
Autonomous Drone Racing with an Opponent: A First Approach

L. Oyuki Rojas Perez1, J. Martinez Carranza1, 2

1 Instituto Nacional de Astrofisica, Optica y Electronica,
Mexico

2 University of Bristol,
United Kingdom

{oyukirojas, carranza}@inaoep.mx

Abstract. Drone racing is a popular sport where human
pilots control their drones via radio frequency to fly at
high speed through complex race tracks. The latter has
motivated to pose the question: could an autonomous
drone beat a human in a drone race. Thus, some works
have dealt with the autonomous drone racing challenge;
however, very few works have dealt with the case of
a race when an opponent is present in the track. In
this work, we present an initial approach to address the
problem of autonomous navigation while considering the
presence of an opponent in the race track. To address
this problem, we present a compact Convolutional
Neural Network that predicts flight commands from a set
of camera images captured on the fly. This network has
been trained by imitation; this is, the network learns from
examples generated by a human pilot. It is important
to highlight that there is no explicit gate detection or
trajectory planning/tracking in our approach. We have
carried out experiments in the Gazebo simulator in a
race track where the autonomous drone will face an
opponent on its way to the gate. Our results show that
the network manages to pilot the drone to evade the
opponent, and after the evasion, the drone gets on-track
towards the gate.

Keywords. Autonomous drone racing, visual percep-
tion, autonomous navigation.

1 Introduction

Autonomous Drone Racing (ADR) is a scientific
topic that has gained broad interest in a relatively
short amount of time. Interestingly, research
on the ADR was not only motivated by the
scientific challenges but also strongly driven by

the annual competitions. Since its inception in
2016 in the IROS ADR competition (which has
been organised since then every year in IROS)
[14], other competitions have also sought to push
the scientific limits behind this challenge. Take,
for example, two representative competitions such
as the Alpha Pilot competition, organised by
Lockheed Martin [5], and the Game of Drones,
organised by Microsoft and Stanford University
[13], both in 2019.

Across the years, different approaches have
been presented, but in any of these competi-
tions, the typical scenario is for the contestant
autonomous drone to fly through the race track
alone, with no opponent in the race. The Game
of Drones competition posed a couple of tasks
where an opponent was mentioned. However,
competitors focused only on racing as fast as
possible, and in fact, the opponent was always
left behind from the beginning. Outside of these
competitions, a couple of works have addressed
the problem of flying against an opponent, although
not in the ADR context.

In contrast, in this work, we present a novel
approach considering a first scenario where the
drone has to face an opponent on its way
to the gate. Our approach is based on a
compact Convolutional Neural Network (CNN) that
regresses 2 flight commands, namely, roll and
pitch flight commands. These flight commands are
angular positions of the drone’s body frame. These
angular positions are passed and interpreted by
the drone’s inner controller, producing translation

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

ISSN 2007-9737

motion in the roll and pitch angles respectively.
As an initial approach, we assume that the
gates are at the same height and parallel to
the drone’s camera plane. Thus, we use a
Proportional Integral Derivative (PID) to control
height and heading.

Our strategy is based on the work presented in
[18]. In the latter, we used PoseNet [11], a CNN
for the camera relocalisation problem. PoseNet
receives a single image and predicts the 6-D
camera pose from where the image was taken,
in a world coordinate system. We re-trained
and adapted PoseNet to predict the same 2 flight
commands, roll and pitch and showed that it is
possible to use a CNN-based approach to pilot
the drone for these 2 flight commands. We also
showed that temporality works better than using
a single image. Temporality refers to the use of
consecutive of certain frames in a line time as input
frames to the CNN.

Rather than using stacking [20] as a way of
combining these frames, we proposed to use a
mosaic image composed of these input frames.
We prefered this option over stacking because we
did not want to increase the number of parameters
within the network nor we wanted to increase the
processing time. In our experiments, we showed
that a mosaic of 6 images is enough to capture
the motion trend towards the gate, thus enabling
better flight command predictions than when using
a single image.

