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3 Instituto Politécnico Nacional, CIC, Mexico City,
Mexico

i.akhmetov@ipic.kz

Abstract. Lemmatization is a process of finding the base
morphological form (lemma) of a word. It is an important
step in many natural language processing, information
retrieval, and information extraction tasks, among others.
We present an open-source language-independent
lemmatizer based on the Random Forest classification
model. This model is a supervised machine-learning
algorithm with decision trees that are constructed
corresponding to the grammatical features of the
language. This lemmatizer does not require any manual
work for hard-coding of the rules, and at the same
time it is simple and interpretable. We compare
the performance of our lemmatizer with that of the
UDPipe lemmatizer on twenty-two out of twenty-five
languages we work on for which UDPipe has models.
Our lemmatization method shows good performance on
different languages from various language groups, and it
is easily extensible to other languages. The source code
of our lemmatizer is publicly available.

Keywords. Lemmatization, natural language pro-
cessing, text preprocessing, Random Forest classifier,
Decision Tree classifier.

1 Introduction

Lemmatization is an important data preparation
step in many Natural language Processing (NLP)
tasks such as Information Extraction (IE) and
Information Retrieval (IR), among others. The aim

of lemmatization is to determine the base form of a
word (lemma) [11].

A number of approaches have been de-
veloped for lemmatization, ranging from those
relying on rule-based techniques [19] and simple
statistical-based methods [39] to the modern
deep-learning methods: see, for example, the
Stanford CoreNLP [27], a neural lemmatizer for
Bengali [8] and for German, Czech and Arabic [24].

In our work, lemmatization is treated by building
tree classification models [14], i.e., by supervised
machine learning with decision trees that are
constructed corresponding to the grammatical
features of the language.

Researchers have faced with difficulties while
lemmatizing words by different approaches. The
main difficulty of a rule-based word lemmatization
is that it is challenging to adjust existing rules to
new classification tasks [32]. When social media
texts are processed, it can be impractical to collect
a predefined dictionary due to the fact that the
language variation is high [22].

Concerning low-resource languages, it is hard to
collect corpora and compile dictionaries for such
languages [23]. Part-of-Speech (POS)-tagging, as
one of the preliminary steps of lemmatization, is
also difficult because some languages have up to
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30 different word forms for the same normalized
words [32].

Our method is a direct supervised approach
of building word lemma classification. Our
approach estimates the possibility of computing
syntactic models using only datasets in the form
of wordform–lemma dictionaries. We present
an open-source1 multilingual Random Forest
Classifier-based lemmatizer that has been shown
to support twenty-five languages. This lemmatizer
is a continuation of our previous work [1], where
we used Decision Tree Regression method. That
model caused a character shift errors leading
to poor accuracy; this does not happen in
the lemmatizer presented in this paper because
of using a classification algorithm instead of
regression.

We compare our lemmatizer with UDPipe,
an open-source tool for lemmatization.2 Our
evaluation shows that our classification tree-based
lemmatizer achieves much better results than
UDPipe does when our algorithm is provided with
sufficient amount of training data.

This paper is organized as follows. We
begin from a brief review of related works on
lemmatization in Section 2. In Section 3,
we describe a dataset, explain the method of
generating vectors from the words in the dataset
based on character co-occurrence matrix and
TF-IDF vectorizer [31], present our approach
based on Decision Tree and Random Forest
Classifiers and give the steps of our lemmatization
algorithm. In Section 4, we present the obtained
results. Section 5 concludes the paper and outlises
future extensions and possible research directions.

2 Related Work

To identify papers related with the present
research, we have searched Google Scholar and
Semantic Scholar. Our query terms included
language-independent word lemmatization, neural
architectures for lemmatization, and machine

1The source code of our lemmatizer is publicly available on
https://github.com/iskander-akhmetov/Highly-

Language-Independent-Word-Lemmatization-Using-a-

Machine-Learning-Classifier.
2http://ufal.mff.cuni.cz/udpipe

learning for lemmatization, among others. We
arranged the resulting papers from each query by
citation count and took at least top three. We
considering a paper only if it introduced original
ideas of a method or an algorithm.

2.1 Rule-based Approaches

Conventional algorithms for text lemmatization are
based on rules. It is worth mention that rules can
be expressed by the apparatus of fuzzy [13] or
predicate [37] logic. The logical rules applied to
finite-state transducers, with the help of a lexicon,
define morphotactic and orthographic alternations.

