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Abstract. In this work, we proposed an approach for
autonomous driving based on the concept of following
and overtaking. This policy controls the vehicle to follow
a car ahead of it, and when getting closer, it applies
an overtaking step to pass the car and later on to get
incorporated to the lane again. For this work, we exploit
the robustness of Convolutional Neural Networks for
object tracking, which is used to track the car ahead
of our autonomous vehicle. We use the pixel position
of the tracker in combination with measurements from a
laser scanner sensor, as input signals in a PID controller,
responsible for driving the vehicle autonomously. We
have carried out evaluations of our proposed policy in the
Gazebo simulator, whose results indicate the feasibility
of our approach.
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1 Introduction

The technological advances of the last two
decades have made the development of an
autonomous car a reality. Advances in the fields of
engineering and science have enabled significant
car manufacturing companies to develop their
prototype autonomous cars for sale in the
coming decades.

Through the development of artificial intelligence
algorithms, autonomous cars are a visible reality
[3]. Some of the tasks involved in an autonomous
car are the detection of the road, to keep or
change lanes, as well as the detection of obstacles

used to overtake. In [6], the authors show
that overtaking is an even more difficult problem
compared to maintaining or changing lanes since
it is a composite of consecutive maneuvers: lane
change, overtake, and then lane change; which
are coordinated.

In this work, we propose a method for an
autonomous car to perform overtaking maneuvers.
Our proposal consists of a high-level control
policy based on object tracking using Single Shot
Detector (SSD) [5]. The aim is to detect a car in
front of our autonomous vehicle, which we call an
obstacle car. The detection indicates the policy
to drive the vehicle forward and calculates the
distance to the obstacle car. For the latter, the laser
scanner sensor was used. Once the obstacle car is
at a specific distance, a maneuver is made for the
autonomous car to avoid the obstacle car, overtake
it and then get into the lane using a PID controller.

To carry out this work, we simulated an
environment in Gazebo, running on the Robotic
Operating Systems (ROS). We used the au-
tonomous car model developed by [7], was used
in our simulations. We evaluate the quality of
overtaking by comparing it in different scenarios,
changing the obstacle to overtake.

To present our work, this paper has been
organized as follows: section |2 describes the
approaches in this field; section [3| provides the
methodology; section 4] presents our experiments
and results; the last section discusses our
conclusions and future work.
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2 Related Work

One of the significant challenges is to get greater
safety when operating autonomous vehicles to
avoid traffic accidents. For this, many approaches
have been proposed, one of these is the overtaking
and tracking detection for vehicles [11] by selecting
the right way according to the environmental
conditions and avoid traffic accidents.

In [1], the authors proposed a collision detection
model where prediction considered uncertainties
originating from the measurements and the
possible behaviors of other traffic participants. The
predictions were based on stochastic systems and
how they influenced decision making to drive the
autonomous car.

On the other hand, Petrov and Nashashibi [6]
presented a mathematical model and adaptive
controller for an autonomous vehicle overtaking
maneuver. Their approach is to assign three
phases to the vehicle overtaking problem: 1) The
overtaken vehicle is moving along a rectilinear
route, 2) The linear velocity of the overtaken
vehicle is unknown, 3) The available information
for feedback control is the relative inter-vehicle
position and orientation. In each case, the position,
orientation, and speed parameters of the vehicle
are used.

Another solution is trajectory planning; the
authors in [2] presented a method based on a
polynomial function, minimizing overtaking energy
consumption according to the road condition and
vehicle state. Through the trajectory re-planning
algorithm, the local desired trajectory information,
which satisfies the constraints of the dynamics
and kinematics of the vehicle, is dynamically
programmed according to the information of the
constraint conditions of the vehicle.

In contrast to conventional path tracking meth-
ods, the authors in [14] presented a solution using
PID control and three neural layers: the perception
and processing layer, the control layer, and the
decision layer. This approach depends on the
information provided by the RGB camera, radar,
and GPS. Motivated by this, we propose a method
using deep learning and a laser sensor to perform
the overtaking task.
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Fig. 1. In Fig. (a), reference taken in tracking mode, note
reference is at the image center. In Fig. (b), reference in
overtaking mode, note reference is in right side image

3 Methodology

We proposed an algorithm to perform overtaking
tasks using deep learning combined with a laser
sensor. For this, we use the AutoModelCar model
developed by ITAM [4] in the Gazebo simulator
running on ROS (Robot Operating System) [8].
The AutoModelCar provides data from an RGB
camera, depth camera, laser scanner, and an
Inertial Measurement Unit (IMU). Also, ROS topics
are available to modify the geometric position,
speed model, and wheel steering [4].