From the above, in the current work, we
present a more compact network, with much less
convolutional layers and inception modules. In
addition, we have created a new training dataset,
including cases in which the opponent shows up
in the images. Note that in this work, neither
we carry out explicit gate detection nor trajectory
planning/tracking. Our goal is to produce an
artificial pilot that imitates the decision making
performed by a human, this is, deciding on the
corresponding flight commands only by looking at
the camera images.

In order to present our work, this paper has
been organised as follows: Section 2 discusses
the progress regarding the ADR; Section 3
describes our methodology; Section 4 presents our

experimental framework, and Section 5 presents
our conclusions and future work.

2 Related Work

In the 2016 IROS ADR [7, 15, 14], the participant
teams relied on gate detection to drive their drone’s
controller. The drones in this competition flew at
slow speed in a cluttered environment where the
gates were placed very near to each other. Teams
used colour segmentation [6] and QR identification
to detect the gates. The QR were provided by
the organisers.

Next year, in the 2017 ADR competition [14],
most of the teams included visual Simultaneous
Localisation and Mapping (SLAM) techniques
for drone localisation and flight planning based
on waypoints [17]. Gate detection, based on
conventional computer vision techniques, was also
used by some of the teams, following the idea
of controlling the drone based on where the gate
appear on the camera image [4]. Gate detection
has also been leveraged by using CNNs [8, 1],
more robust to changes in illumination and gate
overlapping. In these cases, the controller seeks
to align the drone’s camera optic centre w.r.t. the
gate’s centre detected on the image.

Other works have proposed to use the gate
detection to infer the 3-D position of the drone
w.r.t. the gate [10, 9, 2, 3, 5]. In these cases,
the controller works in the 3D world, either using
trajectory planning/tracking or waypoints to fly the
drone towards the gate. Other CNN-based works
have proposed the combination of CNNs. For
instance, in [16], the authors use a first CNN
that receives an input image to predict a 5-point
trajectory; the second network uses this trajectory
as much as the orientation and the velocity of
the drone as inputs. The CNN’s output will be a
prediction of speeds in throttle, roll, pitch and yaw.

Regarding the case of when a drone races
against another opponent, we have identified two
relevant works based on game theory [21, 19]. In a
set of strategies, one of them consists of blocking
the passage of the drone behind. To carry out
these strategies, the authors use a motion capture
system to identify their drone’s position and that of
the opponent.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

L. Oyuki Rojas Pérez, J. Martínez Carranza1272

ISSN 2007-9737

In this work, we do not rely on external locali-
sation systems, explicit gate detection, trajectory
planning/tracking or any other waypoint-based
controller. Our goal is to develop an artificial pilot
that resembles the human pilot’s decision making.
This is, deciding the flight commands based on the
camera images.

3 Proposed Framework

In this section, we describe our proposed CNN
architecture to predict 2 flight commands, roll and
pitch. We also describe our data acquisition
method, whose data was used to train our network.
We will also describe the whole control architecture
consisting of the CNN and 2 PID controllers for
height and heading.

3.1 CNN-Pilot

Based on our previous work [18], we propose
a more compact network architecture aiming at
extracting features from the input image. The
data flows through some convolution layers and
three inception modules, to be finally evaluated
with a regressor layer for the prediction of the flight
commands, this is, for roll and pitch. We refer to
this network as CNN-Pilot.

Figure 1 depicts our proposed architecture. In
sum, it has 4 convolutional layers with 3 inception
modules, 1 fully connected layer and a regressor
layer. The loss function used for each branch
is shown in the equation 1. Table 1 shows the
parameters used to train our CNN-Pilot:

loss(I) = ||x̂− x||2, (1)

where x corresponds to the flight command values
for each image (I), recorded when piloting the
drone manually, and x̂ is the flight command
predicted by the model. The loss function is
evaluated for both flight commands: roll and pitch.
Thus, our CNN-Pilot predicts roll and pitch whose
values fall in the rage of [−1, 1].

