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Abstract. Cable-suspended load transportation with
Micro Air Vehicles (MAV) is a well-studied topic as
it reduces mechanical complexity, the weight of the
system, and energy consumption. However, it is always
taken for granted that the load is already attached to
cable. In this work, we present a methodology to
autonomously lift a cable-suspended load with a MAV
using a Deep-Learning based Object Detector as the
perception system, whose detections are used by a
PID controller and a state machine to perform the lifting
procedure. We report an autonomous lifting success rate
of 40%, an encouraging result considering that we carry
out this task in a realistic environment, not in simulation.
The Object Detector model has been tailored to detect
the 2D position and 3D orientation of a bucket-shaped
load and trained with a fully synthetic dataset. However,
the model is successfully used in the real world. The
control system deals with the oscillatory behavior of
the cable and ground effects using low-level controllers.
Future work includes improvements to the perception
system to also detect a hook-shaped grasper.

Keywords. MAV, load lifting, deep learning.

1 Introduction

Micro Aerial Vehicles (MAV) have an increasing
impact in areas such as agriculture, construction,
mining, logistics, etc. Currently, a MAV can be
controlled in basic perception and navigation tasks,
however, it is still necessary to develop techniques
for aerial manipulation tasks.

One of these tasks is for a MAV to be able
to collect or lift objects autonomously. Several
methods have been developed to lift objects
which include equipping the MAV with an actuated
arm or a magnetic grasper at the cost of
higher power consumption or a larger size of
the MAV platform. Another approach uses a
cable-suspended grasper to lift a load, which has
the advantage of reducing mechanical complexity,
energy consumption, and the weight of the system,
but it introduces a variety of challenges related to
the swinging motion of the load.

There is an extensive amount of work related
to the autonomous transportation and take-off of
aerial vehicles with a cable suspended load, but
it is established that the load is already attached
to the cable. This means that autonomous
cable-suspended load lifting is an open task. In the
2016 International Micro Air Vehicles, Conferences
and Competitions (IMAV) competition, it was
shown that it is possible for a human pilot to
lift a load with a cable-suspended grasper while
observing only the vehicle’s camera images.

Inspired by that competition, we propose a
method for autonomous lifting of a bucket-
shaped load using a cable-suspended hook-
shaped grasper with a MAV as shown in Fig.
1. The method consist of two systems, a
customized Deep-Learning based Object Detector
as the perception system, and a control system for

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1219–1228
doi: 10.13053/CyS-24-3-3482

ISSN 2007-9737



Ψ

Θ

Φ

ΦpΘp

1

2 3

x
y

z

Fig. 1. Elements part of the lifting problem: (1)
monocular camera, (2) cable-suspended hook-shaped
grasper, (3) bucket-shaped load.

vehicle alignment and for generating the grasping
and lifting trajectory.

The detector takes an aerial image captured
by the onboard camera and outputs the load
position and 3D orientation. To also estimate the
orientation, the original convolutional box predictor
of the detector is modified to include a quaternion
output.

In order to generalize the orientation domain
of the load, a fully synthetic dataset was used
to train the object detector. The dataset is
built with augmented data using 7 scales of the
object and randomization of the image background,
translation of the object in the image, the color of
the object, and the brightness of the image.

Control system uses the position and orientation
of the load to move the vehicle from the center
of the image to the center of the detected object.
Each time the center of the object is reached, the
vehicle turns until the load handle is perpendicular
to the vertical axis of the image. Then, a forward-up
sequence is executed to grasp and lift the load.

To present our work, this paper has been
organized as follows: section 2 describes our
related work; section 3 describes our methodology;
section 4 presents our results; and section 5
discusses our conclusions and future work.

2 Related Work

In the IMAV 2016 competition [8], a mission to pick
and release a bucket-shaped load was presented;
the same load shape will be used in this article.
The problem of cable-suspended transportation
with MAV has been widely studied using individual
or cooperative vehicles. The dynamics of the
forces for taking off [2] and trajectory control [3]
with a MAV with a suspended load are analyzed.
In [6] a model for the optimization of trajectories
independent of the cable tension is presented. In
[5] a neural network based controller trained by
reinforcement learning to minimize the effects of
swinging in cable-suspended load transportation is
presented. However, in the aforementioned works
it is assumed that the load is already attached to
the cable end.

Among the methods for grasping and lifting a
load that do not use a cable, in [19, 12] a method
for lifting static and non-static ferrous discs with a
magnetic gripper is presented. Their visual system
detects the discs by their color, roundness and
eccentricity, and calculates the 3D position of the
object using the known size of the object and the
camera parameters. In [26] a MAV uses a robot
arm to grab a moving object while a motion capture
system provides the poses for both the MAV and
the object. An arm for grasping and a stereo
camera used for pose estimation are used in [15].
In [21] a MAV uses a magnetic grasper to lift a
cylindrical object using a monocular camera and
a vision algorithm that recognizes the geometry of
the cylinder.