3.1 PID control

The derivative, integral, and proportional control
is a powerful tool applied to most systems where
matching an input reference is required [12].
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It allows, by means of a feedback error, to obtain
controlled variables. That is why, to develop the
object and vehicle tracking control, this type of
control has been implemented for a feedback error,
to obtain controlled variables:

t
d
u(t) = Ke(t) + K / e(r)ir + Ko'relt), (1)
0
where, wu(t), is the control function. K,,
K;, K4 all non-negative, denote the coefficients
for the proportional, integral, and derivative
terms, respectively.

The model control we proposed is based on
Equation 1. Where ¢ (¢) is the current error in
every algorithm iteration. The error is given by
the difference between the real variable and the
reference variable. This reference variable is the
object position in the camera image.

3.2 Vehicle Detection

We used the RGB camera to detect the vehicle by
the Single Shot Detector Multi-box Detector (SDD)
[5]. The SSD network combines predictions into
multiple feature maps of different sizes, allowing
high and low-level detections to be produced by
applying convolution filters. This network is used
in object detection and classification tasks, using
the regression technique to obtain a bounding box.

The SSD is based on the VGG16 network [9],
which fits into the general framework of object
detection in deep learning, adding convolutional
layers at the top of the network. These layers
progressively decrease the input image’s size in
a submatrix to obtain the detections at multiple
scales. Each point on the feature map covers a
part of the image to predict the class, and with the
regression estimates, the object boundary box at
the multiple locations within the image.

The SSD network provides the pixel position of
the multiple objects in the image. In this case,
we trained the network to identify cars. For this,
we generate a dataset composed of 3054 images
for training and 300 images for evaluation. This
dataset was taken with an interface that allows
manipulating the autonomous car movements in
the Gazebo simulation environment.

(b)

Fig. 2. Fig. (a) shows the Gazebo simulation
environment used in this job and Fig. (b) shows the
vehicles recognized by the SSD network

The generated dataset is available at this link
https://drive.google.com/drive/folders/
16ep4N1rDc7k2QFNFQIwWmY7cLVtep—-mH?usp=
sharing.

These images were subsequently processed
and tagged for training. To reduce the error in
object detection, we used two classes, 1) the
vehicle and 2) the background.

Fig. [2a shows the environment used to collect
the images for the dataset. We select three
kinds of vehicles in the simulator environment,
an ambulance, a red car, and an SUV, shown in
Fig. 2ol The training parameters consisted of 15
epochs and 1200 steps.
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These parameters allow the network to general-
izes and identify another vehicle not considered in
training, and the results are shown in Fig.

3.3 Vehicle Tracking

For tracking, we used the SSD network to obtain
the central point of the object in the image. The
central point was combined with a PID control to
change the steering angle at the point reference
in the picture, in accordance with the Ackermann
geometry, shown in Fig.

In Fig. we can observe the point reference
taken in overtaking. Note that this point is at the
end right image, so the PID control orientates to
the car to the left size obstacle trough the position
that indicates the RGB camera by using the SSD
network. Once the point reference is set, we
propose and implement the Equation 2}

S =L+ u(t), (2)

where, S represents the controlled steering in the
car. L is a constant the represents neutral steering,
and u(t) represents the signal control from the PID
control system modeled in Equation 1:

e (t) = Ae — reference — observed, (3)

where e(t) represents the error; this is the
difference between a variable reference and an
observed measure. In our tracking model, this
reference point is the image center x.

The model PID control proposed is described
in Figure In this control, the vehicle detector
and laser sensing are working simultaneously. The
detector guides the AutoModelCar into the way,
and the laser sensor indicates the proximity of the
obstacle. Also, to cover the blind spot of the RGB
camera, we used the laser scanner, it is shown in

Fig.
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Fig. 3. In Fig. (a), Ideal Ackermann geometry is the base
of car steering. Image taken from [13]. In Fig. (b), an
abstract PID control proposed. PID control is proposed
in order to achieve the tracking and overtaking processes

4 Experiments and Results

4.1 Overtaking

To perform the overtaking, we use the flow diagram
shown in Fig. [B|that consist of six states described
below. Furthermore, we based on the ideal
overtaking curve model taken from [14], it is shown
in the Fig. ??. States of algorithm:

— State 1, a PID control moves the vehicle to
the left, taken as a reference point the right
image size, [3b] describes this process. State
1 change to state 2 when the current error in
PID control is close to 0, taking as reference
the right side in the image from RGB camera.
Figures [Tb]and [7b] shows this process.