Table 1. Parameters used to train our proposed CNN-
Pilot to learn 2 flight commands: roll and pitch

Parameters Value
Optimiser Adam
Epoch 500
Batch size 32
Activation function ReLu
Learning rate 0.001

3.2 Data Acquisition

To create our image dataset, we manually flew
the drone in a race track with several gates and
with opponents placed in between some gates.
For these race tracks, the positions of the gates
were chosen randomly. The goal was to provide
different examples of what the appearance of gates
from onboard camera’s viewpoint. This included
overlapping gates, nearby and faraway gates, etc.
Note that these tracks were different to those used
in the experiments section.

We acquired images to demonstrate 2 flight
commands in the roll and pitch angles. These
commands produce flight translation in those
angles. Thus, for each one of these images, a
pair of flight commands (roll,pitch) was recorded.
These flight commands will be used as labels for
the training stage. In the collected images, the
gate was always kept in the camera’s viewing
area. After the recording, a manual adjustment
is made to the flight commands to identify the
dominant drone’s motion in roll and pitch. Once
identified, the flight command corresponding to the
dominant motion will be kept as recorded, where
as the other value is set to zero. This avoided
ambiguous commands.

In total, we recorded 9,500 single images with
their corresponding roll and pitch flight commands.
However, to train our CNN architecture, we used
these images to generate a dataset of mosaic
images, composed of 6 frames. In total, we
generated 7,298 mosaic images for training and
654 mosaic images for the network validation
during the training stage. Examples of mosaic
images, in the training dataset, can be seen in
Figure 2.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

Autonomous Drone Racing with an Opponent: A First Approach 1273

ISSN 2007-9737

Fig. 1. Proposed CNN architecture. This network receives a single mosaic image composed of 6 camera frames and
predicts 2 flight commands, roll and pitch. The size of the kernels in this network is indicated in the coloured boxes to
the right of the image

Each mosaic image is associated to 2 flight
commands, roll and pitch, with values ranging from
[−1, 1]. These values represent scaled values of
the angular positions of the drone’s body frame.

3.3 Control System

The control system runs on the Ubuntu 16.04 LTS
operating system, using the Kinetic Kame version
of the Robotic Operating System (ROS) as the
communication architecture. The process is per-
formed in a laptop with the following specifications:

— Intel Core i7 processor,

— 16 GB of RAM,

— NVIDIA GEFORCE GTX 1070 graphics card.

The control system is divided into two main
modules, which work within the ROS system. In the
first module, the roll and pitch control commands
are obtained using the CNN-Pilot. In the second
module, a PID controller is implemented to
maintain the height and heading of the drone,
which is fed-back using the drone altimeter and the
Inertial Measurement Unit (IMU).

The reference for the height and yaw angle are
set manually since all the gates have the same
height and angle. Figure 3 shows the general
diagram of the control architecture.

4 Experimental Framework

In this section, we present our experimental
framework to evaluate the performance of our
proposed CNN-Pilot approach. We executed the
experiments in the Gazebo simulator [12] to show
the efficacy of CNN-Pilot; we created a Zig-Zag
race track. The track spans over a surface of
60m. × 7m in length. There are 11m in of space
in between gates and the track is composed of 5
gates of 2.5 m height.

Rather than having an opponent drone flying in
the race track, we forced the situation in which the
drone faces an opponent on its way to the next
gate to be crossed. For this reason, we placed 4
static opponents between the 5 gates, see Figure
4. In this manner, we can observe the behavior
of the control system when the drone flies near by
the opponent, above or below it, or even when the
opponent is in front of it.

We placed the opponents at different heights
intentionally because we wanted to observe the
decision taken by the CNN-Pilot in concrete
scenarios: 1) the opponent is nearby but it is not
blocking the way; 2) the opponent in above or
below, but is not blocking the way; 3) the opponent
is block the way, therefore an evasion has to be
carried out via the corresponding flight commands
and then, once evaded, the drone has to get
on-track to its way to the next gate.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

L. Oyuki Rojas Pérez, J. Martínez Carranza1274

ISSN 2007-9737

Fig. 2. Examples of the dataset built for this work. This consist of mosaic images composed of 6 camera frames. The
frames used in this dataset were recorded during a manual flight

We perform 10 runs to assess the repeatability
of the control system. In total, 8 runs were
successfully completed. Figure 5(a) shows a top
view of the trajectories obtained by the drone,
controlled by our CNN-Pilot, in these runs. The
opponents are depicted as black circles.

