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Abstract. Online audio source separation has been
an important part of auditory scene analysis and robot
audition. The main type of technique to carry this
out, because of its online capabilities, has been spatial
filtering (or beamforming), where it is assumed that the
location (mainly, the direction of arrival; DOA) of the
source of interest (SOI) is known. However, these
techniques suffer from considerable interference leakage
in the final result. In this paper, we propose a two step
technique: 1) a phase-based beamformer that provides,
in addition to the estimation of the SOI, an estimation
of the cumulative environmental interference; and 2) a
BLSTM-based TF binary masking stage that calculates
a binary mask that aims to separate the SOI from the
cumulative environmental interference. In our tests, this
technique provides a signal-to-interference ratio (SIR)
above 20 dB with simulated data. Because of the
nature of the beamformer outputs, the label permutation
problem is handled from the beginning. This makes the
proposed solution a lightweight alternative that requires
considerably less computational resources (almost an
order of magnitude) compared to current deep-learning
based techniques, while providing a comparable SIR
performance.

Keywords. Beamforming, BLSTM, permutation
problem, binary mask.

1 Introduction

Sound source separation is an essential step in
the processing chain of events in computational

auditory scene analysis [32] (CASA) and robot au-
dition [28, 19] (RA). Currently, many sound-related
tasks such as automatic speech recognition,
speaker identification, and mood classification,
assume that their input bares only the audio data
from the source to be analyzed.

Many of the techniques used for carrying
these tasks are based on machine learning
methods, which could be made robust against
multiple-source scenarios by augmenting their
corresponding training corpora. However, another
alternative could be to have a source separa-
tion phase beforehand that provides the audio
information from one source at a time. To this
effect, current techniques could still be used by this
alternative, without requiring impractical amounts
of space and time for training.

In terms of sound source separation, it is
of interest to carry it out in an online manner
(meaning, “on the fly”), for scenarios in which the
user is interacting with a CASA/RA system, such
as a service robot, a virtual assistant, a security
system, etc. This is opposed to an offline manner,
which records the audio from the environment and
returns the results of the audio analysis after the
interaction is completed.

It is important to note that we are differentiating
between carrying this analysis out in an online
manner and carrying it out in real-time, since
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the latter involves discussion of specific response
times thresholds [12]. What we define as online
analysis is that the system’s response time is
less than the length of the time window that is
to be processed. Meaning that, even though
results are given while the user is interacting, they
may be given with a certain delay. In certain
applications, like human-robot interaction (HRI),
online results are essential for the interaction to be
successful, while a reasonable delay (≤ 1 second)
is acceptable [12].

One of the most popular type of techniques to
carry out online source separation is by spatial
filtering or beamforming. It is important to note that
the terms “source separation” and “beamforming”
are not usually used in the same context. While
source separation aims to separate all sources
present in the recorded environment, beamforming
aims to separate one source of interest (the
location of which is known a priori) from the rest
of the environment. In this paper, we are equating
these two terms, since beamforming is carrying
out a type of source separation, and it is usually
designed to be carried out in an online manner.
And, while beamforming only separates one sound
source from the environment, it is compatible
with the aforementioned CASA/RA/HRI application
scenarios in which one user is attended at a time,
i.e. the source of interest (SOI).

Unfortunately, an important issue with beam-
forming is that of interference leakage, in
which sound sources different from the SOI
are still present in the final result. Although
this interference presence can be low if the
beamformer is configured appropriately [11], it
is still high enough to be perceivable (with
signal-to-interference ratios less than 15 dB), which
may have an impact in subsequent CASA/RA
modules [22]. Thus, beamforming techniques
tend to employ a high number of microphones to
overcome this issue [25].

