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Abstract. The fractal behavior is ubiquitously observed 

in measurements and characterization of traffic flow in 
high-speed computer networks of different technologies 
and coverage levels. This paper presents the results 
obtained when applying fractal analysis techniques on a 
time series obtained from traffic captures coming from 
an application server connected to the Internet through 
a high-speed link. The results obtained show that traffic 
flow in the dedicated high-speed network link exhibited 
fractal behavior since the Hurst exponent was in the 
range of 0.5, 1, the fractal dimension between 1, 1.5, and 
the correlation coefficient between -0.5, 0. Based on 
these results, it is ideal to characterize both the 
singularities of the fractal traffic and its impulsiveness 
during a fractal analysis of temporal scales. Finally, 
based on the results of the time series analysis, the fact 
that the traffic flows of current computer networks exhibit 
fractal behavior with a long-range dependency 
is reaffirmed. 

Keywords. Fractals, Hurst exponent (H), long-range 

dependence (LRD), fractal dimension (D), correlation 

coefficient (), time series. 

1 Introduction 

Fractal behavior and LRD are observed in many 
phenomena, such as in nature [1-6], in financial 
time series [7], in communication systems traffic [8-
12], and in heart rate time series [13,14]. This 
article characterized the time-series dynamics of 
traffic flows captured from a high-speed dedicated 

link connecting an application server and the 
Internet, by applying fractal analysis considering 
the following test: time-scale analysis (TSA), 
detrended fluctuation analysis (DFA), and power-
spectral analysis (PSA). 

The data analyzed correspond to the size of 
traffic frames of the central online applications 
server at Universidad de Santiago de Chile, which 
serves 9000 users connected online through the 
internet. This article analyzes two different types of 
traffic flows, SERV-1 and SERV-2. SERV-1 is the 
temporary series of frame sizes that are 
transferred to the server from the Internet and 
SERV-2 is the temporary series of frame sizes that 
are transferred from the server to the Internet. 
These traffic flows play an important role in 
determining the degree of smooth access to the 
corresponding application server and therefore the 
Quality of Service provided to users and the 
Quality of Experience that users perceive [15,16]. 

The traffic bursts over extensive periods reveal 
that the traffic flows under study are identified with 
a completely different nature from those predicted 
by a classic Poisson model related to the traffic 
flows of the old telephone system. For this reason, 
this research focuses on applying a broad battery 
of fractal analysis that reaffirms that traffic flow in 
current high-speed computer networks are fractal 
with LRD, regardless of their sources such as 
device requesting services [17]. This research is 
about a high-speed dedicated link and an on-line 
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application server. It should be noted that the time 
series come from the capture of packets on said 
link and therefore can be generalized in terms of 
the presence of traffic from both the Internet and 
from within the corporate network of the 
Universidad de Santiago de Chile. 

The article is structured as follows. First, we 
present the general aspects of fractal processes, 
followed by the key aspects of power-spectral 
analysis, detrended fluctuation analysis and time-
scale analysis. Then the main results obtained are 
presented and their validity is discussed. Finally, 
the principal aspects of the research are 
summarized, and the conclusions are presented. 

2 Theoretical Foundation 

2.1 Fractal Processes 

A Fractal Process (FP) is characterized by having 
a non-integer dimension, D. In addition, a FP has 
two characteristics inherent to its phenomenology: 

1. A FP is like itself even at different observation 
scales. This property is known as invariance at 
the scale. The Self-similarity exists when the 
process exhibits a similar behavior under an 
isotropic scaling [18]. 

2. A FP consists of a complex internal structure 
and shows the same behavior even in different 
magnification scales [18], i.e. FP it has a self-
similar hierarchical structure. 

Due to the scale invariance, a power-law 
behavior exists in between two parameters in a FP 
that is governed by the following relationship: 

( ) ,cf x x  (1) 

where f(x) is a function of a study object and c is 
a constant. 