The first opponent is not totally blocking the way,
and after the drone crosses the first gate, it is
easier for the CNN-Pilot to keep the course towards
the second gate. The second opponent is partially
blocking the way, but the CNN-Pilot manages to
perform a slight evasion to the right, managing to

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

Autonomous Drone Racing with an Opponent: A First Approach 1275

ISSN 2007-9737

Fig. 3. Proposed control architecture. The CNN-Pilot receives a mosaic image, composed of 6 camera frames, and
predicts 2 flight commands, roll and pitch. Height and heading (yaw angle) are controlled by a PID controller

Fig. 4. Race track used in our experiments, simulated with the Gazebo simulator. The opponent was simulated by a
set of drones placed in between gates and highlighted in yellow circles. The idea behind this scenario is that, when the
drone, controlled by our CNN-Pilot, flies towards the next gate, it will face the opponent

fly away from the opponent and then to get on
track to cross the third gate. The third opponent
blocks the way, however, the CNN-Pilot manages
to stop and evade successfully by moving to the
left and then it navigates towards the fourth gate to
cross it. Note that for this segment of the track, in
two runs CNN-Pilot decided to move the drone to
the right in order to evade the opponent. For this
reason, the fourth gate got out of view, hence the
drone navigated towards to fifth gate, skipping the
fourth gate.

We concluded that this was due to the speed and
trajectory that had been resulted by crossing the
third gate, which leaned slightly more to the right
than in the other runs. This caused the opponent
to appear with an image position more prone to the
left, hence CNN-Pilot decided to evade by the right.
Finally, the fourth opponent was located below, with
a lower height. Thus, CNN-Pilot correctly predicted
the flight commands for the drone to fly over the
opponent, since it did not block the way, enabling
the drone to cross the fifth gate without problem.

The trajectories can also be better appreciated
in the side view, shown in Figure 5(b). A video with
3 illustrative runs can be found here1.

Figure 6 shows illustrative examples of the
drone’s navigation and evasion along the race
track. The red circle indicates the drone piloted by
the control system and the yellow circle indicates
the opponent drones, which are placed in between
the gates and at different heights (2.3m, 2m, 2m
and 1.5m). Each image shows the external view
of the drone (Gazebo), keyboard and 2 additional
windows. The keyboard is only used to take off and
landing of the drone, as well as to start or cancel
the autonomous flight.

The first window corresponds to the mosaic
image, composed of 6 camera frames, and used as
input for the CNN-Pilot. The second window shows
the current frame obtained by the front camera
onboard the drone. This image also indicates the
altitude and heading (yaw angle) reference, roll and
pitch flight commands obtained by the CNN-Pilot,

1https://youtu.be/OKJg4Jy71K4

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

L. Oyuki Rojas Pérez, J. Martínez Carranza1276

ISSN 2007-9737

https://youtu.be/OKJg4Jy71K4

(a) (b)

Fig. 5. Top view (a) and side view (b) of the trajectories flew by the drone controlled with our CNN-Pilot. This network
has been trained to predict 2 flight commands: roll and pitch. The plots show 10 runs in a zig-zag track, opponents are
marked as a filled black circle. A video illustrating of our approach can be found at https://youtu.be/OKJg4Jy71K4

Fig. 6. Illustrative examples of our initial approach for ADR with an opponent. Each row shows the performance of our
control system, which controls the drone to fly towards the gate. However, an opponent is blocking the way. Hence, the
CNN-Pilot predicts the corresponding commands in roll and ptich to evade and later to get on-track towards the next
crossing gate. The opponent drone is indicated in a yellow circle. A video illustrating of our approach can be found at
https://youtu.be/OKJg4Jy71K4

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

Autonomous Drone Racing with an Opponent: A First Approach 1277

ISSN 2007-9737

https://youtu.be/OKJg4Jy71K4
https://youtu.be/OKJg4Jy71K4

as much as the PID control flight commands for
altitude and heading. In average, the flight speed
was of 0.61m/s.