On the other hand, deep learning strategies have
shown impressive results when carrying out source
separation, even when only a single microphone
is used [15, 14, 3]. A popular methodology is
to classify which frequency bins belong to which
sound source, i.e. frequency masking. To carry
out this through time, many of these techniques

track the frequential variation of each source,
so that in each time window the appropriate
time-frequency (TF) bins is assigned to the correct
source. If this tracking is done incorrectly,
one source may be assigned data from others
in different time windows, corrupting the overall
output. Solving this requires complex solutions
that require an important amount of computational
resources (which may be an important issue for
some CASA/RA/HRI application scenarios). Or,
in the worst case, the problem is bounded such
that the proposed techniques are only tested with
recordings with a few amount of interferences [15,
14, 3].

To overcome this problem, we proposed a
novel lightweight source separation technique
which carries out deep-learning-based frequency
masking from a beamforming output. The
proposed solution can be run online and is
robust against variations of interferences and
number of microphones. It is composed of two
parts: 1) a phase-based time-frequency-masking
beamforming that provides both the estimation of
the SOI and the estimation of the cumulative en-
vironmental interference; and 2) a time-frequency
binary masking stage based on a bidirectional long
short-term memory (BLSTM) network, that aims to
use these two estimations to separate the SOI from
the environmental interference estimation.

Since the proposed beamformer is already
providing a preliminary separation of the TF bins
of the SOI from the TF bins of the interferences,
the permutation problem [14] is solved from the
beginning. This means that the complexity and
size of the BLSTM network architecture is low
enough to be run in an online manner, even with
modest computer equipment. The full system is
found here1.

The work here presented has the following
structure: Section 2 provides a brief summary
of the related works and background relevant
to the proposed technique; Section 3 details
the proposed technique; Section 4 describes the
evaluation methodology against a deep-clustering-
based source separation approach and presents
the results; Section 5 discusses the insights

1http://github.com/balkce/onlinessblstm
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obtained from these results; and Section 6
provides our conclusions and future work.

2 Background and Related Work

As mentioned before, we are aiming to use a
beamforming paradigm to carry out online sound
source separation, which implies that the location
of the source of interest (SOI) is known a priori.
This approach is popular in Robot Audition (RA),
as shown by HARK [20] and ManyEars [9], both of
which employ a real-time variation of the geometric
source separation technique [29].

This technique merges both the beamforming
paradigm with a blind sound source separation
approach. It is worth mentioning that HARK has
modified this technique even further by introducing
adaptability to the inner mechanisms of geometric
source separation [21], and that ManyEars has
pushed for being more lightweight, with its ODAS
project [10]2. In all these circumstances, the
direction of arrival (DOA) of the sound source is
assumed to be known a priori, or estimated by
applying one of the many sound source localization
techniques reported in literature [25]. However,
evaluation of these beamforming techniques has
been bounded by the use of a considerable amount
of microphones, which reduces the presence of
interferences in the resulting SOI estimation.

It would be of interest to use less microphones,
while avoiding the aforementioned interference
leakage issue, when carrying out online sound
source separation. A possible alternative to
this would be to apply recent developments in
mono-aural sound source separation, the vast
majority of which employ deep-learning techniques
such as bidirectional long short-term memory
(BLSTM) networks [7]. This type of techniques are
a type of recurrent network which are ideal to be
used with temporal data, and have been a good
answer to issues specific to recurrent networks,
such as the vanishing gradient problem [16] and
localized classification [4]. To this effect, they have
shown very good results for speech recognition [6,
5] and text recognition [27].

2In this reference, ODAS does not report any source
separation capabilities, but its authors have already added this
functionality to its base code [8].

However when applied to sound source sepa-
ration, an important issue has been found: the
permutation problem [33, 14]. Many of these
techniques aim to classify each time-frequency
(TF) bin of the input signal as to belonging to
one of various possible sources. When carrying
out this process throughout several time windows,
it is essential that the TF bins are appropriately
assigned such that classifications of previous time
windows are correctly followed; if not, one source
may be assigned TF bins of other sources in
subsequent time windows, with unwanted overall
results. To avoid this, several methods have been
used such as permutation invariant training [37],
deep clustering [14] and deep attractors [3].

