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Abstract. In many real-processes or physically 

modelled, the signals' peak-values must be calculated. 
A work's real-scale receives an amplificated impact of 
the small-scale measurements performed in the 
laboratory. Therefore, computations the maximum and 
minimum of the signal values have greater relevance. 
Likewise, other signal digital processing applications 
have the same behaviour. The sampling rate contributes 
significantly to measurement accuracy, and their effects 
are significant. Often, the measurement error due to the 
sampling frequency is not quantified. So, there are 
incomplete measurement specifications. There are no 
understandable formulations to obtain the possible 
highest errors due to the continuous signals' 
discretization, especially when the system bandwidth is 
limited. This paper presents a comprehensive general 
analysis based on the relation between the sampling 
frequency and the highest measurement error for a 
sinusoidal signal. The relative maximum (highest) errors 
on the peak values are calculated, with understandable 
mathematical expressions. Computations of peak-
values' relative maximum errors for post-processing 
mode have more details by its increased use. 
Additionally, analyses for signals composited of several 
harmonics, such as biomechanical signals and waves in 
hydraulic research laboratories, have specific examples 
in this paper. Some case studies analyze cubic spline 
interpolation effects. 

Keywords. Discretization accuracy, signal peak values, 

sampling frequency, measurement errors. 

1 Introduction 

The continuous signals discretization must meet 
accuracy specifications; these are often ignored. 
The sampling frequency is essential; the well-
known sampling theorem is fundamental, but not 

sufficient. These specifications are very 
remarkable in calculating the signal peak-values; 
mainly when the research is conducted on a small-
scale. Therefore, the acquired digital information 
quality is an essential descriptor for all 
measurement and control systems. 

It is desirable to choose a sampling frequency 
that does not represent a heavy burden for the data 
acquisition system.  In many applications, this 
sampling rate implies an efficient use of the central 
processing unit or data acquisition hardware. On 
the other hand, the sampling rate to acquire, save 
and transmit less information can be reduced and 
then interpolate in the receiver [1].  

Shannon's sampling theorem [2, 3] establishes 
the minimum angular sampling frequency 𝑊𝑠 to 
reconstruct a limited bandwidth continuous signal 
𝑋(𝑡) based on the samples taken in 𝑇 period: 𝑊𝑠 =
2𝜋/𝑇; where 𝑊𝑠 is radians/second; 𝑇 is the 
sampling period in seconds.  

For instance, a sinusoidal signal 𝑋(𝑡) =
𝐴𝑠𝑖𝑛(𝑤𝑡); where  𝑤 is the angular frequency of the 

𝑋(𝑡) signal; If 𝑊𝑠 is greater or equal than 2𝑤, then  
𝑋(𝑡) can be reconstructed based on the samples 
taken. However, this well-known theorem and 
many publications have not formulated or 
presented the recommended sampling frequency 
for applications with specific requirements. 

For the abovementioned, mathematical 
expressions are necessary for a relationship 
between the sampling rate and the measurement 
accuracy. However, there are some practical 
criteria. For instance, for control systems, the 
sampling frequency should be based on 
knowledge of their characteristics. Thus, it is 
reasonable to consider the closed-loop control 
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system bandwidth, or the rising time [4]. A good 
selection takes the sampling frequency between 
10 and 20 times greater than the bandwidth. 

Automatic control systems have dynamic 
characteristics of low-pass filters, allowing a 
relatively low sampling frequency, among other 
aspects of their designs [5]. The relations 
abovementioned can be small for typical signal 
processing applications [1, 6], [7].  

A practical criterion for sea wave [8, 9] is to 
consider the signal spectrum peak frequency (𝑓𝑝), 

and choosing the sampling frequency 𝑓𝑠 according 
to the following relationship: 𝑓𝑠 ≥ 8𝑓𝑝. This criterion 

is recommended for measuring and irregular-wave 
generation systems in research laboratories [9]. 
Where 𝑓𝑠 has been used to denote the sampling 
frequency in Hertz (Hz) or samples per second. 