Finally, we highlight that the reduction of the
inception modules and the convolutional layers of
the CNN presented in [18] increased the prediction
time from 21 fps to 30 fps. This contributes
significantly to the performance of the drone to fly
across the race track since the average time of the
8 runs was 1 minute 42 seconds.

5 Conclusions

In this work, we have presented the initial results
of a CNN-based approach for Autonomous Drone
Racing (ADR), considering an opponent. Our
proposed CNN is a compact architecture that
predicts 2 flight commands, roll and pitch, from
images captured with the drone’s onboard camera.
These flight commands represent scaled angular
positions of the drone’s body frame, which are
passed to the drone’s inner controller. As a whole,
our control system uses our proposed CNN-Pilot
for roll and pitch and 2 PID controllers for height
and heading.

We should highlight that our approach does
not require explicit gate detection, trajectory
planning/tracking, or waypoint-based control. Our
approach can be seen as an imitation approach,
meaning that the CNN has learned from manual
pilot commands executed in a race track. The
training dataset includes examples with and
without opponent visible in the camera images.
The goal was to show that our CNN-Pilot
was capable of controlling the drone to fly
autonomously toward the next gate and, when
facing an opponent on its way, to predict the
corresponding flight commands to evade the
opponent. After the evasion, the control system
was capable of getting the drone on-track to
navigate towards the next gate to be crossed.

We carried out experiments in the Gazebo
simulator, performing several runs to demonstrate
the repeatability of our approach. In each run,
the drone flown by our control system managed to
evade the opponent and finished the race track. In
average, control system flew the drone at a speed

of 0.61m/s and predicted the flight commands at
30 fps.

In our future work, we will port our CNN-Pilot
to be run onboard a physical drone. Porting over
will be a seamless task since we will use a drone
compatible with the simulated model. In addition,
we will extend our study to consider scenarios with
a more complex opponent’s behavior.

References

1. Cabrera-Ponce, A. A., Rojas-Perez, L. O.,
Carrasco-Ochoa, J. A., Martinez-Trinidad, J. F.,
& Martinez-Carranza, J. (2019). Gate detection for
micro aerial vehicles using a single shot detector.
IEEE Latin America Transactions, Vol. 17, No. 12,
pp. 2045–2052.

2. Cocoma-Ortega, J. A. & Martinez-Carranza, J.
(2019). A cnn based drone localisation approach for
autonomous drone racing. 11th International Micro
Air Vehicle Competition and Conference, Madrid,
Spain.

3. Cocoma-Ortega, J. A. & Martı́nez-Carranza,
J. (2019). Towards high-speed localisation for
autonomous drone racing. Mexican International
Conference on Artificial Intelligence, Springer,
pp. 740–751.

4. de Croon, G. C., De Wagter, C., Remes,
B. D., & Ruijsink, R. (2012). Sub-sampling:
Real-time vision for micro air vehicles. Robotics and
Autonomous Systems, Vol. 60, No. 2, pp. 167–181.

5. Foehn, P., Brescianini, D., Kaufmann, E.,
Cieslewski, T., Gehrig, M., Muglikar, M., &
Scaramuzza, D. (2020). Alphapilot: Autonomous
drone racing. arXiv preprint arXiv:2005.12813.

6. Illingworth, J. & Kittler, J. (1988). A survey of
the hough transform. Comput. Vision Graph. Image
Process., Vol. 44, No. 1, pp. 87–116.

7. Jung, S., Cho, S., Lee, D., Lee, H., & Shim,
D. H. (2018). A direct visual servoing-based
framework for the 2016 iros autonomous drone
racing challenge. Journal of Field Robotics, Vol. 35,
No. 1, pp. 146–166.