As a result, a system based on such rules
can solve several tasks, such as stemming,
lemmatization, and full morphological analysis [2,
10]. The advantages of such an approach include
transparency of the algorithm’s outcome and the
possibility of fine-tuning.

However, there are also disadvantages, such as
the so-called problem of out-of-vocabulary (OOV)
words, that leads to the need of intensive manual
support for the vocabulary of many thousands
of words.

In addition, there exist approaches that automat-
ically generate rules from the dataset of pairs of
the word and its normal form. For instance, [25]
with the help of a decision tree predicted particular
letters of the transformed word based on the letters
in the form of the past tense.

Another approach relies on relational learning
with decision lists applied to English verbs in the
past tense [30].

2.2 Statistical Approaches

Various approaches to NLP have been influenced
by ideas from statistics methods, such as Hidden
Markov Model (HMM) and Conditional Random
Fields (CRF), among others.

Researchers adopted HMM for POS tagging
and approximation of language model for speech
recognition systems. These methods have
difficulties in estimating transitional probabilities on
a small amount of data.

Besides, for good accuracy performance of
such methods, there is a need for the large
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Table 1. List of 25 languages we used

Language Code Language group Word pairs Source
Asturian ast Romance 108,792 Lemmatization lists
Bulgarian bg Slavic/Baltic 30,323 Lemmatization lists
Catalan ca Romance 591,534 Lemmatization lists
Czech cs Slavic/Baltic 36,400 Lemmatization lists
English en Germanic 41,649 Lemmatization lists
Estonian et Ural/Altaic 80,536 Lemmatization lists
Farsi fa Iranian 6,273 Lemmatization lists
French fr Romance 223,999 Lemmatization lists
Galician gl Romance 392,856 Lemmatization lists
German de Germanic 358,473 Lemmatization lists
Hungarian hu Ural/Altaic 39,898 Lemmatization lists
Irish ga Gaelic 415,502 Lemmatization lists
Italian it Romance 341,074 Lemmatization lists
Manx Gaelic gv Gaelic 67,177 Lemmatization lists
Portuguese pt Romance 850,264 Lemmatization lists
Romanian ro Romance 314,810 Lemmatization lists
Russian ru Slavic/Baltic 2,657,468 Zaliznjak dictionary
Scottish Gaelic gd Gaelic 51,624 Lemmatization lists
Slovak sk Slavic/Baltic 858,414 Lemmatization lists
Slovenian sl Slavic/Baltic 99,063 Lemmatization lists
Spanish es Romance 496,591 Lemmatization lists
Swedish sv Germanic 675,137 Lemmatization lists
Turkish tr Ural/Altaic 1,337,898 Zargan dictionary
Ukrainian uk Slavic/Baltic 193,704 Lemmatization lists
Welsh cy Gaelic 359,224 Lemmatization lists

manually annotated corpora to approximate the
probabilities [16, 12, 4].

2.3 Neural Approaches

Nowadays, neural approaches are prevailing over
a great variety of algorithms in the task of text
lemmatization. The advantage of artificial neural
networks can be explained by the simplicity of
development, the possibility of multi-task learning,
and application in multi-criterial optimization.

Conventional language models can be easily
presented in terms of a universal neural estimator.

The most popular idea in this field is the
sequence-to-sequence model (S2S), which can be
used for contextual lemmatization. The main idea
behind the S2S model is the attention mechanism,
which leads to good accuracy performance and

to reducing the number of parameters to be
computed [28].

3 Methods and Data

3.1 Datasets

For this research, we used Lemmatization lists [29]
for 23 languages publicly available under the Open
Data Base License (ODbL);3 see Table 1.

Additionally, for Russian language we used
Zaliznjak’s dictionary [41] and for Turkish we used
Zargan dictionary [18].

The language group representation of our data
is unbalanced, with the majority of languages being
Romance and Slavic / Baltic, followed by the Gaelic
and Germanic languages. The distribution of the

3https://opendatacommons.org/licenses/odbl/1-0/
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Fig. 1. Language groups representation in the data we
used: total word pairs

Table 2. Number of words by language group

Language groups Total number of words

Slavic/Baltic 3,875,372

Romance 3,319,920

Ural/Altaic 1,458,332

Germanic 1,075,259

Gaelic 893,527

Iranian 6,273

Total 10 628 683

data we have collected by the number of words
for a language group is presented in Fig. 1 and
Table 2.