Specifically, deep clustering has been successful
in recent years for sound source separation.
The Chimera network [18] is a representative
example of this. Even though it was originally
proposed for voice separation in music, it has been
recently modified for its use in mono-aural source
separation [34, 36, 35]. The Chimera network uses
a two-front approach to design its objective loss
function: 1) a type of deep-clustering loss function
that transforms the input signal to a domain in
which it is able to keep track of which sound source
is which (by means of clustering methodologies),
and 2) a magnitude spectrum approximation
objective that aims to infer the TF mask to apply to
the input signal. By training with this loss function,
the network is made to consider which source is
being assigned to which TF bin, resulting in strong
Signal-to-Distortion performances.

However, as it can be deduced, an important
amount of complexity is encountered when
carrying out this methodology. This results
in a complex solution space that the training
optimization algorithm is expected to solve. It
would be of interest to avoid this issue altogether,
which not only would simplify the solution space
to solve, but also may reduce its memory
requirements and its response time.

It is important to mention the work of [24], which
carries out a similar technique to ours. However,
the authors of this work feed the network with
features extracted from the beamformer weights.
Although this process solves the permutation
problem from the beginning, it implicitly trains
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the network with the array geometry (since the
beamformer weights are based on it). It would be of
interest to solve the permutation problem while the
system is robust against array geometry changes.

Additionally, a hybrid approach of a beamformer
and deep learning techniques has been employed
before [33]. However, this hybrid approach is
usually carried out by either: 1) making the deep
learning network emulate the task of the beam-
former, or 2) feeding the beamformer estimation
of the source of interest as the mono-aural input
to the deep learning network. As far as we know,
feeding the deep learning network a two-channel
input (one of the preliminary estimation of the
SOI, and the other of the preliminary estimation of
the cumulative environmental interference) has not
been proposed before.

3 Proposed System

An overall summary of the proposed system is
shown in Figure 1. As it can be seen, there
are two core modules. First, the audio data
from the microphone array and the direction of
arrival of the source of interest (SOI) is fed to
a phase-based frequency-masking beamformer
that provides a preliminary estimation of the
SOI (ZSOI ) as well as of the cumulative
environmental interference (ZINT ). Second, a
time-frequency binary masking stage, based in
a bidirectional long short-term memory (BLSTM)
network, provides a time-frequency (TF) binary
mask (BSOI ) that separates the SOI from the
cumulative environmental interference estimation.
This mask is then applied to the signal of the
reference microphone for the final SOI estimation
(YSOI ). In this section, these two core modules
are detailed.

3.1 Phase-Based Frequency Masking
Beamformer

The proposed beamformer is summarized in
Figure 2.

Let X be the input matrix of size M × N , where
M is the number of microphones andN is the time-
window length in samples, as well as the length of
the resulting frequency masks.

θ

SOI

Phase-based
Frequency-masking

Beamformer

BLSTM-based
TF Bin Classifcation

DOA -SOI
(θ)

ZINTZSOI

BSOI BINT

STFT

ISTFT

YSOI YINT

ISTFT

Fig. 1. An overall diagram of the proposed system

The columns of X are the Fourier transformed
time-windows of each microphone input. Addition-
ally, let θ be the direction of arrival (DOA) of the
SOI. The first stage of the beamformer carries out
a time-alignment of the columns of X such that the
information received by the microphone array in the
planar direction θ is in phase. This is carried out as
described in Equation 1:

Xa[m; f ] = X[m; f ]ei2πftm;θ , (1)

where Xa is the phase-aligned version of X
towards θ, m is the microphone index, f is the
frequency bin, and tm;θ is the delay in seconds
applied to the input data of microphone m based
on θ.
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DOA-based 
Aligment

Aligned signals

Angular Treshold
Evaluation

Phase Difference
Calculation

For each TF bin

DOA SOI
(θ)

PSOI PINT

STFT

ISTFT

ZSOI ZINT

ISTFT

Fig. 2. A diagram summarizing the phase-based
frequency-masking beamformer stage.

Using the positions of the microphones relative
to the reference microphone, each respective delay
can be calculated via different methodologies, such
as the far-field model [25] presented in Equation 2:

tm;θ = −
rm
c
cos(θm − θ), (2)

where c is the speed of sound (∼ 343 meters per
second), and rm and θm are the polar coordinates
of microphone m in relation to the reference
microphone (m = 1).