All the above cases are based on practical 
criteria guaranteeing an acceptable accuracy 
depending on the application type. However, when 
an application should not increase the 
computational cost in real-time or the data 
acquisition card does not allow a higher data 
sampling rate, there are other solutions.  

For example, If the application provides post-
processing of collected data, several methods can 
be applied to reduce sampling frequency's adverse 
effect without increasing it so much. This paper 
intends to be useful for the academy, researchers 
and industry. It is possible to calculate the 
maximum error due to sampling frequency based 
on mathematical expressions. A comprehensive 
general analysis is developed based on the 
relation between the sampling frequency and the 
maximum measurement error for a sinusoidal 
signal. The harmonic of greater amplitude is 
relevant in many applications and computation 
types [10–24].  

As mentioned previously, the sinusoidal signals 
type is the basis for finding the proposed 
formulations by this paper in Section 2. Besides, 
they have been used in various applications 
developed successfully for several years. Those 
mathematical expressions are useful in signals 
with several harmonics if their objective-bandwidth 
is well-thought-out; or otherwise, those that have 
some significant harmonics. In this sense, Section 
4 will analyze several experimental examples 
where the previous statements are true.  

The paper's remainder has several sections: 
Review; Material and Methods; Experimentations 
and Results, which present signals for a wave 
generation hydraulic channel and biomechanical 
signal measurements in Parkinson disease 
patients; Discussion and  Conclusions. 

2 Review 

A physically modelled process, such as a wave 
research laboratory for maritime and coastal works 
design, requires calculating the signals' peak 
values [8, 9, 22, 25], as Fig. 1 shows. 

Assessments use small-scale models, and their 
computations are transformed into real-scales, 

 

 

Fig. 1. Wave research laboratory for maritime and 

coastal works designs: a) Rectangular section 
measuring channel; b) Signals with relevant peak-
values  
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finally. Maximum errors must be calculated with 
high accuracy in the laboratory to know and 
evaluate their real-works impacts.  

Similar situations occur in the design of 
mechanical systems [26]. In other measurement 
systems, for example, in biomechanical 
assessments, the multiple freedom degrees of 
their triaxial signals and wireless communication 
bandwidth limitations may not allow increasing the 
sampling rate, as shown in Fig. 2. In these cases, 
signals' peak-values computations are relevant. 
This known behaviour enables us to give the 
appropriate treatment to acquired signals and 
obtain good results in the advanced digital signals 
processing and when artificial intelligence methods 
are used [18–21, 27]. 

2 Material and Methods 

2.1 Measurement Accuracy and Sampling 
Frequency 

This section presents several analyzes and 
examples that improve understanding of the 
relationship between sampling frequency and 
measurement accuracy for signals composited of 
several harmonics. This analysis is based on the 
bandwidth and the error expressions for a 
sinusoidal signal, in real-time and post-processing 
mode, which is useful when a designer must 
present with absolute certainty the accuracy 
specifications of a measurement system being 
very relevant when the signal peak-values are 
calculated.  

2.2 Data Post-Processing Mode 

Real-time calculations are not necessary for many 
applications. Instead, these computations can be 
made on data previously acquired (post-
processing mode) to calculate the maximum and 
minimum signal values. Fig. 3. Presents the 
absolute maximum error due to sampling 
frequency during the peak-value calculation 
(𝐸𝑝𝑎𝑏𝑠(𝑃𝑂𝑆)) for a sinusoidal signal. 