We can observe that Uralic / Altaic group,
represented by only two languages, is greater
than such groups as Germanic and Gaelic by the
number of wordform–lemma pairs.

This is because of enormous Turkish language
data. Same effect can be observed for Slavic /
Baltic language group, mainly because of Russian
language data.

3.2 Method

3.2.1 Character Co-occurence Embeddings

For converting words in wordform–lemma pairs to
vectors, we used the following method for building
the character co-occurrence matrix.

Calculating TF-IDF All the words were con-
verted to vectors at a character level by the TF-IDF
vectorizer in scikit-learn implementation of the
method based on the works [26] and [21]:

1. Calculate the term frequency (in our case,
character frequency cf ) as

cf(c,w) = fc,w/len(w), (1)

where c stands for a character, w for a word
and len(w) for the length of the word in
characters.

2. Calculate the inverse document frequency
(inverse word frequency iwf , in our case) as

iwf(c,W ) = log
N

|{w ∈W : c ∈ w }|
, (2)

where N is the total number of words in
the corpus, and |{w ∈ W | c ∈ w }| is
the number of words where the character c
appears (cf(c,w) 6= 0).

3. Calculate the term frequency-inverse docu-
ment frequency (character frequency-inverse
word frequency, in our case) as

cfiwf(c,w,W ) = cf(c,w)× iwf(c,W ). (3)

4. As a result we get a sparse matrix:

mx = (nw,nc), (4)

where the size of the matrix is defined by the
number nw of words in the corpus and the
number nc of unique characters found in all of
the words in the corpus.
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Calculating the Co-occurrence Matrix We
multiplied the transpose of the matrix mx by the
matrix itself to find the cooccurence matrix as

cooc mx = mxT ×mx, (5)

which yields a matrix of size (nc,nc), every row or
column of which is serving as the embedding for a
corresponding character.

The character co-occurrence embeddings can
store the character semantic distribution infor-
mation [18] in the word context for a given
language, reflecting the phonetic patterns and their
similarity [34].

3.2.2 Decision Tree Classifier

For lemmatization, we used the Decision Tree
Classification as the base, extending it to an
ensemble method called Random Forest Classifier
as explained below.

Our selection of this classifier was based on the
fact that only K-Nearest Neighbors Classifier [3],
Radius Neighbors Classifier and tree algorithms
support multiclass-multioutput [31] or multitask
classification. However, the first two algorithms
require reducing the number of features used to
less than ten and have a complexity of O(N2)
or O(N × log(N)), whereas tree algorithms do
not require dimensionality reduction and have
a complexity of O(nsamplesnfeatures log(nsamples)).
The reason behind the selection of Random Forest
technique out of tree algorithms is explained in
Section 4.1.

The Decision Tree method is well known from
ancient times [5]. It was first formalized by
Hoveland and Hunt in late 1950s and further
elaborated in [36]. The classifier builds a tree
starting from the root question: the feature
that separates the elements into two groups
according to a criterion (Gini coefficient, entropy,
or variance) [15, 35, 33]; in our case, entropy
or Information Gain criterion was used, such that
each group contains similar elements. The process
continues iteratively for each group until a stopping
criterion is met, which can be:

— the specified depth of the tree is achieved,

— all the items on a leaf are of the same class or
one item is left on a leaf,

— more than N elements are left on a leaf, or

— further branching does not enhance the
homogeneity of items on a leaf beyond certain
value.

In our case, we go for multiclass classification
and the data is represented in the form of

(x,Y ) = (x1,x2,x3, . . . xk,Y1,Y2,Y3, . . . Ym) , (6)

where x1−k are the independent variables associ-
ated with the features and Y1−m are the dependent
variables or targets. The information gain (IG)
criterion is based on the concept of entropy heavily
used by physicists in thermodynamics [9] and
introduced for information by Shannon [35]. It is
defined as follows:

H(T ) = Ie (p1, p2, . . . , pj) =

j∑
i=1

pi log2 pi, (7)

where p1, p2, ..., pj are fractions that sum up to 1
and show the share of each class presence in the
child node that results from a split in the tree [40].
So, the formal criterion can be calculated as

IG(T , a) = H(T )−H(T | a), (8)

where H(T ) is the entropy of the parent node and
H(T | a) entropy of a child.