On the other hand in [19] the way of estimating 
D is exposed based on the power-law behavior 
expressed by (1). Moreover, from the definition of 
fractal Brownian motion (fBm) presented in [20] it 
is necessary that a process fBm is governed by: 
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where H is the Hölder exponent of fBm process 
with 0 < H < 1.  
In addition, ( )

H
B t satisfies: 

[ ( )] 0,
H

E B t   (3) 
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From (5) the correlation coefficient, , between 

( )
H

B t increment can be written in the form: 
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where: 

— If t = t0, then 
0

( ) 0,
H

B t t   

— If t = –t, then ( ) ( ),
H H

B t t B t     

— ( ) ( )
H H

B t B t  for all t. 

Therefore, we have that: 

2 12 1.H    (7) 

Then, be y(t) a FP with Hurst exponent given by 
H and then for arbitrary process with: 

 

Fig. 1. Aggregation process of non-overlapping 

segments for a time series 

Table 1. Intervals of values for HE and D and their 

associated processes 

H D (9)  (7) FP Behavior 

> 0.5 < 1.5 Positive Persistent 

= 0.5 = 1.5 Random fBm 

< 0.5 > 1.5 Negative Non-persistent 
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𝑦(𝑐𝑡) ≜ 𝑐𝐻𝑦(𝑡),  𝑐 > 0, (8) 

also is a FP with the same statistical distributions 
that the process y(t), and in which it is verified that 
D is given by [19]: 

2 .D H   (9) 

Table 1 shows relationships between H, D, , 
and the FP behavior. 

2.2 Power-Spectral Analysis (PSA) 

Time series can be described in the time-domain 
by x(t), but can also be described in the frequency 

domain by Fourier Transform (FT), X(), where  
angular frequency. The autocorrelation function of 
a non-stationary time series x(t), is given by: 

( ) [ ( ) ( )] ,xxR t E x t x t dt 



    (10) 

and the FT of this autocorrelation function same 

with |X()|2, therefore the power-spectral density 

(PSD), S(), of a time series can be written as: 

𝑆(𝜔) ≜ |𝑋(𝜔)|2. (11) 

   

Using the Wiener-Khintchine theorem, the PSD of 
time series can be expressed as the FT of (10) 
as follows: 

( ) ( ) .j t

xx xxS R e d  





   (12) 

The power-spectral function provides an 
important parameter to characterize the 
persistence in time series. For a fractal time series, 
its power-spectral function [19] obey to the 
frequency based power-law behavior, and 
given by: 

𝑆𝑚(𝜔) ∼ 𝜔𝑚
−𝛽

,  with 𝑚 = 1,2, … , 𝑁/2, (13) 

where m = m/N, N the length of time series and  
is the spectral exponent that characterizes series 

persistence. The relationship between , H, and D 
is given by: 

2 1 5 2 .
E

H D      (14) 

This expression allows us to obtain the value of 
β using the least-squares method on the 
adjustment curves of H or D. 

The PSA method only provides the value of 
global H from the FT using a harmonic function. 
However, it is traditional in fractal analysis for its 
simplicity to obtain an estimate of the real 
value of H [21]. 

2.3 Detrended Fluctuation Analysis (DFA) 

The DFA has been widely used to determine the 
scaling properties of self-similar processes and to 
determine LRD on noisy and non-stationary time 
series. In general, this type of analysis is used to 
estimate the fluctuation of the RMS (Root-Mean-
Square) of series with and without trend (this last 
case is a variant of the analysis of the RMS of the 
processes based on the theory of random walks 
[22]), and also because it has the ability to detect 
LRD. The mathematical form of a time series Y(i), 
is given according to [23] by: 

1
( ) ( ),   with 1, , ,

i

kk
Y i x x i N


    (15) 

where xk is the sequence kth of the time series of 

length N, and x is its average. 

Then the series Y(i) given by (15) is regrouped 
in Ns  Int(N/s) on non-overlapping segments of 
equal length, s, as shown in Fig. 1, a process also 
known as aggregation. 