Where 𝐸𝑝𝑎𝑏𝑠(𝑃𝑂𝑆) is the absolute maximum error 

during the peak-value computation in post-
processing mode. Where x(k), x(k+1) is the signal 
value in t = kT  and  t = (k+1)T, respectively,  T: 

sampling period and k is an integer value 
(k=1,2,3,.....). Absolute maximum error of peak- 

value, in post-processing mode 𝐸𝑝𝑎𝑏𝑠(𝑃𝑂𝑆) occurs 

when none of the values of the samples taken 
coincides with the signal peak-value. This error will 
be the maximum when the samples' arrangement 
presented in Fig.3 are equidistant from the peak- 
value: 

𝐸𝑝𝑎𝑏𝑠(𝑃𝑂𝑆) = |𝑋(𝑘 + 0.5) − 𝑋(𝑘)|, (1)  

 

 

 

Fig. 2. a) Parkinson disease patient during a finger to 

nose exercise and signal of the gyroscope X-axis; b) 
Raw signal (low and high-frequency components; c) 
Filtered signal (only low-frequency components) with 
relevant pick values 
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𝑋(𝑘 + 0.5) = 𝐴𝑠𝑖𝑛(2𝜋𝑓 1 4𝑓)⁄ , (2)  

𝑋(𝑘 + 0.5) = 𝐴𝑠𝑖𝑛(𝜋 2⁄ ) = 𝐴, (3)  

𝑋(𝑘) = 𝐴𝑠𝑖𝑛[(2𝜋𝑓 1 4𝑓⁄ − 𝑇 2)]⁄ , (4)  

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 [2𝜋𝑓 (
1 − 2𝑓𝑇

4𝑓
)] = 

𝐴𝑠𝑖𝑛 ⌈
𝜋

2
(1 − 2𝑓𝑇)⌉. 

(5) 

 

Replacing 𝑇 =
1

𝐹𝑠
=

1

𝑛𝑓
; the expression (5) will 

become (6): 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 [
𝜋

2
(1 − 2𝑓

1

𝑛𝑓
)], (6) 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 (
𝜋

2
−

𝜋

𝑛
) = 𝐴𝑐𝑜𝑠 (

𝜋

𝑛
), (7) 

𝐸𝑝𝑎𝑏𝑠(𝑃𝑂𝑆) =A- 𝐴𝑐𝑜𝑠 (
𝜋

𝑛
), (8) 

The relative maximum error (𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆)) 

regarding the peak-to-peak signal value expressed 
in per cent will be formulated with Eq. (10): 

𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) =
𝐴 −  𝐴𝑐𝑜𝑠 (

𝜋

𝑛
)

2𝐴
𝑥100, (9) 

𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) = 0.5 [1 − 𝑐𝑜𝑠 (
𝜋

𝑛
)] 𝑥100. (10) 

2.3 Real-Time Processing Mode 

The absolute maximum error in real-time is located 
symmetrically to coordinate axis origin, where the 
highest signal change speed occurs, as shown in 
Fig. 4. The maximum error is calculated using a 
zero-order hold. Therefore, a signal sample 
remains valid until the next sample is taken (next 
sampling period): 

𝐸𝑎𝑏𝑠(𝑅𝑇) = 𝑀𝑎𝑥 |𝑋(𝑘 + 1) − 𝑋(𝑘)|. (11) 

where 𝐸𝑎𝑏𝑠(𝑅𝑇) is the absolute maximum error in 

real-time; 𝑋(𝑘 + 1), 𝑋(𝑘) is the signal value at 𝑡 =
(𝑘 + 1)𝑇 𝑎𝑛𝑑 𝑡 = 𝑘𝑇, respectively; T is the 

sampling period, and 𝑘 is an integer value: 

𝑋(𝑘 + 1) = 𝐴𝑠𝑖𝑛(2𝜋𝑓 𝑇 2)⁄ , (12) 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛[2𝜋𝑓(− 𝑇 2)]⁄ , (13) 

𝐸𝑎𝑏𝑠(𝑅𝑇) = 

|𝐴𝑠𝑖𝑛(2𝜋𝑓 𝑇 2)⁄ − 𝐴𝑠𝑖𝑛[2𝜋𝑓(− 𝑇 2)]⁄ |, 
(14) 