The average phase difference is then calculated
for each frequency bin f , as described in
Equation 3:

|ϕ|f =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

|ϕi;f − ϕj;f |, (3)

where M is the number of microphones, |ϕ|f is
the average phase difference at frequency bin
f , and ϕm;f is the phase at frequency bin f of
microphone m.

Consequently, two frequency masks are created
via an angular threshold (ϕmax), as described in
Equations 4 and 5:

PSOI [f ] =

{
1, if |ϕ|f ≤ ϕmax
0, otherwise,

(4)

PINT [f ] =

{
0, if |ϕ|f ≤ ϕmax
1, otherwise,

(5)

where PSOI and PINT are the 1 × N frequency
masks for the SOI and for the cumulative
environmental interference, respectively.

The 1 × N estimations of the SOI (ZSOI ) and
the cumulative environmental interference (ZINT )
are calculated by applying the corresponding
frequency mask to the reference microphone, as
described in Equations 6 and 7:

ZSOI [f ] = PSOI [f ] ∗X[1; f ], (6)

ZINT [f ] = PINT [f ] ∗X[1; f ]. (7)

Variations of this beamformer have been
proposed before. The authors of [1] use
a similar method, but instead of creating a
binary mask, they create a soft mask by
assuming a frequency-dependent phase variance
and empirically accounting for it. It is important
to note, however, that this work does not provide
an estimation of the cumulative environmental
interference.

Another similar work is that of [13], where the
authors employ an interference-leakage removal
strategy that requires the estimation of the
frequency co-variance matrix. This is similar
to the strategy employed by the well known
minimum variance distortionless response (MVDR)
beamformer [17, 2], which has been shown to
be too complex to be run in an online manner
using the whole frequency spectrum [30]. It is
important to note that variations of MVDR have
been developed to run online, but the strategy
employed in [13] has not been shown to do so.

As it can be concluded, the phase-based
frequency masking beamformer proposed here
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is much less complex than those presented in
the aforementioned works. Additionally, and
more importantly, it provides the estimation of
the cumulative environmental interference. As it
will be discussed later, this is essential to solve
the permutation problem for the BLSTM-based
TF binary-masking stage, resulting in having a
relatively low complexity.

It is important to mention that, although X
represents a time-window length of N samples
of input data, the input length NB used for the
subsequent binary masking stage is conformed
of several of these N -length windows, using a
Hann-window-based overlap-and-add strategy (to
avoid discontinuities when applying the short-time
Fourier transform). To this effect, NB can be
considered independent of N , in only that NB is
a multiple of N .

3.2 BLSTM-Based TF Binary Masking

In Figure 3, the BLSTM-based time-frequency
binary masking stage is summarized. In an
overall sense, the purpose of this stage is to
calculate a time-frequency binary mask (BSOI )
which, when applied to the input data of the
reference microphone, the SOI is separated from
the cumulative environmental interference.

As it can be seen in Figure 3, the BLSTM-based
TF binary masking stage expects two inputs,
one with the SOI estimation and another with
the estimation of the cumulative environmental
interference. These two time-domain inputs of
length NB are transformed to the time-frequency
(TF) domain via the short-time Fourier transform,
using a Hann window with a length of NH samples
and a 50% overlap.

This results in two matrices of size T × F . The
size of time dimension T depends on NB such
that T = (NB ∗ 2) + 1, because of the 50%
overlap (with zero-padded Hann windows at the
edges). As for the size of the frequency dimension
F , it depends on NH : to avoid redundant weight
calculations in the subsequent BLSTM network,
only the lower half (with the DC component) of
the mirrored Fourier transform is used, thus F =
NH
2 + 1.

BLSTM Layer 1

BLSTM Layer L

Fully Connected

Softmax 

Concatenation

Data treatment

T F( )2

T H

T H

T F( )2

ZSOI ZINT

Z'SOI Z'INT

BSOI BINT

Fig. 3. Architecture of the proposed BLSTM network.

