
Ride Sharing Using Dynamic Rebalancing with PSO Clustring:
A Case Study of NYC

Moustafa Maaskri1, Mohamed Hamou Reda2, Adil Tomouh1

1 Djillali Liabes University,
Computer Science Department, EEDIS Laboratory,

Algeria

2 Dr. Tahar Moulay University,
Computer Science Department, GeCoDe Laboratory,

Algeria

moustafa.maaskri@univ-sba.dz, hamoureda@yahoo.fr, toumouh@gmail.com

Abstract. The shared vehicle can improve the efficiency
of urban mobility by reducing car ownership and parking
demand. Existing rebalancing research divides the
system coverage area into defined geographical zones,
but this is achieved statically at system design time,
limiting the system’s adaptability to evolve. In the current
study, a method has been proposed for rebalancing
unoccupied vehicles in real-time while considering travel
requests, using a bio-inspired method known as Particle
Swarm Optimization clustering (PSO-Clustering). The
solution was examined using data on taxi usage in New
York City, first looking at the traditional system (no ride
sharing, no rebalancing), then carpooling, and finally of
both ride sharing and rebalancing.

Keywords. Ride sharing, PSO, rebalancer, clustering,
simulation.

1 Introduction

Traffic congestion on city roads has become a
significant issue that must be addressed in urban
development due to urbanization and the rapid
rise in vehicles The acceleration of urbanization
and the rapid increase within the number of
vehicles for travel have made traffic congestion
on urban roads a serious problem that must be
addressed in urban development. As a result,
several researchers suggested the concept of
“carpooling”. Experimental results have shown that

this idea demonstrates the effectiveness of policies
in reducing urban traffic congestion.

In March 2013, researchers at the Mas-
sachusetts Institute of Technology (MIT) analyzed
a week of taxis in Manhattan, New York [1].
Approximately 10,000 of New York’s 13,600 taxis
were used during the hour. To meet its 98%
transportation requirement, Manhattan only needs
3,000 shared taxis. This study found that
an effective carpooling system reduces traffic
congestion in cities and improves the speed of
passenger transportation for in-service vehicles
and drivers’ operating benefit.

Furthermore, energy consumption and environ-
mental pollution should be reduced [9]. Ac-
cordingly, implementing carpooling is an effective
way to increase the quality of urban traffic
[10, 12]. Some cities have introduced and
incorporated taxi ride sharing as a means of
reducing taxi traffic congestion. As a result,
carpooling has sparked the attention of many
researchers as an intriguing subject of urban
transportation science. In 2011, Agatz investigated
the issue of driver and passenger assignment in a
competitive environment and suggested a method
for maximizing vehicle mileage and individual travel
costs [2].

Shinde presented a multi-objective optimization-
assisted carpool path matching genetic algorithm.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

ISSN 2007-9737

The algorithm reduces computational complexity
and time intervals while also improving the carpool
effect [19]. In 2015, Pelzer proposed a dynamic
decision algorithm that supported the partition of
the network [19]. The algorithm divides and
numbers the road network and uses the spatial
route search algorithm for matching passengers
and vehicles.

In 2015, Jiau used a genetic algorithm to imple-
ment carpool path matching in a short amount of
time, resulting in a carpool path matching scheme
with low complexity and memory [13].

In 2015, Huang suggested a fuzzy control
genetics-based carpooling algorithm that com-
bines a genetic algorithm and a fuzzy control
system to optimize the route and balance driver
assignments and demands in an intelligent
carpooling system [11].

Cheng developed a multi-dynamic taxi ride
sharing model in 2013, using the genetic algorithm
to solve the carpool problem to benefit travelers
and drivers [6].

In 2013, Ma proposed a large-scale carpooling
service; it responds efficiently to real-time requests
sent by taxi users and generates carpooling
schedules that significantly reduce the total
distance of the trip [15].

Xiao et al. developed a membership function
based on three factors: driving directions, driving
time, and the number of passengers in 2014 to
achieve fuzzy carpool grouping and identification
of passengers and taxis [23].