𝐸𝑎𝑏𝑠(𝑅𝑇) = |2𝐴𝑠𝑖𝑛(2𝜋𝑓 𝑇 2)⁄ |, 

𝐸𝑎𝑏𝑠(𝑅𝑇) = 2𝐴|𝑠𝑖𝑛(𝜋𝑓𝑇)| 
(15) 

 

Fig. 3. Absolute maximum error during the calculation of 

peak value in post-processing mode 

 

Fig. 4. The absolute maximum error in real-time 
measurements for a sinusoidal signal with frequency f 

Computación y Sistemas, Vol. 25, No. 1, 2021, pp. 173–183
doi: 10.13053/CyS-25-1-3889

Luis Pastor Sánchez Fernández176

ISSN 2007-9737



 

 

= 1 𝐹𝑠⁄ 𝑇, (16) 

where 𝐹𝑠 is the sampling frequency; making 𝐹𝑠 =
𝑛𝑓, where f is the sinusoidal signal frequency and 

𝑛 is an integer greater or equal to two; the resulting 
is the Eq. (17): 

𝐸𝑎𝑏𝑠(𝑅𝑇) = 2𝐴𝑠𝑖𝑛(𝜋 𝑛⁄ ). (17) 

The maximum relative error in real-time 
(𝐸𝑟𝑒𝑙(𝑅𝑇)) regarding the signal's peak-to-peak 

value, expressed in per cent will be formulated with 
Eq. (19). 

𝐸𝑟𝑒𝑙(𝑅𝑇) =
2𝐴𝑠𝑖𝑛(𝜋 𝑛⁄ )

2𝐴
𝑥100, (18) 

𝐸𝑟𝑒𝑙(𝑅𝑇) = 𝑠𝑖𝑛(𝜋 𝑛⁄ ) 𝑥100, (19) 

Fig. 5 shows the illustration of the absolute 
maximum error produced around the peak values 
in real-time processing mode (𝐸𝑝𝑎𝑏𝑠(𝑅𝑇)), which is 

based on Eqs. (20) to (28): 

𝑋(𝑘 + 1) = 𝐴𝑠𝑖𝑛(2𝜋𝑓 1 4𝑓⁄ ) =
𝐴𝑠𝑖𝑛(𝜋 2)⁄ = 𝐴, 

(20) 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛[ 2𝜋𝑓(1 4𝑓⁄ − 𝑇 )], (21) 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 [2𝜋𝑓 (
1−4𝑓𝑇

4𝑓
)], (22) 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 [ 
𝜋

2
(1 − 4𝑓𝑇)]. (23) 

The sampling period can be written as 𝑇 =
1

𝑛𝑓
 

obtaining the Eq. (24): 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 [ 
𝜋

2
(1 − 4𝑓

1

𝑛𝑓
)], (24) 

𝑋(𝑘) = 𝐴𝑠𝑖𝑛 (
𝜋

2
−

2𝜋

𝑛
) = 𝐴𝑐𝑜𝑠 (

2𝜋

𝑛
), (25) 

𝐸𝑝𝑎𝑏𝑠(𝑅𝑇) = 𝐴 − 𝐴𝑐𝑜𝑠 (
2𝜋

𝑛
). (26) 

 

Fig. 5. The absolute maximum error produced around 

the peak values in real-time processing mode 
(𝐸𝑝𝑎𝑏𝑠(𝑅𝑇)) for a sinusoidal signal 

 

 

Fig. 6. A typical signal for a wave generation hydraulic 

channel: a) The time-domain signal with 192 Hz and 
4 Hz sampling frequency; b) The frequency domain 
signal sampled at 192 samples per second. The 
highest frequency harmonic is 1.1 Hz 
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Equation (27) shows the relative maximum 
error in real-time, regarding the peak-to-peak of 
signal value (𝐸𝑝𝑟𝑒𝑙(𝑅𝑇)) in per cent: 