3.2.3 Random Forest Classifier Method

To counter some of the disadvantages of the
Decision Tree Classifier, which include easy
overfitting and non-robustness [20], we exploited
the Random Forest ensemble technique [6].
Here, the method implies using a random
subset from the training set with replacements;
the most discriminative thresholds are drawn
at random for each subset and the best of
these randomly-generated thresholds is picked as
the splitting rule (thus we employed a heuristic
methodology similar to Variable Neighborhood
Search [17]). Despite relatively low classification
power of each individual tree in the forest,

Computación y Sistemas, Vol. 24, No. 3, 2020, pp. 1353–1364
doi: 10.13053/CyS-24-3-3775

Highly Language-Independent Word Lemmatization Using a Machine-Learning Classifier 1357

ISSN 2007-9737



the cumulative classification power is increased
through averaging (by canceling out the errors) and
voting processes [31]. This usually leads to the
reduction of the model variance, at the expense of
a modest increase in the bias.

The scikit-learn [31] implementation of the
Random Forest allows for bootstrapping, using
a random subset of the dataset for estimator
instance training leading to a leaner and more
robust model, and using the parallelization in
computations to increase the effectiveness of the
training process. The module also uses averaging
of the estimators probabilistic predictions [31],
contrary to the original paper’s method of each
classifier voting for a single class [6].

3.2.4 Lemmatization Algorithm

These steps we used for each language can be
described as follows:

— given the dictionary of wordform–lemma
pairs, assign them as independent (X) and
dependent (Y ) variables for applying the
machine learning approach;

— prepare the character co-occurrence matrix
where each row or column will serve as
an embedding vector for the corresponding
symbol;

— encode the words in X by the character
embeddings, producing the vectors of length
of the longest word in the corpus and
flattening it;

— encode words in Y by the character ordinal
number, to carry out multiclass classification
task;

— split the dataset 90/10% for training and
testing;

— train the Random Forest Classifier model
employing the bootstrapping technique, 10
estimators and using entropy as a criterion;

— test the model.

We compare our lemmatization algorithm with
the UDPipe system as a baseline. The baseline
UDPipe system [38] is an updated version of the
UDPipe. Both UDPipe versions have a lemmatizer
based on the edit-tree classification method.

We use UDPipe Future as one of the top
performing entries in the lemmatization evaluation.
Its performance in the CoNLL 2018 UD Shared
task was ranked 1st, 3rd and 3rd in the three official
metrics: MLAS, LAS and BLEX, respectively.

Table 3. Test sample accuracy score of models per
language

Language E
xt

ra
Tr

ee
s

E
xt

ra
Tr

ee

D
ec

is
io

n
Tr

ee

R
an

do
m

Fo
re

st

Manx Gaelic 0.39 0.33 0.39 0.39
Farsi 0.40 0.28 0.31 0.38
Scottish Gaelic 0.47 0.38 0.44 0.45
Estonian 0.45 0.36 0.41 0.47
Czech 0.46 0.40 0.44 0.48
Bulgarian 0.48 0.42 0.45 0.50
English 0.50 0.31 0.40 0.48
Hungarian 0.50 0.44 0.46 0.51
Asturian 0.71 0.63 0.66 0.71
Irish 0.73 0.66 0.75 0.73
Slovenian 0.74 0.67 0.70 0.74
German 0.76 0.68 0.69 0.74
Romanian 0.78 0.68 0.77 0.79
Russian 0.79 0.75 0.77 0.79
French 0.81 0.74 0.77 0.81
Portuguese 0.86 0.81 0.84 0.87
Spanish 0.87 0.80 0.84 0.87
Welsh 0.87 0.85 0.87 0.88
Galician 0.89 0.83 0.86 0.89
Catalan 0.89 0.86 0.87 0.89
Swedish 0.89 0.81 0.84 0.88
Ukrainian 0.90 0.85 0.88 0.91
Italian 0.91 0.86 0.88 0.91
Slovak 0.92 0.85 0.89 0.92
Turkish 0.95 0.90 0.96 0.96
Average 0.72 0.65 0.69 0.72
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Table 4. Weighted average test sample accuracy score of algorithms by the number of words in data-sets