For MAV vision systems using deep-learning
based object detection, in [13] a Convolutional
Neural Network (CNN), trained entirely with a
synthetic dataset, is used for a MAV to pass
through the gates of a race track autonomously.
In [14] a CNN that allows a MAV to navigate
the streets of a city safely by avoiding vehicles
and pedestrians is presented. In [9] another
CNN trained as a gate detector for a race
track shows improvements compared to traditional
image processing algorithms based on gate color
and geometry. In [24] a CNN is designed upon
state-of-the-art YOLO [16, 17] object detector
trained to detect landing zone marks at a rate
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of 21Hz versus 7.5 and 5.3Hz for YOLO and
YOLOV2, with similar precision. While those
networks maintain a lean architecture for on board
processing, they only provide a 2D position of the
objects but not their orientation.

To detect the 3D orientation of objects, in [11]
a CNN estimates the 6D pose for full scenes
for the problem of camera relocalization using a
quaternion regression for orientation. In [20, 23, 4,
10, 27] object detectors estimate the 2D projection
of points of a 3D cuboid to solve the problem of
camera localization to calculate 6D pose of the
objects. Similarly, in [22] a 6D object detector is
trained only with synthetic photorealistic images
and random domain data to overcome the reality
gap. Mostly, the architectures of these detectors
allow an inference rate of 10-25Hz [27]; in [20]
the proposed network manages to get the pose
at a rate of 50Hz, but uses a heavy architecture
that requires an NVIDIA Titan X graphics processor
with 12GB of memory. Additionally, these networks
require an Perspective-n-Point (PnP) algorithm to
obtain the final pose of the camera using the
estimated 2D points.

3 Methodology

The proposed methodology consist of two sys-
tems: perception and control. Perception is done
through a customized CNN-based object detector
that takes as input an RGB image from the MAV’s
camera and outputs the localization data of a
bucket-shaped load. The data consists of the 2D
position of the load in the image reference frame
and its 3D orientation (roll, pitch, yaw), though, for
our application, only yaw angle is used. With such
data, the control system uses geometry to align the
MAV itself with the load to execute a grasp and
lift maneuver.

3.1 Dataset

For bucket detection, a dataset of 6384 images of
640x360 px was build with randomization [13, 25]
of background, color, translation and brightness, at
7 different scales of the object (Fig. 2). We started
with a set of 912 images from a rough 3D model
of the object taken with a virtual camera using the

Gazebo Simulator. The camera was held static at
an altitude of 0.5m over the bucket and images
were taken while changing the orientation of the
bucket by 5◦ steps in a range of 180◦, 80◦, 80◦

for yaw, roll and pitch respectively. Then, color
segmentation was used to separate the bucket
from the background to create the other 6 scales
of the object that range from 0.25 to 1.75. These
scales help to train the network to recognize the
object from different heights.

The background is randomly replaced by an
image of the DTD dataset [1]; each channel of the
object color in the HSV color space is randomly
changed up to ±50% of its original value; the
object is then randomly translated over the area
of the image; the brightness of the full image is
randomly changed up to ±50%; finally, a JPG
compression level of 0.3 is applied to blur the object
with the background. Each image was labeled
as: ((x1, y1,x2, y2) , (qw, qx, qy, qz) ,SF ) with the
bounding box coordinates, a quaternion with the
3D orientation, and the scale factor SF applied
to the object. Note that no data from the real
object was used meaning that our dataset is
fully synthetic.

3.2 Object Detector with Orientation

The detector is build around a Convolutional Neural
Network with an output layer inspired by YOLO
[16, 17], which uses MobileNetV2 [7, 18] as feature
extractor. Taking PoseNet [11] as inspiration,
the output layer is modified to also estimate a
quaternion with the 3D orientation of the object.
The detector takes a RGB image from as input
and generates 7x7=49 estimates of the object.
The detector is built with Tensorflow 1.15, using
MobileNetV2 with an alpha=1.0 and an image input
size of 224x224 pixels; images from the dataset are
resized accordingly. The layer details of the model
are shown in Fig. 3.