𝐸𝑝𝑟𝑒𝑙(𝑅𝑇) =  
𝐴−𝐴𝑐𝑜𝑠(

2𝜋

𝑛
)

2𝐴
𝑥100, (27) 

𝐸𝑝𝑟𝑒𝑙(𝑅𝑇) =  0.5 [1 − 𝑐𝑜𝑠 (
2𝜋

𝑛
)] 𝑥100. (28) 

Table 1 presents the results of the evaluation of 
the Eqs. (10), (19) and (28) for several sampling 
frequencies, being 𝑛 multiples of the sinusoidal 
signal frequency. 

3  Experimentations and Results  

3.1 Wave Generation Hydraulic Channel 

Fig. 6 presents a typical signal for a wave 
generation hydraulic channel used at physical 
modelling on time and frequency domains, in post-
processing mode for a segment between 17 to 26 
seconds. This signal harmonics are less than 1.1 
Hz, and it was sampled at 192 and 4 samples per 
second, simultaneously. There is a significant loss 
of information around the maximum peak value 
with a sampling frequency of 4 Hz. Nevertheless, 
the maximum error during the peak-value 
calculation in post-processing mode has not 
occurred because the red signal points are not 
equidistant from the peak-value. If the sampling 
frequency of 192 Hz is considered as reference, 
Eqs. (20) and (30) present the relative error 
(𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆)) produced around the peak-values in 

post-processing mode, in per cent. In maritime 
hydraulics for small-scale physical modelling, 
those errors are substantial.  

In this example, the behaviour was less severe 
because there is only an error during the maximum 
peak computation and one sample coincided with 
the minimum peak. Eq. (30) presents the relative 
error produced around the peak value in post-
processing mode, in per cent, for a signal segment 
between 22 and 24 seconds: 

𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) =
(5.668−4.289)

(5.668−(−3.901)
= 0.1441, (29) 

𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) = 14.41%. (30) 

The relative maximum error (𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆)) 

produced around the peak-values in post-
processing mode based on Eq. (10) is 17.53%, 
considering the highest frequency harmonic equal 
to 1.1 Hz (view Fig. 6b). 

3.2 Biomechanical Signal Measurement in 
Parkinson Disease Patients 

In this application, the hardware and 
communication devices are not allowed to use a 
higher sampling frequency. The three inertial 
measurement units with nine degrees of freedom 
(accelerometer, gyroscope and magnetometer tri-
axial) are connected to a computer by Bluetooth, 
and there is limited bandwidth. 

Fig. 7 presents a left-hand postural tremor of a 
Parkinson disease patient with a sampling 
frequency of 50 Hz (50 samples per second). Fig. 
7c shows the peak amplitude spectrum. This signal 
has been sampled five times concerning the 
highest-frequency harmonic, which is 10 Hz. 
Based on Eq. (10), the relative maximum error 

Table 1. Relative errors and sampling frequency 

n 𝑬𝒑𝒓𝒆𝒍(𝑷𝑶𝑺)% 

Eq. (10) 

𝑬𝒑𝒓𝒆𝒍(𝑹𝑻)% 

Eq. (28) 

𝑬𝒓𝒆𝒍(𝑹𝑻)% 

Eq.(19) 

2 50 100 100 

4 14.64 50 70.71 

8 3.8 14.64 38.26 

10 2.44 9.54 30.9 

20 0.61 2.44 15.64 

50 0.098 0.39 6.27 

100 0.024 0.098 3.14 

200 0.0061 0.024 1.57 

300 0.0027 0.0109 1.04 

𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆): relative maximum error around the peak-

values in post-processing mode. 𝐸𝑝𝑟𝑒𝑙(𝑅𝑇): relative 

maximum error in real-time around the peak-values. 