In 2017, Zhang proposed the first systematic
work, named CallCab, based on a data-driven
methodology to design a single recommendation
system for daily and ride-sharing services. This
recommendation system was designed to help
passengers find the best taxi with carpooling [25].

As shown in Figure 1, which was generated by
extracting requests from New York Taxi data over
two separate periods, mobility requests develop
over time, and the distribution of requests is
uneven [20].

It can result in an unbalanced distribution of
drivers for RS systems, as seen in ??, where
the majority of demand is concentrated in the
upper region, and most vehicles are located on the

opposite side after their last journey, where fewer
new customers request a ride [4].

2 Related Work

Taxi rebalancing can be categorized into ap-
proaches based on static zones [8, 7, 3, 22, 21]
and dynamic zones [5, 14]. In the generation
of static rebalance zones, the relocation zones’
geographic coverage is predefined at design time.
For example, the New York Manhattan area is
divided into predefined areas that do not change
over time [8]. Each vehicle, using cross-learning,
learns and decides at each time step whether to
move to one of the neighboring areas or to stay
in its current area. Austin’s rebalancing zones are
established by dividing the city into 2 square mile
square blocks in [7].

For each location, a block weight is calculated to
account for the excess or deficit of vehicles in the
block in the sense of expected travel supply and
demand. The forecast travel demand is determined
from historical data and current demand, and
blocks with a low weight aim to collect vehicles from
the community where there is a surplus. The zones
were identified using a fine-grained grid but also
static [3]. If a vehicle is idling, it will rebalance
itself using its local knowledge: it determines
whether or not to rebalance towards a neighboring
region based on the distribution of demand in the
surrounding areas [8]. According to the route of the
road network, the works presented in [7] divide the
region into rebalancing areas.

The zones are defined so that for each region
Ri, a zone makes it possible to reach Ri in the
time allotted. Idling vehicles are rebalanced to
prevent excess vehicles in the same area, taking
into account travel time to reduce empty journeys
and potential demand, calculated from the current
order. However, the zones do not adjust based
on traffic conditions or the number of taxis once
they have been established. The majority of
approaches only allow rebalancing for idling cars.
In contrast, rebalancing was combined with carpool
assignment, allowing carpool pick-up from zones
neighbors, reducing passenger waiting time but
increasing travel time [3, 8].

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Maaskri Moustafa, Hamou Reda Mohamed, Tomouh Adil964

ISSN 2007-9737

Fig. 1. Observed demand imbalance in NY Taxi dataset [20] trips between morning (7-10 am) and evening (6-9 pm) in
the south part of Manhattan on Tuesday, July 7, 2016 (morning)

A dynamic zone generation algorithm was used
for balancing; rebalancing zones were calculated
using a clustering algorithm. On the queries
produced by a distribution specified on historical
data, k-means clustering is applied [5].

Consequently, the coverage and size of the
zones can change, but the total number of zones
remains constant. the second approach uses
EM clustering and allows to create a different
number of zones according to different densities
of requests[14]. Furthermore, the approach uses
real-time data rather than historical data to better
respond to dynamic demand.

Both approaches are similar to the current,
in which a particle swarm optimization (PSO)
clustering algorithm was used to generate dynamic

zones for balancing unoccupied vehicles, with a
fixed number of zones based on real-time data.

3 Background

This section presents the basic information needed
to understand the design and implementation of
our approach: the particle swarm optimization
(PSO) algorithm and the latter’s clustering strategy
for car rebalancing.