As it often happens, the lengths of the time 
series are not a multiple of the multiple of the time-
scale, s, so a short part of it remains at the end of 
the aggregate series. To solve this problem, the 
same procedure is repeated but this time starting 
from the opposite end and analyzing the remaining 
part at the start of the aggregate series; therefore, 
the total number of segments is 2Ns. 

After the aggregate time series composed of Ns 
segments of length s have been obtained, an 
optimal adjustment line is projected using the last-
squares method in each series to obtain the local 
tendency of each segment that composes it. The 
deviation of each time series is obtained from the 
subtraction of line of best fit of minimum squares 
and the variance is calculated by: 

𝐹2(𝑠, 𝑣) ≡
1

𝑠
∑{𝑌[(𝑣 − 1

𝑠

𝑖=1

)𝑠 + 𝑖] − 

𝐹2(𝑠, 𝑣) ≡             𝑦𝑣(𝑖)}2, 

(16) 

for each segment v, with v = 1,…, Ns, and: 
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𝐹2(𝑠, 𝑣) ≡
1

𝑠
∑{𝑌[𝑁 − (𝑣 − 𝑁𝑠

𝑠

𝑖=1

)𝑠 + 𝑖] − 

𝐹2(𝑠, 𝑣) ≡             𝑦𝑣(𝑖)}2, 

(17) 

for each segment v = Ns + 1,…, 2Ns, where yv(i) 
corresponds to the best adjustment line obtained 
by using the least-squares method in segment v. 

The last step of the DFA analysis is to obtain 
the average of all segments of each time series 
disaggregated to find the function given in detail by 
the equation: 

2 2

1

1
( ) ( , ),

2

sN

v
s

F s F s v
N 

   (18) 

where F(s) increases as s increases and is defined 

only for segments of length s  4. Therefore, the 
previous steps are repeated several times to obtain 
a data set of F(s) versus s, where the slope of the 
curve obtained from that graph represents the 

scaling exponent  if the series is correlated 
according to a long-range power-law.  

Therefore, F(s) and s are related by the 
power- law: 

𝐹(𝑠) ∼ 𝑠𝛼 . (19) 

Table 2 relates the scaling exponent  to 
different types of processes. 

2.4 Time-Scale Analysis (TSA) 

The methods presented in the previous sections 
are based on the development of a linear log-log 
type graph that only outputs a unique value of the 
H. These methods are insufficient in estimating the 
time-dependent Hurst exponent, H(t) [24,25]. The 
Wavelet Transform approach results in a powerful 
mathematical tool that serves to real both hierarchy 
of a FP and spatial distribution of the singularities 
of the fractal measurements. In this investigation 
only the Continuous Wavelet Transform (CWT) 
[26] is considered for temporal scales analysis to 
estimate H(t) [26]. It should be noted that in the 
literature H as a global (general) Hurst exponent 
and H(t) as local Hurst exponent is usual [27,28]. 

So the CWT is defined as [29]: 

*

,( , , ) ( ) ( ) ,x t aW t a x s s ds 



   (20) 

where * is the conjugate complex of  function, 
that for different observations scales is defined as: 

0.5

, ( ) ,t a

s t
s a

a
 

 
  

 
 (21) 

where a is the scale-parameter and a    1. 

In this investigation the Morlet Wavelet [30] is 
used for the TSA and its scalogram is defined as: 

2 2( , , ) ,x xE W t a a dtda
 

 
    (22) 

where Ex is the energy of function x. 