𝐸𝑟𝑒𝑙(𝑅𝑇): maximum relative error in real-time  
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𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) produced around the peak values 

is  9.55%. 

Fig. 8 presents a signal section of Fig. 7b from 
31.5 to 32 seconds with a sampling frequency of 
300 Hz (reference) and 50 Hz, respectively 
(simultaneous sampling) with test hardware. Eq. 
(32) presents a relative error produced around the 
peak value in post-processing mode in per cent for 
the segment mentioned above. 

𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) =
(0.3−0.25)

(0.3−(−0.3)
= 0.0833, (31) 

𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) = 8.33%, (32) 

Based on Eq. (10) the relative maximum error 
𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) produced around the peak values would 

be 9.55%. 

The relative error 𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) produced around 

the peak-value in post-processing mode (8.33%) is 
less than the relative maximum error 
𝐸𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) (9.55%)  for 50 Hz, which is five times the 

objective signal bandwidth but it's a close-value. In 
other signal examples, the results are similar. 

A measurement system's maximum error 
specification means that the measurement error 
will not be greater than the worst-case scenario's 
specified maximum error. In the examples shown, 
that statement is true. In numerous cases 
analyzed, the behaviour is similar, and it can be 
stated that the formulations proposed have a very 
favourable practical value. 

4. Discussion 

Eqs. (10), (19) and (28) present the relative errors 
according to the sampling frequency for a 
sinusoidal signal. However, for composed signals 
of several harmonics can be considered its 
bandwidth or the highest-frequency harmonic. In 
other words, the frequency range in which most of 
the signal power is concentrated. For example, in 
Fig. 7c the harmonics with frequencies greater 
than 10 have very small amplitudes and minimum 
energy. For instance, in Fig. 7c the harmonics with 
frequencies greater than 10 have very small 
amplitudes and therefore, a minimum power. 

The Eq. (10) is  useful because the relative error 
𝑒𝑝𝑟𝑒𝑙(𝑃𝑂𝑆) obtained with Eq. (30) and Eq. (32) 

always will be less than or equal to maximum error. 
Similar results are obtained for other signal 
examples with several sampling frequencies.  

In many cases, when hardware limitations do 
not allow increasing the sampling frequency, the 
cubic spline interpolation is a good option [18, 21]. 
In several applications, a practical criterion is to 
use an interpolation factor from 5 to 10. 
Interpolation factor greater than ten does not offer 

 

 

Fig. 7. A left-hand postural tremor: (a) A Parkinson 

disease patient; (b) Y-axis signal of the accelerometer; 
(c) Magnitude spectral (peak). The highest frequency-
harmonic is 10 Hz 
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appreciable improvements. Fig. 9a presents a 
signal section of Fig. 7b with a sampling frequency 
of 50 Hz, with cubic spline interpolation factor 
equal to 1 (equivalent sample rate of 100 Hz) for a 
time interval from 11.5 to 12 seconds. Fig 10b 
another time interval from 33.5 to 34 seconds. In 
both cases, the cubic spline interpolation effect 
enables greater accuracy in peak-values 
calculations, decreasing the error due to the 
sampling frequency. 

4.1 Comparison with some Works more 
Closely Related 

Often, measurement errors due to the sampling 
frequency are not quantified. If not possible to 
increase the sampling frequency, some methods to 
reduce its effect on the measurement accuracy 
must be used. Generally, few works analyze in a 
practical way or present mathematical expressions 
of the error due to the sampling rate, especially in 
peak-values calculations. This section presents a 
comparison with some work more closely related. 

Paper [22] only evaluates the measurement 
error in wave research laboratories, fundamentally, 
based on a sinusoidal signal. That work presents 
one graph of the cubic spline interpolation and 
does not quantify its effect on the raw signal. 