3.1 Particle Swarm Optimization Algorithm
(PSO)

The living world initially inspires this algorithm. It
is based on a model created by Craig Reynolds at
the end of the 1980s to simulate the flight of a flock

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Ride Sharing Using Dynamic Rebalancing with PSO Clustring: A Case Study of NYC 965

ISSN 2007-9737

Fig. 2. Observed demand imbalance in NY Taxi dataset [20] trips between morning (7-10 am) and evening (6-9 pm) in
the south part of Manhattan on Tuesday, July 7, 2016 (evening)

of birds. The mathematical description of PSO [18,
17, 24] is as follows:

We assume that the size of the population is N,
each particle is treated as a point in D dimensional
space. The ith particle is represented by xi =
(xi1,xi2, ...,xid,,xiD),xi is a latent solution of
the optimized question. The rate of the particle i
is represented as vi, vi = (vi1, vi2, ..., vid,, viD),
it is a position change quantity of particle in an
iteration. The particles are manipulated according
to the following equation:

vid = ωvid+c1rand()1(pid−xid)+c2rand()2(pgd−xid),
(1){

vid = vmax ifvid > vmax,

vid = −vmax ifvid < −vmax,
(2)

xid = vid. (3)

In the equation (1), the historical best position
of all the particles in the population is represented
by pgd, the historical best position of the current
particle is represented by pid, the particle’s new
velocity is calculated according to its previous
velocity and the distances of its current position
from its own historical best position and the group’s
historical best position.

Variable ω is the Inertia weight,c1 and c2 are
positive constants, rand1() and rand2() functions
in the range [0,1]. In equation (2), particles’
velocities in each dimension are limited to a
maximum velocity vmax, with vmax determining the
search precision of particles in solution space. If
it’s too large, the particles will fly the best solution;
if it’s too small, the particles will fall into the local
search space and have no way of moving to the
global search.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Maaskri Moustafa, Hamou Reda Mohamed, Tomouh Adil966

ISSN 2007-9737

Fig. 3. Example of an unbalanced fleet distribution in 2 min

The particle’s new position is determined using
its current position and new velocity in equation
(3), and the performance of each particle is
then evaluated using a predefined fitness function,
leading to the best solution to the research issue.

3.2 The Clustering Algorithm based on PSO

In the clustering algorithm based on the Particle
Swarm Optimization algorithm[16], each particle
Yi = (y1, y2, ..., yK) represents centers of the K
classes, while yj(j = 1, 2, ...,K) represents the

central point’s coordinates vector of the jth class
in the ith particle (the dimension of yj is decided
according to the actual situation).

The particle swarm constitutes many candidate
classified plans. We know it is a key of clustering
which use an optimization algorithm to evaluate
the quality of classification plan, so the authors
propose an adaptability function f as follows:

f(yi) =
max(d̄1(yi))

max(d2(yi))
. (4)

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Ride Sharing Using Dynamic Rebalancing with PSO Clustring: A Case Study of NYC 967

ISSN 2007-9737

where max(d̄1(yi)) is the maximum value of mean
values of distances within the same classes in
the classification plan, which is expressed by
particle Yi, while max(d2(yi)) is the minimum
value of distances between classes in the
classification plan, which is expressed by particle

Yi: max(d̄1(yi)) = max
j=1,2,...,k

 ∑
∀xi∈yi

d(xi, yi)

|yj |

 ,

|yj | is the element number in the jth class.
min(d2(yi)) = min

∀i,j,i 6=j
(d(yi, yj)); i, j = 1, 2, ..., k.

If the minimum value of the adaptability function
(4) simultaneously satisfies a small distance within
the same class and a considerable distance within
classes, the classification strategy is stronger.

The clustering algorithm based on the Particle
Swarm Optimization algorithm consists of the
following steps:

1. In the n dimension space, we set the
population size m, acceleration coefficient c1
and c2, hypothesis biggest iterative times num,
clustering number K, and a given point set
with N points, etc. Set the historical best
position of each particle pbest equal to the
initial position and set the global best position
of particle swarm pbest equal to the best
of all pbest in a population of particles with
random positions and velocities (the position
and velocity vectors are constituted by K
vectors of n dimension space).

2. For each particle Yi, recalculate distances
between the set {x1,x2, ...,xN} and K
centers and divide the set {x1,x2, ...,xN}
according to the distance regulation of the
K-means algorithm.

3. For each particle Yi, Calculate the fitness
evaluation according to the expression f(Yi).

4. Compare and reset the historical best position
pbest and the best fitness evaluation of each
particle, as well as, compare and reset the
global best position gbest and the best fitness
evaluation of particle swarm.