8. Jung, S., Hwang, S., Shin, H., & Shim,
D. H. (2018). Perception, guidance, and navigation
for indoor autonomous drone racing using deep
learning. IEEE Robotics and Automation Letters,
Vol. 3, No. 3, pp. 2539–2544.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

L. Oyuki Rojas Pérez, J. Martínez Carranza1278

ISSN 2007-9737

9. Kaufmann, E., Gehrig, M., Foehn, P., Ranftl, R.,
Dosovitskiy, A., Koltun, V., & Scaramuzza, D.
(2018). Beauty and the beast: Optimal methods
meet learning for drone racing. arXiv preprint
arXiv:1810.06224.

10. Kaufmann, E., Loquercio, A., Ranftl, R.,
Dosovitskiy, A., Koltun, V., & Scaramuzza,
D. (2018). Deep drone racing: Learning agile
flight in dynamic environments. arXiv preprint
arXiv:1806.08548.

11. Kendall, A., Grimes, M., & Cipolla, R. (2015).
Posenet: A convolutional network for real-time
6-dof camera relocalization. Proceedings of the
IEEE international conference on computer vision,
pp. 2938–2946.

12. Koenig, N. & Howard, A. (2004). Design
and use paradigms for gazebo, an open-source
multi-robot simulator. 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), volume 3,
IEEE, pp. 2149–2154.

13. Madaan, R., Gyde, N., Vemprala, S., Brown,
M., Nagami, K., Taubner, T., Cristofalo, E.,
Scaramuzza, D., Schwager, M., & Kapoor, A.
(2020). Airsim drone racing lab. arXiv preprint
arXiv:2003.05654.

14. Moon, H., Martinez-Carranza, J., Cieslewski,
T., Faessler, M., Falanga, D., Simovic, A.,
Scaramuzza, D., Li, S., Ozo, M., De Wagter,
C., et al. (2019). Challenges and implemented
technologies used in autonomous drone racing.
Intelligent Service Robotics, Vol. 12, No. 2,
pp. 137–148.

15. Moon, H., Sun, Y., Baltes, J., & Kim, S. J. (2017).
The iros 2016 competitions [competitions]. IEEE
Robotics Automation Magazine, Vol. 24, No. 1,
pp. 20–29.

16. Muller, M., Li, G., Casser, V., Smith, N.,
Michels, D. L., & Ghanem, B. (2019). Learning a
controller fusion network by online trajectory filtering
for vision-based uav racing. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 0–0.

17. Rojas-Perez, L. O. & Martinez-Carranza, J.
(2017). Metric monocular slam and colour seg-
mentation for multiple obstacle avoidance in
autonomous flight. 2017 Workshop on Research,
Education and Development of Unmanned Aerial
Systems (RED-UAS), pp. 234–239.

18. Rojas-Perez, L. O. & Martinez-Carranza, J.
(2019). A temporal cnn-based approach for
autonomous drone racing. 2019 Workshop on Re-
search, Education and Development of Unmanned
Aerial Systems (RED UAS), pp. 70–77.

19. Spica, R., Falanga, D., Cristofalo, E., Mon-
tijano, E., Scaramuzza, D., & Schwager, M.
(2018). A real-time game theoretic planner for
autonomous two-player drone racing. arXiv preprint
arXiv:1801.02302.

20. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin,
D., Tang, X., & Van Gool, L. (2016). Temporal
segment networks: Towards good practices for
deep action recognition. European conference on
computer vision, Springer, pp. 20–36.

21. Wang, Z., Spica, R., & Schwager, M. (2019).
Game theoretic motion planning for multi-robot rac-
ing. In Distributed Autonomous Robotic Systems.
Springer, pp. 225–238.

Article received on 17/06/2020; accepted on 21/07/2020.
Corresponding author is L. Oyuki Rojas Perez.

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1271–1279
doi: 10.13053/CyS-24-3-3486

Autonomous Drone Racing with an Opponent: A First Approach 1279

ISSN 2007-9737