Therefore, scalogram is an energy distribution 
function of a signal in time-scale plane associated 
with dt da a–2. With respect to the above, it should 
be understood that, in general, any time series is a 
representation of a signal [31]. Thus considering 
time series with uniform H can be described as: 

|𝑥(𝑠) − 𝑥(𝑡)| ≤ |𝑠 − 𝑡|𝐻,  with 𝑐 ∈ ℝ. (23) 

Applying CWT for x(t) in (23): 

0.5
( , , ) ( ) ,

H H

xW t a a t t dt 



   (24) 

and the scalogram for this time series is given by 
the following expression [31]: 


  

2 2 ( ) 1
( , ) ( , ) ,  0.EH t

xt a W t a a a  (25) 

Based on (25) it is possible to estimate H(t) and 
write H as follows: 

1

0
( ) .

T

EH T H t dt   (1) 

Thus, the TSA provides both H and H(t). 

Table 2. Relationship between  and processes types 

 Process Type 

 (0, 0.5) Power-law anti-correlation 

 0.5 White noise 

 (0.5, 1) Long-range power-law correlation 

 1 1/f process 

> 1 fBm 
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Therefore, the Time-Scale Analysis (TSA) is a 
more powerful mathematical tool compared to PSA 
and DFA in FP analysis, since most traffic flows 
show multifractal scaling behaviors, and it is 
possible to characterize them with the fluctuations 
of H described by H(t). 

3 Fractal Analysis Development 

The power-spectral exponent, H, D, and  of the 
SERV-1 and SERV-2 estimated with PSA method 
are tabulated in Table 3. It is emphasized that the 
power-spectral exponent is defined in (13) and is 

related to H and D by means (14);  is related to H 
through (7).  

The results clearly show that the SERV-1 and 
SERV-2 time series exhibits fractal behavior with 
LRD that agrees with the theory. 

To test the accuracy of the DFA algorithm which 
used in this research, the algorithm is used to 
calculate the scaling exponent of three know 
scaling exponent generated signals, which are 
Brownian motion, persistence power-law, and anti-
persistence power-law processes with Hurst 

exponent H  0.50, H  0.80, and H  0.20 [31], 
respectively. The results are shown in Table 4. 

The results show that the scaling exponents 
obtained are consistent with the H for the three 
series generated, which verifies that DFA method 

Table 3. Numerical experiments for SERV-1 and SERV-2 time series considering HE, D, , and  

Temporary Series H D   

SERV-1 0.700.01 1.800.01 1.600.01 –0.250.01 

SERV-2 0.710.01 1.810.01 1.610.01 –0.240.01 

Table 4. Exponent of scaling () for different processes 

Time Series Type Hurst Exponent  according to DFA method  

Brownian Motion  H = 0.50 1.20 0.10 

Persistence power-law H = 0.80 1.51 0.09 

Anti-persistence power-law H = 0.20 1.80 0.03 

Table 5. Scaling exponent () for SERV-1 and SERV-2 time series 

Time Series 1  2  3  

SERV-1 0.65 0.04 1.08 0.05 2.01 0.05 

SERV-2 0.64 0.03 1.07 0.05 2.00 0.04 

Table 6. HE, Min {HE(t)], Max {HE(t)], and D for SERV-1 and SERV-2 

Time Series H Min {H(t)} Max {H(t)} D 

SERV-1 0.32 – 0.49 1.48 1.68 

SERV-2 0.27 – 0.26 1.15 1.73 
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carry out the fluctuation analysis without tendency 
is assertive to reproduce results. 

The scaling exponent of SERV-1 and SERV-2 
series estimated with DFA method are shown in 
Table 5. 

The results show complete coherence with the 
theory and that the behavior of the time series 
under study, respond to a fractal character with 
LRD. The experiment on the scaling exponent 
reflects both series respond to a behavior of the 
fractal type with LRD. 

The scalogram allows one to estimate the 
global H and local H(t) Hurst exponents for SERV-
1 and SERV-2 time series. The results applying the 
TSA method are summarized in Table 6. 

From the results given in Tables 3, 4, 5 and 6, 
it is shown that the two time series under analysis 
(SERV-1 that contains the frame sizes that are 
transferred to the server from the Internet and 
SERV-2 that contains the frame sizes that are 
transferred from the server to the internet) exhibit 
fractal characteristics with LRD. It is inferred, 
therefore, that the increase of samples for any of 
both series as a result of the extension of the 
observation time will not result in a modification of 
their nature, given that these two series have a 
behavior with LRD. 