Language Num. words Weight ExtraTrees ExtraTree DecisionTree RandomForest
Manx Gaelic 67,177 0.6% 0.0025 0.0021 0.0025 0.0025
Farsi 6,273 0.1% 0.0002 0.0002 0.0002 0.0002
Scottish Gaelic 51,624 0.5% 0.0023 0.0019 0.0021 0.0022
Estonian 80,536 0.8% 0.0034 0.0027 0.0031 0.0035
Czech 36,400 0.3% 0.0016 0.0014 0.0015 0.0016
Bulgarian 30,323 0.3% 0.0014 0.0012 0.0013 0.0014
English 41,649 0.4% 0.0020 0.0012 0.0016 0.0019
Hungarian 39,898 0.4% 0.0019 0.0017 0.0017 0.0019
Asturian 108,792 1.0% 0.0072 0.0064 0.0068 0.0072
Irish 415,502 3.9% 0.0286 0.0258 0.0294 0.0284
Slovenian 99,063 0.9% 0.0069 0.0062 0.0065 0.0069
German 358,473 3.4% 0.0257 0.0229 0.0233 0.0250
Romanian 314,810 3.0% 0.0230 0.0200 0.0228 0.0233
Russian 2,657,468 25.0% 0.1982 0.1867 0.1932 0.1987
French 223,999 2.1% 0.0171 0.0156 0.0163 0.0171
Portuguese 850,264 8.0% 0.0690 0.0644 0.0669 0.0693
Spanish 496,591 4.7% 0.0405 0.0373 0.0392 0.0405
Welsh 359,224 3.4% 0.0295 0.0286 0.0295 0.0297
Galician 392,856 3.7% 0.0328 0.0306 0.0316 0.0329
Catalan 591,534 5.6% 0.0494 0.0476 0.0484 0.0495
Swedish 675,137 6.4% 0.0567 0.0518 0.0536 0.0562
Ukrainian 193,704 1.8% 0.0165 0.0156 0.0160 0.0165
Italian 341,074 3.2% 0.0291 0.0275 0.0284 0.0291
Slovak 858,414 8.1% 0.0742 0.0684 0.0722 0.0743
Turkish 1,337,898 12.6% 0.1201 0.1135 0.1203 0.1207
Total 10 628 683 100.0% 0.8396 0.7813 0.8183 0.8405

4 Results

4.1 Model Selection

For selecting the best model, we compared four
tree classifier algorithms: Extra Trees [14], Extra
Tree, Decision Tree [7] and Random Forest [6].

As was already mentioned, we compare only
tree classification algorithms, because only these
algorithms and the K-Nearest Neighbors with
Radius Neighbors algorithms are compatible with
multiclass-multioutput tasks in the Python sklearn
module implementation [31]. However, the
K-Nearest Neighbors algorithms requires feature
dimensionality reduction and significant amount of
time to test on large datasets, so we omitted them.

As Table 3 shows, Random Forest Algorithm
holds the majority of the leading testset accuracy

results, and followed immediately by the Extra
Trees algorithm. On average, both algorithms
result in the same 0.72 accuracy score.

To make an informed choice between the two
algorithms, we calculated the weighted average
testset accuracy score, weighing by the number of
words available for each language.

Table 4 shows that the leader is Random Forest
with its weighted average test sample accuracy
score of 0.8405, leaving the Extra Trees algorithm
behind with its 0.8396 score.

To measure the affinity of the compared
algorithms for each language, we calculated the
correlation coefficient between the results of each
pair of algorithms for test sample accuracy scores
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Fig. 2. Train / test accuracy and dataset volume

by language as

Correl(X,Y ) =

∑
(x− x̄)× (y − ȳ)√∑

(x− x̄)2 ×
∑

(y − ȳ)2
, (9)

where x̄ and ȳ are the mean values of the arrays of
the compared algorithms’ results.

As can be seen from Table 5, the results yielded
by each individual algorithm we compared are
highly correlated between each other, so there is
no any obvious preference of the algorithms for any
specific language.

4.2 Experiments

The results we have obtained using the Random
Forest classifier models for 25 languages are

shown in Fig. 2. As can be seen from the
figure, there is a clear dependency of test accuracy
from the volume of the dataset the model was
trained on, thus Manx Gaelic, Farsi, Scottish
Gaelic, Estonian, Czech, Bulgarian, English and
Hungarian languages score the lowest for the test
accuracy (from 0.39 to 0.51) and at the same time
for these languages we had less data available.