5. Change the velocity and position of particles
according to equations (1) and (3) and limit
them according to equations (2) and (5):{

xid = xmax if xid > xmax,

xid = −xmax if xid < −xmax.
(5)

In the expression (5), we select the maximum
value of each dimension in all points as xmax.

6. Inspect termination condition (the algorithm
has achieved the hypothesis biggest iterative
times); if it is met, the algorithm should be
terminated; otherwise, return to step (2).

7. Output classification result.

4 Dynamic Rebalancing based on
Demand

This section describes the generation of zones
based on requests for real-time vehicle rebalancing
(DRBD) in RS fleets. We introduce an RS system
first and then our proposed rebalancing.

4.1 Ride Sharing System

We have designed a ride sharing algorithm applied
to a fleet of 4-seater vehicles for the carpooling
system. This model is designed to work in any
city around the world. Each vehicle perceives the
order from the dispatcher for pick up or drop off
passengers or rebalance. This cycle is described
in the algorithm 1.

The internal state of the vehicle is composed
of its position, represented by the latitude and
longitude coordinates, its destination, and the
number of seats empty. For an empty vehicle, the
destination is zero, and if a vehicle responds to
one or more requests, its destination corresponds
to that of the request Ri, which can be served
fastest. The vehicle’s location on the road network
is updated whenever a new position is reached,
whether it is the destination or the pick-up point.

A request R is available for a vehicle V if there
are enough empty seats to accommodate the
number of passengers associated with the request
(ranging from 1 to 4), and the total waiting time for

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Maaskri Moustafa, Hamou Reda Mohamed, Tomouh Adil968

ISSN 2007-9737

R, (i.e. the time between the creation of the request
and the estimated time of passenger pick-up is
less than the maximum time allowed; considered
to be 15 minutes). All customers who have waited
more than 15 minutes leave the system unserved,
and the request is recorded as unserved. Si

r =
[ripos, r

i
dest, r

i
passengers] represents the state of the

ith request received by a vehicle. Each request
includes a pick-up location, destination, and the
number of passengers.

Algorithm 1 Controller Vehicle V
Parameters: V Vehicle, R Request
Result: Given To The V The Best Action

1: function DO ACTION(V)
2: if V is idle then . //V is out of R and no R to

pick up
3: Rebalance(V); . //Algo 2
4: else . //A is drive to destination
5: if existe R matching A and A has enough

space then
6: V .PickUp(R); . //Doing ride sharing
7: end if
8: end if
9: end function

Vehicles can choose between 3 actions, which
are organized into two categories: (1) drop-off, in
which a vehicle responds to a request by driving
the passenger (s) to their destination, (2) pickup,
in which a vehicle goes to a pickup point of
the selected request, and (3) when the vehicle
perception is empty, and it does not respond to any
demand, it is activated to rebalance as shown in
line 3 of the algorithm 1.

4.2 Rebalancer - DRBD

Rebalancing can be used for various carpooling
systems; however, the researchers use the
Expectation-Maximization approach for the cluster-
ing in their Deep RL carpooling request attribution
strategy [5]. We only used DRBD rebalancing
in our case, which is activated when a vehicle
receives no requests and no more requests to
serve in its region. The DRBD aims to allocate
vehicles efficiently and dynamically based on
current demand, thus avoiding fleet imbalance,
leading to longer waiting times for passengers or

a high number of requests not processed. DRBD
deduces the travel zones and calculates their
associated probabilities for a vehicle to rebalance
Eq. 6:

pr(v, zi) =
|Ri|
|R|

, (6)

where zi is the ith zone, Ri is the set of pending
requests within the current zone, and R is the set
of pending requests across all zones.

Fig. 4. Rebalancing whith DRBD

Fig. 5. Requests active at time tv, only (r3; r4) are taken
into account when rebalancing

The principle of the method BRBD is illustrated
in Figure 4, representing the rebalancing module.
The demand dispatcher has a dual role: it
selects the demands for vehicles according to time
and seat availability and filters the demand for
rebalancing, depending on the period used.