The convolutional box predictor output volume
consist of three parts. The first part has a
depth of 5 and each prediction contains the center
coordinate (xc, yc) of the object, the width and
height (h,w) of the object, and the estimation
confidence C.
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Fig. 2. Examples of images of the end dataset for the bucket-shaped load detection using background, color, translation
and brightness randomization

The second part has a depth of 4 and each
prediction contains the quaternion (qw, qx, qy, qz)
of the object. The third part has a depth of 1,
where each prediction contains the scale factor SF
of the object. The detector outputs a S × S ×
(5 + 4 + 1) tensor, where S is the grid size of
the last convolutional layer before the output layer
and, for MobileNetv2, S = 7. The coordinates
(x1, y1,x2, y2) from a labeled bounding box are
transformed into a normalized center coordinate
(xc, yc), and into the normalized width and height
of the bounding box (h,w) according to: xc =

7
wimg

(
x1 +

x2−x1

2

)
, yc = 7

himg

(
y1 +

y2−y1

2

)
, h =

y2−y1

himg
, w = x2−x1

wimg
, where wimg,himg is the size of

the original image. If O is the 7 × 7 × 10 tensor,
then we put an object in one grid position and left
the other grid cells empty:

Obycc,bxcc =

(h,w, yc − bycc,xc − bxcc, 1, qw, qx, qy, qz,SF ) .
(1)

The three parts of the output volume are
concatenated and the best estimate can be chosen
from the prediction tensor Ô according to its
highest probability confidence as follows: yf ,xf =

argmaxi,jÔi,j,5; h = Ôyf ,xf ,1; w = Ôyf ,xf ,2; yc =

yf + Ôyf ,xf ,3; xc = xf + Ôyf ,xf ,4; qw = Ôyf ,xf ,6;
qx = Ôyf ,xf ,7; qy = Ôyf ,xf ,8; qz = Ôyf ,xf ,9; SF =

Ôyf ,xf ,10.
For the loss function, squared error was

used for the coordinates, quaternion and scale

factor; binary cross entropy (BCE) was used for
object confidence, as defined as: BCE (g, p) =
− (g log(p) + (1− g) log(1− p)). If O is the ground
truth tensor, the loss function can be written as:

L
(
O, Ô

)
=

B∑
b=1

7∑
c=1

7∑
d=1

BCE
(
Ob,c,d,5, Ôb,c,d,5

)
+

B∑
b=1

4∑
i=1

(
Cb,i − Ĉb,i

)2
+

B∑
b=1

4∑
i=1

(
Qb,i − Q̂b,i

)2
+

B∑
b=1

(
Sb − Ŝb

)2
, (2)

where: B is the batch size; C, Q, S are the
ground truth matrices for (yc,xc,h,w), quaternions
and scale factors respectively; Ĉ, Q̂, Ŝ are the
prediction matrices.

Training is performed in two stages taking the
dataset of 6384 images divided in 5800 images for
training and 584 for testing. The first stage takes
MobileNetV2 pre-trained with ImageNet and only
the customized output layers are allowed to train
over 100 epochs.

The new trained weights are used as a start
for the second stage, in which all the layers of
MobileNetV2, and the output layers, are trained
again over 100 epochs with no modifications to
the dataset. The network is trained to maximize
the Intersection Over Union (IOU) between the
predicted objects and the ground truth as illustrated
in Fig. 4b; the closer the IOU is to 1, the better the
object detection boxes are.
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Fig. 3. Object detector with orientation. The output volume consist of a grid of predictions of 7 × 7 ×
(h,w, yc,xc, qw, qx, qy, qz,SF )

Table 1. Results for the two-stage training of the object detector

Metric First Stage Second Stage
Precision [IOU≥0.5] 0.9162 0.9948

Recall [IOU≥0.5] 0.8801 0.9914
Mean Error Q (deg) 22.0890±16.17 10.3374±17.77

A graph showing the loss and IOU gain is shown
in Fig. 4a; a maximum IOU of 0.7020 and 0.9150
was achieved for the first and second training
respectively, an increase of over 30%. The end
model contains 3.7 million parameters.

Table 1 shows how the metrics improve once all
the layers are allowed to train; in particular, recall
shows that the sensitivity of the model is improved
to avoid false negatives, that is, when the object is
there but the model does not detect it.

Precision score shows that the model detects
very few false positives, though, a decrease is
expected when the model is used in the real world.
A prediction is considered correct if the object is
present, i.e. confidence≥0.5, and IOU≥0.5.

The quaternion error takes into account the
full 3D orientation and is calculated as θ =
arccos Q·Q̂

|Q||Q̂| where Q is the ground truth and Q̂ is
the predicted quaternion. A degree error of 10±18◦
is considered enough for the end application.

3.3 Single Object Detection Control

The control system uses the estimate with the
highest confidence from the Object Detector to
move the vehicle from the center of the image
(ximgc, yimgc) to the center of the detected load
(xc, yc) by simultaneously assigning values to ux
and uy as shown in Fig. 5.

Altitude remains fixed to a specific reference by
uz. The diagonal line within the bounding box
shows the yaw angle of the load obtained from the
estimated quaternion. Each time the center of the
load is reached, the vehicle yaw is controlled until a
load angle reference is reached. Then, the control
reduces the distance threshold to the center of the
load. If distance is within such a threshold for at
least 30/60 image frames, the control moves the
vehicle in a forward-up sequence to grasp and lift
the bucket.