Even when the Fourier Transform uses 
harmonic basis functions and the processing of 
non-stationary signals, the PSA is a good way to 
start with the initial measurements of non-
stationary time series that are suspected to have a 
fractal nature, as is the case of the time series 
presented in this investigation. 

Two of the main results obtained are: 

— H  0.70  0.01 in SERV-1 time series, 

— H  0.67  0.01 in SERV-2 time series. 

Results that show that both series respond to a 
fractal character with LRD. 

It is interesting to examine the results of the 
analysis of fluctuation without tendency, since they 
show that both time series present the 
characteristic crossing phenomenon described 
in [11]. 

In relation to the origin of this phenomenon, it 
can be explained from the fact that there are very 
short times between a service request and the 
server's response. This generates time series for a 

highly fluctuating uncorrelated process. As the time 
passes the signals show fluctuations that tend to 
soften, reflecting the dynamics of every current 
telecommunications system, resulting in an 

exponent   1 associated with a process 1/f. 

The results of TSA show that the considered 
time series are constitutive of extremely 
complicated systems that present a time-
dependent Hurst exponent which ranges from 

negative to positive values –0.50  H(t)  1.50 for 

the SERV-1 series and –0.30  H(t)  1.15 for the 
SERV-2 series. It is further noted that H(t) for the 
SERV-1 series has greater complexity than H(t) for 
the SERV-2 series. This difference can find an 
explanation in the following. For SERV-1, the data 
comes from thousands of points distributed on the 
internet to a server entry port, which will create a 
bottleneck in the server gateway. In addition, there 
is interaction between incoming signals and 
outgoing signals on the gateway during the period 
when the input signal is overloaded and causes 
network congestion. On the other hand, the SERV-
1 series turns out to be more regular since the data 
is transferred from the main gateway to thousands 
of points distributed on the internet, this transfer is 
clearly simpler compared to the case 
of incoming traffic. 

Since H(t) for series under study are outside the 

range –0.50  H(t)  1.50, they are very 
complicated systems that merit independent study 
to obtain a better description, both 
quantitative and qualitative. 

Notwithstanding the above, the TSA provides 
valuable information in comparison with the PSA 
and the DFA fact that allows us to study in detail 
the behavior of the complex system considered 
consisting of recorded data traffic flows from and to 
the internet from an online application server. 

4 Conclusions 

A detailed analytical study on long-range fractality 
and dependence for two time series of traffic has 
been presented. The series labeled SERV-1 and 
SERV-2 are examined by three methods: PSA, 
DFA and TSA. 

It is made clear that there are other techniques 
to examine LRD that are not addressed in this 
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investigation, such as dispersion analysis and 
maximum likelihood estimators. 

The main results are summarized as follows: 

1. The PSA reports that the series are fractal and 
have LRD given that the following conditions:  

: 1 <  < 2, H: 0.5 < H < 1; : –0.5 <  < 0,  
and D: 1 < D < 2. 

2. The analysis of fluctuation without trend shows 
that the series present the characteristic cross 
phenomenon of fractal processes with long-
range dependence [11]. 

3. The TSA reports that the time series under 
study, SERV-1 and SERV-2, present a time-
dependent Hurst exponent, outside the range 
(0, 1). Therefore, these time series require an 
advanced quantitative as well as qualitative 
description to improve the understanding of the 
series of internet traffic coming from a high 
demand environment as it is an online 
application server, it is more, it is recorded that 

H(t): –0.5  H(t)  1.5, H: 0.5 < H < 1.0, and D: 
1 < D < 2. 

Finally, it is demonstrated that fractality and LRD 
are presented in the series under study that 
represent traffic captures from a high-speed 
dedicated link. 
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