DRBD takes as input the pending requests
available at the moment. As shown in Figure 5,
only the validated requests are considered, not any

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Ride Sharing Using Dynamic Rebalancing with PSO Clustring: A Case Study of NYC 969

ISSN 2007-9737

previous fulfilled or rejected requests (estimated
or planned).

The procedure applied to move an idling vehicle
to a new position is described in Algorithm 2.
First of all, DRBD generates new clusters based
on pending (unserved) requests, according to
Algorithm 3.

Algorithm 2 Rebalancing idle vehicles
Parameters: Vidle Idle Vehicle
Result: Rebalancing a vehicle V to a new position

1: procedure REBALANCE (Vidle)
2: C, relocatingProb ←

FindingClusters(reqsAvailable,K) . Algo 3
for each: (V ∈ Vidle)
3: rnd← generate random value ∈ [0, 1]
4: i← 0
5: while (i ≤ size(C)) do
6: if relocatingProb[i] ≥ rnd then
7: V .distination← C[i].position
8: V .MoveToDistination
9: Break . exit while loop

10: end if
11: i++
12: end while
13: end procedure

Algorithm 3 Definition relocating zones for
rebalancing

Parameters: reqsAvailable validity Requests
Result: Clusters, relocatingProb

1: function FINDING CLUSTERS (reqsAvailable,K) .
//K is the number of clusters

2: Clusters,C ←
PSO Clustring(reqsAvailable,K) . //C is the
centroid

3: prob← 0
for each: (i ∈ Clusters)

4: prob = size(i)
size(reqsAvailable)

5: relocatingProb[i]← prob
6: return C, relocatingProb
7: end function

By applying optimization swarm particulates for
clustering, a total of K clusters and their centroid
are generated.

The vehicle is then moved to a featured area
selected by a weighted random selection based

on the probability of each category calculated
in Equation 6 (lines 4-5. We preferred a
weighted random selection approach over the
others because it allows vehicles to explore
different areas when rebalancing, preventing all
vehicles from rebalancing in the same area.

5 Experimental Setup

The requests are generated using the Open
New York Taxi Dataset [20]. It describes the
recorded trips of yellow taxis in the Manhattan
area. We extracted trips from three consecutive
Tuesdays of July 2015 to represent typical weekday
demand patterns.

We use a fixed fleet size of 200 shared vehicles
to observe cases where the activation of carpooling
is necessary to satisfy all requests (peak hours
from 7:00 to 10:00). Each vehicle has a capacity
of 4 passengers. Each request includes the
time when the user requested the trip(ptime),
the number of passengers(npass), the longitude
and latitude of origin point (olng,olat), and the
destination point (dlng, dlat) (See Table 1).

We used a simplified traffic simulation to focus
only on rebalancing and carpooling strategies
without taking congestion into account. Vehicles
drive themselves to their current destination (e.g.,
driver pick-up or drop-off point or relocation area).

Travel time is calculated in the same way as in a
grid network, and we assume a speed of 35 Km/h
for peak hours. The evaluation is based on morning
peak traffic data (7:00 to 10:00) and includes
10,000 requests. The number of Passengers by
request is distributed during evening peak time
(See Figure 6).

The demand satisfaction rate was less than
100%. Looking at Figure 6, it is apparent that few
requests have 5 and 6 passengers necessitating
the use of vehicles with 6 seats available together.
All the vehicles used in the simulation had a
maximum capacity of four passengers.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Maaskri Moustafa, Hamou Reda Mohamed, Tomouh Adil970

ISSN 2007-9737

Table 1. Data set head

N ptime olng olat dlng dlat npass

1 2015/07/07− 07 : 00 : 01 −74.015488 40.715603 −74.010475 40.721542 1

2 2015/07/07− 07 : 00 : 05 −73.985352 40.722023 −73.999344 40.733822 1

3 2015/07/07− 07 : 00 : 11 −73.996910 40.725388 −74.011169 40.709332 2

Table 2. All values refer to 10,000 requests served by a fleet composed by 200 vehicles of 4 seats