The energy at each input TF bin is converted
into the decibel scale (dB), and then standardized
to have zero-median and one-standard-deviation.
These two steps are important to mold the solution
space to a shape that is easier to converge when
training the subsequent BLSTM network. The
standardized inputs are then concatenated in the
frequency dimension.

The proposed BLSTM network is made up
of L amount of BLSTM stacked layers with H
amount of hidden units, which are then fed into
a fully-connected layer, and has a softmax output
layer that estimates the probability of the TF bin
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belonging to the SOI. Thus, the BLSTM network
carries out a binary classification, which results
in two T × F binary masks: one for the SOI
(BSOI ) and one for the cumulative environmental
interference (BINT ), although only BSOI is used in
later stages.

Once trained, as shown in Figure 1, the
resulting BSOI is applied to the input data of the
reference microphone, which is transformed to the
time-frequency domain in the same manner as
the outputs of the beamformer. This process, as
described by Equation 8, results in the final SOI
estimation YSOI in the time-frequency domain:

YSOI [t; f ] = BSOI [t; f ] ∗X[1; t; f ]. (8)

If the application requires it, the final estimation
of the cumulative environmental interference
(YINT ) can be obtained by applying BINT to the
reference microphone, as shown in Equation 9:

YINT [t; f ] = BINT [t; f ] ∗X[1; t; f ]. (9)

3.2.1 Training and Validation

For training, the LibriSpeech corpus [23] was
used, which is composed of 500 hours of clean
recordings of users reading text, sampled at 16
kHz. The users were chosen randomly from 80%
of this corpus to act as sound sources which
were artificially mixed to simulate the inputs of a
2-microphone array; the other 20% was used for
validation purposes. For the second microphone,
each source was delayed according to a randomly
chosen DOA for each sound source, applying the
far-field model shown in Equation 2. The DOA was
chosen in the [−90o, 90o] range, at 45o intervals in
the horizontal plane.

Additionally, the ideal TF mask (Ok) of each
source k was calculated from the clean corpus
recordings, and used as part of a magnitude
spectrum approximation (MSA) objective function
(L), described in Equation 10.

L =

2∑
k=1

||(Ok −Bk)� S||22, (10)

where k is either 1 for SOI or 2 for INT ; Bk is
the predicted mask; and S indicates the magnitude

of the TF bin of the mixture from the reference
microphone. This is similar as to what was carried
out in [18].

During training, before delivering BSOI to the
loss function, a simple voice-activity detection
(VAD) mechanism [14] is employed, described in
Equation 11:

ψ[t; f ] =

{
1, if ||X[1; t; f ]|| > X[1]max − V
0, otherwise,

BSOI [t; f ] = ψ[t; f ]BSOI [t; f ],
(11)

where ψ[t; f ] is the VAD mask, the operator || ·
|| calculates the decibel energy of a TF bin, V
is the VAD energy threshold, and X[1]max is
the maximum decibel energy of the reference
microphone X[1] in an input length.

It is important to mention that the VAD step
is only necessary during training, and not during
testing. This is because, given the design of the
loss function, the BLSTM network implicitly learns
to ignore the TF bins usually discarded by the
VAD process.

During training, the RMSProp optimizer was
used with a learning rate of 10e−5 and a momentum
of 0.9, as employed by [14].

3.2.2 Architecture Selection

To select the architecture for the proposed BLSTM
network, we evaluated different architecture
configurations, trained with up to 3 sources
(including the source of interest, meaning, with up
to 2 interferences). In Table 1, their performance
is reported in terms of the signal-to-interference
ratio (SIR) in the output. This was measured using
the BSS EVAL SOURCES algorithm [31] using the
clean recordings of LibriSpeech as the basis of
comparison. This table also reports the memory3

occupied by each model.
The configurations vary in terms of number of

BLSTM stacked layers (L), number of hidden units
(H) and input length (NB). The results when
varying other parameters are not reported since

3We define “memory” as the amount of RAM (measured in
MB) the model occupies when not carrying out any operations,
as a representation of the computational resources it requires
to run.
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Table 1. Evaluation of different configurations of
proposed BLSTM model with up to 3 sources.