We can also observe that despite the largest
dataset available, we obtained relatively low test
accuracy score on Russian language (more than
2.3 million word pairs, and test accuracy of 0.79),
which we can attribute to the grammar complexity
of the Russian language. Another fact is that in
the top five languages by test accuracy, there are
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Table 5. Correlation coefficient between test sample accuracy scores of algorithms

ExtraTrees ExtraTree DecisionTree RandomForest
ExtraTrees 1 0.9905 0.9921 0.9983
ExtraTree 1 0.9941 0.9935
DecisionTree 1 0.9947
RandomForest 1

Table 6. Correlation matrix between accuracy scores and language features

Te
st
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ra
cy

Tr
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cy

M
ax
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W
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d
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s
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m

be
r

Test accuracy 1 0.64 0.28 −0.03 0.49
Train accuracy 1 0.05 0.10 −0.01
Max word length 1 0.11 0.21
Number of letters 1 −0.28
Word pairs number 1

two Slavic languages, namely Ukrainian (193 704
word pairs, test accuracy 0.91) and Slovak (858
414 word pairs, test accuracy 0.92), sharing the
group with Czech (low amount of data: 36,400
word pairs, test accuracy score 0.48) and Russian
(complex grammar) that they overrun significantly.

Considering the Turkish language as having the
best result for test accuracy score (0.96) and
having substantial amount of data (1.3 million
word), we must note that the dictionary we had
for this language was essentially wordform–stem
dictionary, and that is why we can disqualify it
but making the point that our algorithm might be
exceptionally good for stemming tasks. It is also
worth mentioning that our baseline, UDPipe, when
used for Turkish language, instead of lemma gives
the stem.

Another factor that might be affecting the test
accuracy we have is the maximum length of the
word for a given language. In Table 6, one
can observe the correlation coefficient (9) of 0.28
between this length and test accuracy score. The
maximum length of the word in a language may
indicate the presence of a set of grammar rules

regulating the construction of words, and these
rules can be generalized by the Random Forest
Classifier Algorithm if they do not have many
exceptions.

Again, for this explanation we have a contradict-
ing Romanian language which has relatively large
dataset of more than 300 thousand word pairs,
longest word of 53 letters (longer than the Turkish
language longest word of 50 letters) and scoring
only 0.79 for test accuracy, neighboring with the
Russian language on the scale. Other Romance
group languages such as Italian, Catalan, Galician,
Spanish, Portuguese and French scored on the
range of 0.81 to 0.91 for test accuracy, and we can
conclude that Romance languages are positively
responsive to our lemmatization method except for
the Romanian language.

4.3 Comparison with UDPipe

Comparing the test samples scoring with lemma-
tization results over the UDPipe API yielded the
results shown in Fig. 3.
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Fig. 3. Test accuracy comparison of our lemmatizer with UDPipe

UDPipe has no models for Manx Gaelic, Asturian
and Welsh languages, so we were able to make
comparison only on the rest of the languages.

Our lemmatizer outperformed the UDPipe
models on all languages except for Farsi, Estonian,
English and Hungarian. The languages on which
our lemmatizer performed badly supposedly had
insufficient training data (see Figure 3), which can
be fixed in the future.

5 Conclusion and Future Work

The lemmatization method presented in this paper
showed good potential for the use on different
languages from different language groups, and is
worth further development on larger datasets of

the tested languages, as well as Asian and African
languages.

For future work, we plan exploring the feature
importance for different languages, such as what
parts of the word are deemed more significant in a
language for inducing a words normal form.

In addition, building and possible interpreting the
decision tree diagrams built for each language by
the algorithm can be a very important step towards
improving the accuracy of the algorithm.
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& Bjarnadóttir, K. (2019). Nefnir: A high accuracy
lemmatizer for Icelandic. Proceedings of the 22nd
Nordic Conference on Computational Linguistics,
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A rule based approach to word lemmatization.
Proceedings of IS04, pp. .

33. Rutemiller, H. C. & Bowers, D. A. (1968).
Estimation in a heteroscedastic regression model.
Journal of the American Statistical Association,
Vol. 63, No. 322, pp. 552–557.

34. Sahlgren, M. (2008). The distributional hypothesis.
Italian Journal of Disability Studies, Vol. 20, pp. 33–
53.

35. Shannon, C. E. (1948). A mathematical theory of
communication. The Bell System Technical Journal,
Vol. 27, No. 3, pp. 379–423.

36. Simon, H. A. (1967). Experiments in induction. The
American Journal of Psychology, Vol. 80, No. 4,
pp. 651–653.
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