Scenarios Requests served Requests served (%) WT (min) DS(Km)

Base (no RS,no RB) 8388 83.88 5.14 124.22

Ride charing only 9010 90.10 4.03 135.26

DRBD (RS and RB) 9025 90.25 3.59 136.38

Fig. 6. Number of passengers per requests (the first
10,000 requests in dataset)

6 Results and Analysis

6.1 General Considerations

The DRBD rebalancing was compared with the
following strategies to evaluate the performance of
our approach:

— Base: a central dispatcher assigns the
nearest vehicle to the request with the highest
waiting time.

— Ride sharing: if the new request origin and
destination are in zones on the current route,
a vehicle can pick up more demands before it
reaches full occupancy.

— Ride sharing and rebalancing: the vehicle
drives towards the center of the zone to which
it was randomly assigned.

For all the simulation scenarios, we have
assumed that each vehicle has a capacity of
4 passengers, so requests with more than 4
passengers are ignored by the vehicles. Based
on the data collection, the fleet will serve 90.85%
of the 10,000 requests at its maximum level
of service.

6.2 Evaluation Metrics

To evaluate DRBD, we use the set of the most
commonly used indicators in related work:

— Number and percentage of served requests.

— Number and percentage of timed-out requests
(RR):The maximum waiting time per request is
limited to 15 minutes and after this the request
is discarded from the system and flagged
as unserved.

— Waiting time (WT): the time between the user
request generation and the pick-up time.

— Total Vehicle distance traveled per vehicle in
service (DS).

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Ride Sharing Using Dynamic Rebalancing with PSO Clustring: A Case Study of NYC 971

ISSN 2007-9737

Fig. 7. Comparison of the implemented scenarios: waiting time

— Number of requests served per vehicle
(Nrequests): we recorded the distribution of the
number of passengers per vehicle in the fleet
and computed its variance.

6.3 Simulation Results

Each scenario shows a different level of service
according to the indicators mentioned above.

— Served requests: Scenario Base (no RB, no
RS), which models a standard taxi service,
serves about 83.88% of requests, and ride
sharing serves 90.10% of requests. However,
the DRBD serves 90.25% of requests.

— Waiting time (WT): Passenger waiting times
for each scenario were shown in Figure 7. We
observed a significant reduction in waiting time
by enabling ride sharing in the base scenario
(No RS and No RB). RS only indicates waiting
times (4.02 minutes); but, when we use PSO’s
DBRB clustering, we see another reduction in
WT (3.59 min).

— Requests Distribution: As shown in Figure 8,
several vehicles in the Base are traveling with
just a few passengers in Base (no RB, no
RS). Once serving one or few requests, these
vehicles may end up in an area of the network
that is empty of any further request. Enabling
rebalancing or ride sharing can prevent them
from staying idle and help the vehicle to find

new requests. It can be seen in situations
DRBD and ride sharing only, where allowing
ride-sharing and rebalancing results in further
improvements since all vehicles serve the
same number of passengers.

— Distance traveled: Figure 9 shows the
distance traveled by vehicle for each scenario.
Base scenario (no RB, no RS) shows that
around one-fourth of the vehicles are traveling
only a few kilometers, confirming they only
serve a few requests and then stay idle in
an area with no further demand. Since the
number of serving requests varies by scenario,
an essential difference in distance traveled
was recorded. From Table 2, we can confirm
that enabling rebalancing adds additional
travel distance in service for vehicles.

6.4 Discussion

According to simulation results, allowing flight
sharing and rebalancing has shown very positive
results in satisfying most possible service requests.
We showed that DRBD with PSO Clustering
improves all vehicles’ average and individual
performance when used in conjunction with ride
sharing compared to Base (no RD, no RS).