NB H L Memory (MB) SIR (dB)

8192 200 1 16 19.69

8192 200 3 38 22.44

8192 200 5 60 22.68

8192 300 1 26 20.87

8192 300 3 76 23.67

8192 300 5 125 22.06

8192 400 1 39 21.82

8192 400 3 127 22.94

8192 400 5 215 22.17

8192 500 4 259 26.02

16384 200 1 16 20.99

16384 200 3 38 24.66
16384 200 5 60 22.88

16384 300 1 26 21.36

16384 300 3 76 23.38

16384 300 5 125 21.93

16384 400 1 39 22.68

16384 400 3 127 23.82

16384 400 5 215 22.65

16384 500 4 259 27.75

Average 98.1 22.82

they did not provide considerable differences in the
evaluations. Meaning, in these evaluations, the
Hann-window length NH was set at 512 samples
and V is set at 40 dB. In [18] the authors employed
4 BLSTM stacked layers and 500 hidden units,
and obtained robust performances in mismatched
conditions. Since the aim of this work is to
minimize memory usage, these were chosen as
the combined upper bound for L and H.

For H < 500, we tested L values of 1, 3 and
5 to provide a balanced view of the performance
fluctuation when varying L. We also set ϕmax
to 60o.

It is of interest to select an architecture config-
uration that both maximizes its SIR performance

while minimizing its memory usage. To this
effect, we calculate the area under the curve as
defined in Equation 12 for each of the architecture
configurations in Table 1:

y(x) =


0, if x < 0,(
σa
µa

)
x, if 0 < x < µa,

σa, otherwise,

(12)

where σa and µa are (respectively) the SIR and
memory usage for each architecture configuration
a presented in Table 1. The architecture
configuration shown in bold in Table 1 (L: 3, H:
200, NB : 16384) has the largest area under the
curve and, thus, the one we recommend to use.
However, consideration should be given to the
configuration shown in italics (L: 3, H: 300, NB :
8192), since it not only provides the second largest
area under the curve, but it also uses a smaller NB
(which is close to 0.5 seconds when sampling at
16 kHz).

4 Evaluation and Results

To investigate the behavior of the proposed
system, three evaluations were carried out, two of
which use the Chimera model [18] as a point of
comparison, since it is arguably a representative
example of current deep-learning-based sound
source separation techniques [34, 36, 35]. The
evaluated Chimera network is a modified version
to the one originally presented in [18], such that it
was able to receive both outputs of the beamformer
described in Section 3.1.

It is important to mention that the original
version of the Chimera network was not built for
generalized sound source separation. However,
with slight modifications, such as the one proposed
in this work, as well as more complex such as the
ones shown in [34, 36, 35], its performance can be
quite impressive.

To this effect, a similar evaluation to the one
described in Section 3.2.2 (whose results are
shown in Table 1) was carried out for the Chimera
network, trained with up to 3 sources. Different
configurations were evaluated, which varied in
terms of NB and the embedding dimension used
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Table 2. Evaluation of different configurations of the
modified Chimera model with up to 3 sources

Srcs. NB D Mem. (MB) SIR (dB)

3 8192 5 268 24.55

3 8192 10 283 25.59

3 8192 20 312 24.92

3 8192 40 371 25.29

3 16384 5 268 27.25
3 16384 10 283 27.12

3 16384 20 312 27.29

3 16384 40 371 27.28

Average 308.5 26.16

by one of the heads of the Chimera network (D). H
and L were kept at 4 and 500, respectively, since
these are the recommended values used in [18].

The results of these evaluations, carried out with
up to 3 sources (including the source of interest;
meaning, 2 interferences), are shown in Table 2.

In this section some perspectives are provided
that show the applicability of the proposed system.
The results of three evaluations are reported:

— The relationship of the SIR performance
against memory usage, for both Chimera and
the proposed system.

— The relationship of the SIR performance
against number of sources, for both Chimera
and the proposed system.