— In state 2, the vehicle starts a position search
given by laser scanner measurements. When
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(b)

Fig. 4. Laser scanner model used in Gazebo simulator.
In Fig. (b), it show used sensor to find the lane in state 6

this one finds the position, state 2 changes to
state 3.

— In state 3, a PID control is executed to turn the
vehicle to the left. The reference points are
given by right lateral scanner measurements.
As the PID control keeps the vehicle parallel
to the object, when it is in the end, it
automatically turns to the right size by a
scanner flag.

— State 4 and state 5 are simple to position
search based on laser scanner measure-
ments.

— State 6, searches place to the car in
the current lane. This is an achievement

Returnto __J
default lane o

ves
State 6. Find lane
position
No
- e

Fig. 5. In the figure, the algorithm flow chart
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Fig. 6. Ideal overtaking curve taken from
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~

(a)

(b)

Fig. 7. Tracking and overtaking detection by SSD network. In (a), overtaking process. In (b), tracking process

(d) State 4

(e) State 5

(f) State 6

Fig. 8. Overtaking process. In every image they show a different state. In state 1, the obstacle detector and the laser are
working simultaneously. In state 2, the overtaking routine is activated. In state 3, the AutoModelCar is incorporating to
the left lane. In state 4, the car continues forward until the laser sensor indicates the right side is not obtruded. In state 5
and 6, the car incorporates to the right line. The video of these experiments is found in https://youtu.be/vicU30-xRBA|

for revision purpose

by calculating an error between two laser
scanner symmetric measurements. These
measurements are shown in figure [4b]

Fig. [8) shows the overtaking process. For this,
we used static vehicles in front of our autonomous
car on a straight road. We expect to obtain
a smooth and symmetrical overtaking curve, as
described in Fig. 9.

We implemented a series of tests with an
autonomous car speed of 150 (this model does
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not provide specific units). In each test, we
modulated several parameters to get better results
in function to vehicle to overtake. The results
were graphed by using the current autonomous car
position published as a topic in ROS. The number
of tests with adjusted parameters was 100, where
92 were successful in according to the parameters
said. This represents a 92 percent probability
of success.

Although this number is still quite low, it
represents an important value compared with the
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Fig. 9. Overtaking curves taken from [2]. Note the non-smooth changes of steering
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Fig. 10. Overtaking results in every vehicle tested. The figure shows an overtaking smooth curve in each vehicle
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Fig. 11. Tracking simulation results. In it shows
ambulance results; [TTb] shows red car tracking results,
In the same way, shows SUV tracking results. Note
a process find vehicle in every overtaking

work published by reference [14]. Fig. shows
the results obtained when testing the various
vehicles to overtake. Ten tests were carried out
on each vehicle and were plotted, as shown in the
figure. It is noted that the behavior in each vehicle
is similar in its ten graphical executions.

Fig. shows the implementation of tracking
and overtaking algorithms. In the simulator were
places three ambulance models and were tracked
and overtaken by the Autonomous car. In the
same way, Fig. and Fig. shows the
behavior in Red Car and SUV models. The video
of these experiments is found in https://youtu.
be/vicU30-xRBA for revision purpose.

5 Conclusions

In this work, we have presented an approach for
"the overtaking vehicle” problem by an autonomous
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car. An overtaking of vehicles implies a good
tracking of the vehicle to be overtaken. Tracking
and overtaking are tasks strongly related to each
other. The importance of solving this problem lies
in the safety of autonomous cars since overtaking
by a machine could lead to safer driving.

The proposed algorithm in this work addresses
the problem by tackling first the detection and
tracking task. Such detection is used then for the
overtaking maneuver. This algorithm is based on a
set of states in a state machine, where each state
contains a PID controller. Our approach exploits
sensors onboard the vehicle, such as an RGB
camera and a laser scanner sensor.

In this work, we have achieved a success
rate of 92/100 tests carried out in a controlled
environment. It is comparable to previous works.
Similarly, our control strategy produced a smooth
overtaking maneuver. This one is of most
importance, as abrupt changes can cause car
accidents. Furthermore, our results showed a
smoother overtaking curve, compared to the job of
[2]. In the Fig. [9) show their results.

In our future work, we will train a bigger dataset
with more classes in order to make more robust
the object identification. Currently, the laser sensor
returns some noisy signals that depend on the
obstacles or objects ahead of the autonomous car.
For this reason, we need to implement a filtering
technique in future implementations.  Another
possibility is to use the onboard depth camera,
although the depth range is shorter than the depth
sensed with the laser. A fusion of both sensors is
also a possibility.
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