Passenger wait time for DRBD has decreased
to nearly 40% compared to classic taxi service
(Scenario Base - no RB, no RS). However, the
main observed advantage of DRBD (with RB and
RS) is that each vehicle’s workload seems to better

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Maaskri Moustafa, Hamou Reda Mohamed, Tomouh Adil972

ISSN 2007-9737

Fig. 8. Comparison of the implemented scenarios: Requests Distribution

Fig. 9. Comparison of the implemented scenarios: Distance traveled

converge to a global average value, resulting in
fairer workload distribution. It has been found that
the rebalancing approach (RS and RB with DRBD
scenarios) generates additional traveled distance,
resulting in a slight increase in overall distance
in operation.

We show a snapshot of the number, size, and
shape of the clusters it created for idle vehicle V
at time t to illustrate how DRBD by PSO clustering
differs from fixed zone clustering in terms of zone
outcomes (See Figure 10). DRBD was used to
calculate ten relocation zones in this case. The
stars represent cluster centers, and the number of
the related trips.

7 Conclusion and Future Work

This paper presents a Dynamic Rebalancing
Based on Demand (DRBD), a vehicle rebalancing
algorithm for ride sharing in sharing vehicle
systems. Unlike existing approaches which use

fixed geographical zone to relocate empty vehicles,
DRBD uses PSO clustering to generate zones
dynamically. DRBD enables zones to be dynamic
in terms of position by their centroid.

First, rebalancing areas are identified by
analyzing pending requests in real-time at each
time step. The zone to which an unoccupied
vehicle rebalances is then determined using a
probability distribution defined on the zones, which
is calculated by dividing the number of requests
in the zone by the total number of requests in
all zones.

The effectiveness of the BRBD is simulated
by integrating it with 200 carpool vehicles, which
respond to 10,000 carpool requests in the
lower Manhattan area. In terms of the DRBD
technique, the workload is distributed more evenly
throughout the fleet, suggesting a more accurate
rebalancing strategy with no loss of efficiency
while respecting waiting times and passenger
distribution by vehicle.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Ride Sharing Using Dynamic Rebalancing with PSO Clustring: A Case Study of NYC 973

ISSN 2007-9737

Fig. 10. Example of PSO clustering in instance t with k=10

This work can be extended in several directions.
Check for general applicability should be combined
with other ride sharing methods and tested using
other maps and data sets of road networks.
In terms of learning, the vehicles could be
activated using a reinforcement learning model
to fine-tune their behaviors in response to new
demand models that emerge. Rebalancing could
be further improved by considering real-time traffic
congestion when deciding which cluster to move.

References

1. Afian, A., Odoni, A., Rus, D. (2015). Inferring
unmet demand from taxi probe data. volume 10.

2. Agatz, N. A., Erera, A. L., Savelsbergh, M. W.,
Wang, X. (2011). Dynamic ride-sharing: A
simulation study in metro atlanta. Transportation
Research Part B: Methodological, Vol. 45.

3. Alabbasi, A., Ghosh, A., Aggarwal, V. (2019).
Deeppool: Distributed model-free algorithm for
ride-sharing using deep reinforcement learning.

4. Alonso-Mora, J., Samaranayake, S., Wallar,
A., Frazzoli, E., Rus, D. (2017). On-demand
high-capacity ride-sharing via dynamic trip-vehicle
assignment. Proceedings of the National Academy
of Sciences of the United States of America,
Vol. 114.

5. Castagna, A., Guériau, M., Vizzari, G., Dus-
paric, I. (2021). Demand-responsive rebalancing
zone generation for reinforcement learning-based
on-demand mobility. AI Communications, Vol. 34.

6. Cheng, J., Tang, Z., Liu, J., Zhong, L. (2013).
Research on dynamic taxipooling model based on
genetic algorithm. Wuhan Ligong Daxue Xuebao
(Jiaotong Kexue Yu Gongcheng Ban)/Journal of
Wuhan University of Technology (Transportation
Science and Engineering), Vol. 37.

7. Fagnant, D. J., Kockelman, K. M. (2018). Dynamic
ride-sharing and fleet sizing for a system of
shared autonomous vehicles in austin, texas.
Transportation, Vol. 45.