— The robustness against changes in array
geometry of the proposed system.

For these evaluations, 100 speakers were
randomly chosen from the validation subset,
and for each speaker 10 consecutive NB-length
windows were selected for the 16384-input length
models, and 20 of these were chosen for the
8192-input length models. Both of these types of
segments are approximately 10 seconds. When
varying the number of sources, these segments
were mixed with the segments of other randomly
selected speakers from the validation subset.

0 100 200 300 400
0

5

10

15

20

25

30

Memory Usage (MB)

S
IR

 (
dB

)

Mem. diff: 230 MB

SIR diff:
2.5966 dB

Prop. BLSTM
Chimera

Fig. 4. Memory Requirements vs SIR. The blue
dot-dashed lines represent the respective SIR and
memory usage of the recommended configuration
BLSTM-based architecture, and red dashed lines the
memory usage and SIR of the similarly selected
recommended Chimera architecture.

4.1 SIR vs Memory Usage

In Figure 4 each data point represents an architec-
ture configuration shown in Tables 1 and 2; blue
crosses belong to the proposed BLSTM-based
models, and red circles to the Chimera-based
models. The horizontal axis represents memory
usage and the vertical axis its SIR. The blue
dot-dashed lines represent the memory usage
and SIR of the recommended configuration of
the proposed BLSTM-based architecture; and the
red dashed lines represent the memory usage
and SIR of the similarly selected recommended
configuration from the Chimera variations (shown
in bold in Table 2).

As it can be seen, although the difference
between the SIR of Chimera and the proposed
BLSTM-based architecture configuration is low (∼
3 dB), the difference between their memory usage
is substantial (> 200 MB).

4.2 SIR vs Number of Sources

It is also of interest to investigate the impact that
the number of sources has on the performance.
To this effect, we compare the performance of
the recommended configuration of our proposed

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1257–1270
doi: 10.13053/CyS-24-3-3485

Lightweight Online Separation of the Sound Source of Interest through BLSTM-Based Binary Masking 1265

ISSN 2007-9737



2 3 4 5
0

5

10

15

20

25

30

No. Sources

S
IR

 (
dB

)

Prop. BLSTM
Chimera

Fig. 5. Number of sources vs SIR of the output of the
trained models

system (shown in bold in Table 1) as well as
the best performing configuration of Chimera
(underlined in Table 2), as the amount of sources
is increased. The results are shown in Figure 5.

It is important to note that both models were
trained with up to 3 simultaneous sources, so
these results reflect their ability to extrapolate the
separation capabilities with more sources than they
were trained with.

As it can be seen, both models have comparable
SIR performance, and the obvious tendency
is that as the number of sources increases,
the SIR decreases (which is to be expected).
An explanation for this is that the beamformer
provides both an estimation of the source of
interest, as well as an estimation of cumulative
environmental interference from which the SOI
should be separated.

This means that the permutation problem is
solved from the beginning. Thus, the deep
clustering part of Chimera that aims to solve
this problem is rendered unnecessary for this
test scenario.

4.3 SIR vs Number of Microphones

Since the models were trained using the output
of the beamformer that was fed the simulated
inputs of a two-microphone array, it is of interest to
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Prop. BLSTM 5 srcs.

Fig. 6. Number of microphones vs SIR of the output of
the trained models

investigate the impact of the system if the number
of microphones varies.

In Figure 6, the SIR performance is shown
for both the recommended configuration of the
BLSTM model as well as the best performing
configuration of the Chimera when the number of
microphones of the linear array is increased up to
10 microphones. No re-training was carried out
and the same sources were used throughout the
increase in number of microphones.

Additionally, to investigate the impact of chang-
ing the geometry of the simulated microphone
array, the SIR performance as the number of
sources increases when using a linear, triangle,
square, pentagonal and hexagonal array is shown
in Figure 7.

In both Figures 6 and 7, the same tendency
observed in the previous section is still present:
as the number of sources increases, the SIR
decreases. More on topic, it can also be seen that,
overall, as the number of microphones increases,
so does the SIR. A possible explanation for this is
that the quality of the beamformer output is affected
by the number of microphones used, as shown in
Figure 8.

