0.762 0.820 0.667 0.764 0.644 0.714 0.724

Escuela 0.912 0.860 0.808 0.873 0.847 0.860 0.893 0.847 0.873 0.909 0.873 0.909

Fiesta 0.947 0.900 0.947 0.947 0.966 0.956 0.935 0.870 0.923 0.947 0.947 0.875

Hospital 0.769 0.930 0.714 0.754 0.722 0.738 0.833 0.800 0.787 0.800 0.612 0.794

Hotel 0.792 0.810 0.745 0.808 0.808 0.808 0.820 0.842 0.792 0.794 0.833 0.857

Iglesia 0.714 0.800 0.824 0.868 0.767 0.814 0.800 0.808 0.824 0.724 0.745 0.846

Jardı́n 1.000 0.900 1.000 1.000 0.983 0.991 0.984 0.938 0.984 1.000 0.929 1.000

Panteón 0.929 0.700 0.921 0.967 0.951 0.959 0.949 0.951 0.947 0.915 0.966 0.935

Parque 0.871 0.900 0.862 0.885 0.897 0.891 0.912 0.881 0.877 0.912 0.918 0.903

Restaurante 0.754 0.740 0.867 0.833 0.800 0.816 0.889 0.909 0.767 0.704 0.741 0.792

Supermercado 0.873 0.890 0.893 0.868 0.889 0.878 0.893 0.893 0.862 0.862 0.868 0.881

Teatro 0.781 0.840 0.831 0.794 0.806 0.800 0.765 0.814 0.778 0.857 0.686 0.814

Universidad 0.918 0.780 0.918 0.951 0.915 0.933 0.921 0.935 0.949 0.900 0.929 0.848

Average 0.861 0.838 0.851 0.864 0.850 0.856 0.884 0.851 0.855 0.848 0.824 0.848

Fig. 16. Confusion matrix



Table 5. Classification results on the testing set

Sign Precision Recall F1

Calle 1.000 0.909 0.952

Campo 0.900 1.000 0.947

Casa 0.700 0.955 0.808

Centro 0.933 0.966 0.949

Cine 1.000 0.667 0.800

Ciudad 0.933 0.800 0.862

Dirección 0.900 1.000 0.947

Edificio 0.833 0.806 0.820

Escuela 0.833 0.962 0.893

Fiesta 0.967 0.906 0.935

Hospital 0.833 0.833 0.833

Hotel 0.833 0.806 0.820

Iglesia 0.733 0.880 0.800

Jardı́n 1.000 0.968 0.984

Panteón 0.933 0.966 0.949

Parque 0.867 0.963 0.912

Restaurante 0.800 1.000 0.889

Supermercado 0.833 0.962 0.893

Teatro 0.867 0.684 0.765

Universidad 0.967 0.879 0.921

Average 0.88 0.90 0.89

For the sign “hospital”, a Recall of 0.8 means that
it correctly identifies 80% of all “hospital” signs. The
recall is calculated with equation 3:

Recall =
TP

TP + FN
. (3)

The F1 score is the harmonic mean of the
Precision and Recall and is calculated with
equation 4:

F1 = 2× Precision×Recall

Precision+Recall
. (4)

We performed the following series of experi-
ments varying the number of hidden layers and
number of neurons of the network:

— 2 hidden layers with 20 neurons.

— 2 hidden layers with 30 neurons.

— 2 hidden layers with 40 neurons.

— 2 hidden layers with 50 neurons.

— 3 hidden layers with 20 neurons.

— 3 hidden layers with 30 neurons.

— 3 hidden layers with 40 neurons.

— 3 hidden layers with 50 neurons.

— 4 hidden layers with 20 neurons.

— 4 hidden layers with 30 neurons.

— 4 hidden layers with 40 neurons.

— 4 hidden layers with 50 neurons.

For each experiment, we obtained the results
shown in Table 4. The best model was the one with
three hidden layers and 40 neurons. This model
contains 4400 parameters and can run in real time
in the Raspberry Pi.

Figure 16 shows a color-coded multiclass
confusion matrix. On the x-axis, we have the true
labels, and on the y-axis, we have the predicted
labels of our test set. A perfect classifier shows a
confusion matrix where we have values only on the
diagonal i.e., where we classify all the test samples
for all the ten classes correctly. The values in the
cells represent counts. For instance, the upper left
cell has a value 30, and the rest of the row have 0s
except on the “teatro” class with a value of three.
This means that we can correctly classify 30 out
of 33 test samples for the category “calle”, and the
system mispredicted three instances of “calle” as
“teatro”.

5 Supplementary Material: 19 signs

In the supplementary materials, we present the
rest of the nineteen signs performed with the
gloves and their distance vectors used for the
classification (Figure 17).



(a) Campo (b) Casa (c) Centro (d) Cine

(e) Ciudad (f) Dirección (g) Edificio (h) Escuela

(i) Fiesta (j) Hospital (k) Hotel (l) Iglesia

(m) Jardı́n (n) Panteón (o) Parque (p) Restaurante

(q) Supermercado (r) Teatro (s) Universidad

Fig. 17. Distance Vectors. The images show the distance vectors for the different sign gestures. These vectors are
used as inputs to the Artificial Neural Network for classification



6 Conclusion and Future Work

In this paper, we describe the development of a
hand-sign-to-speech translation device that can be
used for deaf and hard of hearing people to convey
places with a hearing person. Our system using
Computer Vision techniques and Artificial Neural
Networks achieved an average precision of 88%
and an average recall of 90% over twenty static
signs from the MSL. We describe three different
designs and select the most appropriate from the
user and technology standpoint. The system works
in real-time using a Raspberry Pi Zero board
bundled with a PiCamera V2.

As future work, we plan to incorporate more
static signs from the vast MSL to cover broader
user-case applications as well as dynamic signs.
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sonas sordas. último acceso 18 de Marzo de 2020.



17. Veerapalli, L., others (2015). Sign language
recognition through fusion of 5DT data glove and
camera based information. 2015 IEEE International
Advance Computing Conference (IACC), IEEE,
pp. 639–643.

18. Wadhawan, A., Kumar, P. (2019). Sign language
recognition systems: A decade systematic literature
review. Archives of Computational Methods in
Engineering, pp. 1–29.

19. Zafrulla, Z., Brashear, H., Starner, T., Hamilton,
H., Presti, P. (2011). American sign language
recognition with the Kinect. Proceedings of the 13th
international conference on multimodal interfaces,
pp. 279–286.

Article received on 31/07/2020; accepted on 02/04/2021.
Corresponding author is Diana-Margarita Córdova-Esparza.