8. Gueriau, M., Dusparic, I. (2018). Samod:
Shared autonomous mobility-on-demand using

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Maaskri Moustafa, Hamou Reda Mohamed, Tomouh Adil974

ISSN 2007-9737

decentralized reinforcement learning. volume 2018-
November.

9. He, W., Hwang, K., Li, D. (2014). Intelligent
carpool routing for urban ridesharing by mining
gps trajectories. IEEE Transactions on Intelligent
Transportation Systems, Vol. 15.

10. Huang, S. C., Jiau, M. K., Lin, C. H. (2015).
A genetic-algorithm-based approach to solve
carpool service problems in cloud computing. IEEE
Transactions on Intelligent Transportation Systems,
Vol. 16.

11. Huang, S. C., Jiau, M. K., Lin, C. H. (2015).
Optimization of the carpool service problem
via a fuzzy-controlled genetic algorithm. IEEE
Transactions on Fuzzy Systems, Vol. 23.

12. Huang, S. C., Jiau, M. K., Liu, Y. P. (2019). An
ant path-oriented carpooling allocation approach
to optimize the carpool service problem with time
windows. IEEE Systems Journal, Vol. 13.

13. Jiau, M. K., Huang, S. C. (2015). Services-oriented
computing using the compact genetic algorithm
for solving the carpool services problem. IEEE
Transactions on Intelligent Transportation Systems,
Vol. 16.

14. Liu, Y., Samaranayake, S. (2019). Proactive re-
balancing and speed-up techniques for on-demand
high capacity vehicle pooling.

15. Ma, S., Zheng, Y., Wolfson, O. (2013). T-share: A
large-scale dynamic taxi ridesharing service.

16. Pei, Z., Hua, X., Han, J. (2008). The clustering
algorithm based on particle swarm optimization
algorithm. Intelligent Computation Technology and
Automation, International Conference on, Vol. 1,
pp. 148–151.

17. Shi, Y., Obaiahnahatti, B. G. (1998). A modified
particle swarm optimizer. volume 6, pp. 69–73.

18. Shi, Y., Obaiahnahatti, B. G. (2001). Fuzzy
adaptive particle swarm optimization. volume 1,
pp. 101–106.

19. Shinde, T., Thombre, B. (2015). An effective
approach for solving carpool service problems using
genetic algorithm approach in cloud computing.
International Journal of Advance Research in
Computer Science and Management Studies,
Vol. 3.

20. TLC (2016). Tlc trip record data.
21. Wallar, A., Zee, M. V. D., Alonso-Mora, J., Rus, D.

(2018). Vehicle rebalancing for mobility-on-demand
systems with ride-sharing.

22. Wen, J., Zhao, J., Jaillet, P. (2018). Rebalancing
shared mobility-on-demand systems: A reinforce-
ment learning approach. volume 2018-March.

23. Xiao, Q., He, R.-C., Zhang, W., Ma, C. (2014).
Algorithm research of taxi carpooling based on
fuzzy clustering and fuzzy recognition. Jiaotong
Yunshu Xitong Gongcheng Yu Xinxi/Journal of
Transportation Systems Engineering and Informa-
tion Technology, Vol. 14, pp. 119–125.

24. Yao, Y. Z., Xu, Y. R. (2007). Parameter analysis
of particle swarm optimization algorithm. Harbin
Gongcheng Daxue Xuebao/Journal of Harbin
Engineering University, Vol. 28.

25. Zhang, D., He, T., Liu, Y., Lin, S., Stankovic, J. A.
(2014). A carpooling recommendation system for
taxicab services. IEEE Transactions on Emerging
Topics in Computing, Vol. 2.

Article received on 16/04/2021; accepted on 21/12/2021.
Corresponding author is Moustafa Maaskri.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 963–975
doi: 10.13053/CyS-26-2-3942

Ride Sharing Using Dynamic Rebalancing with PSO Clustring: A Case Study of NYC 975

ISSN 2007-9737