When comparing the SIR of the beamformer
output (reported in Figure 8) and the SIR of the
overall system output (reported in Figures 6 and
7), a substantial SIR increase can be observed
in all the tested numbers of microphones, ranging
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Fig. 7. Array geometry vs SIR of the output of the
recommended BLSTM architecture configuration

from 10 to 20 dB difference in performance.
This indicates that the BLSTM-based TF binary
masking stage is essential in obtaining the
reported performance.

More importantly, it is clear that the proposed
system is quite robust against changes in the
microphone geometry (being linear and the tested
2D geometries). In fact, in most cases, the SIR
performance increases when more microphones
are added, regardless of the employed geometry.

5 Results Discussion

It is important to point out that the recommended
configuration of the proposed BLSTM model not
only provides comparable SIR performance to the
Chimera model, but in a considerable amount of
cases, it actually outperformed it.

The reason this is important is that such a
configuration only occupies nearly 10% of the
amount of memory that the Chimera model
occupies.

Moreover, in a considerable amount of cases
both models provided a SIR close to or above the
20 dB mark, which can be considered as a high
level of SIR for most auditory scene analysis [22].

Additionally, it can be seen in Table 1 that the
proposed architectures configured with L = 3
obtain a higher SIR than their counterparts with
L = 1 and L = 5, while keeping every other
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Fig. 8. Number of microphones vs SIR of the
beamformer output

parameter the same. A possible explanation is
that this number of BLSTM stacked layers may
be a kind of “sweet spot” in the established
solution space. However, this definitely merits
further investigation.

It is also important to mention that the
response time of all of the proposed architecture
configurations is smaller than the length of the
time window that it is fed. Meaning, all these
architectures are able to carry out online sound
source separation (although with up to a 1-second
delay; 0.5-second delay, if using the other
recommended configuration in italics in Table 1).
Is is also worth considering that the computer
used for these evaluations has an i7-4700MQ at
2.4 GHz (which is a moderate CPU by today’s
standards), and no GPU was used to run the
evaluated configurations.

This means that the proposed system provides
a high separation performance (an average SIR
higher than 20 dB), with moderate computa-
tional requirements.

6 Conclusion

There is a growing interest in online sound source
separation in several areas of application. Deep
learning techniques have reached an important
level of performance, but require considerable
computational resources. In this work, we propose

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1257–1270
doi: 10.13053/CyS-24-3-3485

Lightweight Online Separation of the Sound Source of Interest through BLSTM-Based Binary Masking 1267

ISSN 2007-9737



a two step system that first carries out a preliminary
estimation of both the source of interest and
the cumulative environmental interference, via
phase-based frequency masking. These two
estimations are then fed to a BLSTM-based
model that aims to estimate a time-frequency
binary mask that, when applied to the signal of
the reference microphone, provides a separation
of the source of interest from the cumulative
environmental interference.

The system was compared to a variation of the
Chimera model, which applies deep clustering to
solve the permutation problem encountered when
carrying out sound source separation. It was
shown that the proposed BLSTM-based system
achieved comparable results and even in some
cases even obtained slightly higher SIR results.
And, it accomplished this only using nearly 10%
of the memory occupied by the Chimera model in
a moderately equipped computer. The reasoning
behind this is that the first stage of the system
(the phase-based beamformer) is solving the
permutation problem from the beginning and, thus,
the deep clustering parts of the Chimera model
are not necessary to properly separate the source
of interest.

The results shown here were all carried out with
simulated data, with no noise and reverberation
present. To this effect, for future work, we
propose to investigate several methods of data
augmentation that adds this effects to the data,
to achieve acceptable SIR performance in real-life
scenarios. We also propose to employ the AIRA
corpus [26] to evaluate this next version of the
proposed system.

And finally we will reduce the 1-second
delay the system presents by a combination of
low-grade GPUs (that still keep the computational
requirements low) and shifting processing buffers.
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