The state machines for pose control and lifting
control are shown in Fig. 6. For lateral and
frontal lineal velocities ux, uy, two Proportional
Integral (PI) controllers are used, one proportional
controller is used for lineal velocity uz for altitude
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Fig. 4. (a) Loss and IOU for the two-stage training (b)
Illustration of the IOU

displacement, and one PI controller is used for the
angular velocity wz for yaw rotation.

4 Experiments and Results

The proposed system was implemented in ROS
Melodic Morenia, consist of four nodes (Fig. 7) that
are executed in a laptop with a i5-9300H@2.4GHz
CPU, 8G RAM, and a NVIDIA GTX 1660ti GPU.
The MAV is a Bebop 2 from Parrot. The control
node executes the state machines for pose and
lifting control every time a new image from the
Bebop’s camera is published at a rate of 30Hz; it
publishes a twist message with the velocities for
the Bebop.

The CNN node executes the object detector and
publishes the bucket detection prediction with the
best confidence. The keyboard node allows a

UX

UY

UZ

WZ

Im
age fra

me
XC

,YC

X im
gc
,Y igmc

Fig. 5. Variables used for single object detection control

human pilot to take control of the vehicle or switch
to autonomous control.

The ardrone autonomy node publishes the
images from the downward-facing Bebop’s camera
and subscribes to the commands from the control
and keyboard nodes. The cable used is 55cm long
and is attached to the back of the Bebop at one
end and to a wire hook-shaped grasper at the other
end.

Ten flights were carried out at an altitude of 70cm
in different natural lighting conditions achieving a
40% success rate. A lift is considered successful
if the vehicle lifts the load more than 30cm from
the ground within a 3 minute window. Table 2
summarizes the results obtained. Mean detection
accuracy is calculated over 200 images taken in
each flight while autonomous control is ON, where
true positive detections have a confidence greater
than 0.5.

An example sequence is shown in Fig. 8:

— 1) a human pilot controls the vehicle until the
load enters the camera’s field of view;

— 2) the autonomous controller is ON and the
vehicle start to descend to the specified
altitude and towards the load;
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Fig. 6. Single object detection control. (a) Pose control. (b) Grasping and lifting control
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Fig. 7. Framework used to evaluate the single object detection control strategy

— 3,4) the vehicle rotates to reach grasp
alignment;

— 5) when the distance to the object is

maintained at least 30/60 frames, the control
moves the vehicle to grasp and lift the load;

— 6) a message is shown when the lifting state is
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1. 2. 3.

4. 5. 6.

Fig. 8. Example sequence followed by the single object detection control strategy

Fig. 9. Example of a lifting sequence with a plastic hook for better appreciation

completed and the human pilot takes control
to land the vehicle. A lifting sequence with a
plastic hook is shown in Fig. 9 and the full
video can be viewed at this link1.

Table 2. Results obtained over 10 flights for evaluating
the lifting strategy

Metric
Mean detection accuracy 0.93± 0.084

Object detector
operating frequency 79.36± 7.56 Hz

Mean lifting time 55.7± 19 s
Lifting success rate 40%

Several sources of inaccuracy were observed
that help explain a success rate of 40%: 1) as
the vehicle moves forward in the grasping state,
the air effect created by the bucket increases the
oscillation of the grasper which in turn increases
the grasping error; 2) in some cases, the grasper
oscillation generates instability in the vehicle which

1https://youtu.be/rvh3BWcd1Pg

changes a straight forward grasping trajectory to
a diagonal forward trajectory; 3) there are offsets
between the center of the image and the physical
location of the camera inside the Bebop which add
to the inaccuracy at the grasping state.

5 Conclusion and Future Work

A method designed to autonomously lift a load with
a suspended cable using a Micro Aerial Vehicle
has been presented. To address the problem, we
used the perception capabilities of a deep learning
based object detector to observe the object and
use its detected position on the image to design
a PID controller and a state machine to perform
the lifting procedure. This perception along with
a single object detection control system allowed
us to achieve a 40% lifting success rate. This
is an encouraging result since we perform our
tests in a real environment, not in simulation. We
are convinced that we could increase the rate
success by fine tuning of the controller. In this
sense, the control system uses only the position
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and orientation data of the load to control the
lifting routine.

The object detector was tailored to also estimate
the 3D orientation of the object by increasing the
depth of the original convolutional box predictor,
to include a quaternion output. More over, the
detector was fully trained with synthetic data and
successfully used in a real environment.

Still, the method is sensitive to inaccuracies
in flight stability and the randomness of grasper
movement. Future work will focus on developing
a more robust control strategy that includes both
load and hook detection.
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