 The paper [28] examines the impact of digital 
processing, and discretization or sampling of sea 
surface elevations. The theory of random linear 
waves, the probability distributions for the 
measured wave heights and amplitudes have been 
obtained as conditional for the sampling frequency. 
Rates of 1 Hz or less may lead to significant 
underestimation of the probability of huge waves. 

 In [29] and [25] the relationship between the 
sampling frequency and measurement's maximum 
error is obtained for continuous sinusoidal signals 
The data are processed using the Fast Fourier 
Transform (FFT) and interpolation of cubic splines. 
Graphical and statistical examples are shown for a 
wave research laboratory.  

The paper [30] presents the phase-locked 
spikes in various types of neurons encode 
temporal information. The metric called vector 
strength (VS) quantifies the degree of phase-
locking. In electrophysiological experiments, the 
timing of an action potential is detected with finite 

temporal precision, which is determined by the 
sampling frequency. The errors in VS, assuming 

 

Fig. 8. A signal section of Fig. 7 from 31.5 to 32 seconds 

and peak values 

 

 

Fig. 9. A signal section of Fig. 7b with a sampling 

frequency of 50 Hz, with cubic spline interpolation factor 
equal to 1 (equivalent sample rate of 100 Hz); a) A time 
interval from 31.5 to 32 seconds; b) Another time 
interval from 33.5 to 34 seconds 
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random sampling effects will be estimated. The 
impacts of analogue-to-digital conversion (ADC) 
quantization noise on the recovery of harmonic 
amplitudes and phases in the presence of large 
fundamental amplitudes are examined by theory 
and simulation [30], to determine the noise limits of 
instrumentation system design for power systems 
monitoring and harmonic power-
flow measurement. 

In this paper, a comprehensive analysis is 
developed based on the relation between the 
sampling frequency and the maximum 
measurement error for a sinusoidal signal. The 
real-time processing mode presents mathematical 
expressions of relative maximum errors around the 
peak-values. The relative maximum error of peak-
values calculation in post-processing mode is 
analyzed with more relevance. Additionally, 
signals composited of several harmonics have 
some illustrative examples.  

Biomechanical signals and research 
laboratories waves are objectives of this work as 
interesting examples. The error due to sampling 
frequency is quantified in a material very 
understandable. Some examples evaluate the 
cubic spline interpolation and its effects. Besides, 
the general analysis is useful for any signal where 
the peak-values computation represents the main 
aim.  For many years, the research group has used 
these design criteria to evaluate several data 
acquisition systems' performance based on 
sampling frequency. For examples, for wave 
research and hydraulic laboratories [23, 31]; 
environmental noise in urban areas and airports 
[12–16]; biomechanical signal analyzes [18–21, 
32]; and fault diagnose based on mechanical 
vibrations [33, 34]. 

5 Conclusions 

The Eq. (10) allows calculating the relative 
maximum error produced around the peak-values 
in post-processing mode. Eq. (19) computations 
the relative maximum error in real-time. Likewise, 
Eq. (28) is the representations of the error around 
the peak-values also in real-time. These three 
equations have utility in signals with several 
harmonics if their objective-bandwidth is well-
thought-out; or otherwise, signals that have some 

significant harmonics. Many applications have 
demonstrated the usefulness of these design 
criteria to evaluate the data acquisition systems' 
performance. These equations permit to quantify 
the measurement accuracy based on sampling 
frequency. The error by samples rate always will 
be less than the maximum error computed by 
these equations. The maximum relative mistake 
during the peak-values calculation in post-
processing mode is analyzed with more relevance 
because it is widely used in many engineering 
areas. 

The cubic splines interpolation, widely 
mentioned and well-accepted by many authors and 
available in signal-processing commercial 
software, reconstructs the time-series adding 
intermediate points, producing an effect that could 
be considered similar at a higher sample rate. A 
practical criterion in several applications is to use 
an interpolation factor from 5 to 10. In general,  the 
interpolation factor greater than ten does not offer 
appreciable improvements. 
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