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Abstract. in this work, We propose an approach
of symbolic learning for the recognition of leukemia
images. Image recognition for cancer detection is often
a subjective problem due to different interpretations by
experts of the medical area. Feature extraction is a
critical step in image recognition, and current automatic
approaches are unintelligible since they need to be
adapted to different image domains. We propose the
paradigm of brain programming as a symbolic learning
approach to address aspects involved in the derivation
of knowledge that allows us to recognize subtypes of
leukemia in color images. Experimental results provide
evidence that the multi-class recognition task is achieved
through the solutions discovered from multiples runs of
the bioinspired model.

Keywords. Leukemia recognition, symbolic learning,
brain programming, evolutionary computer vision.

1 Introduction

Visual analysis of biomedical images is an
essential task for the diagnosis of illnesses.
Techniques of artificial vision allow identification,

recognition, and count in biological smears for
diagnostic purposes, treatment, or classification of
new pathologies [1, 8, 21, 10].

Artificial visual models in the medical area
offer an excellent alternative for major problems
that affect both the national and international
community. One of these problems is opportune
cancer detection, whose cost of diagnosis is
significantly elevated. According to the World
Health Organization (WHO), in 2018, at least 9.6
million people worldwide died from cancer, being
nearly 1 in 6 of all global deaths. Leukemia
is a type of cancer that is critical because it
is a leading cause of death for children and
adolescents worldwide.

Furthermore, in many low- and middle-income
countries, only 20% are cured due to numerous
factors like the inability to obtain an accurate
diagnosis, the inaccessible therapy due to lack
of access to essential medicines, and others
[24]. There exists clear evidence of the efforts
to understand leukemia using artificial vision
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techniques. In this regard, until the year 2010,
Kampen reports more than 226,267 publications
about this topic, and this number continues to
grow [7].

Visual properties of blood cells suggested from
literature focused on hematological diseases and
are studied in the biological image recognition by
handcraft approaches [19]. In particular, traits as
shape, color, and the distribution of some elements
into the cell are meaningful for recognition.

Since feature extraction used in handcraft
approaches is driven by human reasoning,
these can provide practical issues for developing
models with more robust and explainable learning
techniques [13, 14]. In this work, we introduce
brain programming as a symbolic learning method
to address the problem of leukemia image recogni-
tion.

In the next Section, we recall the related
works. Section 3 presents the theoretical
concepts of Brain programming and the proposed
methodology. In Section 4, Experiments and
Results are shown. Conclusions are included in
Section 6.

2 Background

Although leukemia recognition has been ad-
dressed for a long time, there are important
drawbacks regarding computer diagnosis such as
the specificity of the methods and their ad-hoc
design focusing on specific datasets. The
generation of meta-data is often carried out during
experimentation or statistical analysis, which is
time-consuming and expensive. On the other
hand, automatic approaches categorize images
through information extracted directly from the
images. These approaches are competitive,
generating opaque model predictions; also, there
are limitations regarding image size and hardware
resources to prove these models. In Table 1,
we present some previous works on leukemia
cell recognition.

In this work, we address the problem of leukemia
image recognition using symbolic learning through
a paradigm named brain programming. Symbolic
learning explores the implications of artificial
intelligence research through methods based

on high-level symbolic representations (human-
readable) of problems, logic, and search [5]. In this
regard, Brain programming (BP) is a paradigm of
evolutionary computer vision that aims to emulate
the behavior of the brain for vision problems
according to neuroscience knowledge. In [15, 3],
the authors introduce BP, tackling diverse problems
of computer vision.

Genetic programming (GP) is the method used
by brain programming to discover a set of
evolutionary visual operators (EVOs) embedded
within a hierarchical structure called the artificial
visual cortex (AVC) [15]. These EVOs are functions
for the description of the image classes.

3 Brain Programming for the
Recognition of Leukemia Images

The leukemia image recognition problem is
introduced from the standpoint of data modeling.
Since, a minimization problem requires to find a
solution Lmin ∈ S such that f(Lmin) is a global
minimum on S, then:

∃Lmin ∈ S : f(Lmin) ≤ f(L). (1)

In contrast to conventional methods, in which
the aim is finding best-fit parameters; in GP and
the recognition problem, the purpose is to find a
function that satisfies the task of data modeling.
Thus, image recognition is defined as:

y = min(f(x,F,T,a)), (2)

where the dataset is given by (y, z), F denotes the
set of functions, T represents the terminal set, and
a describes the parameters tunning the algorithm.
To solve the problem, we require a method of
feature extraction and a suitable criterion SC for
the minimization. The methodology requires the
definition of two parts: 1) the AVC is the algorithm
in charge of feature extraction, and 2) BP is the
algorithm used to tunning (F,T,a) for each visual
operator embedded into the AVC.

Regarding the algorithm to minimize the criterion
SC, we propose a Multi-layer Perceptron (MLP)
as classifier that is used to learn a mapping
f(x) where the descriptors xi are associated to
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Table 1. Related Works

Reference Origen
dataset

Cell type Images Image
resolution

Color space Descriptor Classifier

[6] Public Leukemia & healthy 300 1712X1368,
257x257

CIELab shape,texture,
color,
derived

PSOa ,other

[20] Public Leukemia & healthy 260 257x257 CMYK shape,texture,
color,
wavelet

SSOAb

[12] Public,private Leukemia & healthy 768 variable RGB, CMYK shape,texture,
color

SVMc ,KNNd ,

NBe ,DTf

[4] Private Leukemia: L1,L2,L3, 120 —- CIELab shape,texture,
color

Fuzzy DTf

M1,M2,M3,M5,M6
[11] Private CLL Leukemia & healthy 1010 360x360 RGB shape,derived SVMc ,ANN,KNNd ,

DTf ,AdaBoost
[16] Public Leukemia & healthy 108 —- CMYK shape,texture,

color
SVMc

[18] Private Leukemia: L1,L2, 500 800x600 RGB shape,texture,
derived

PSOa

M2,M3,M5
[23] Public,private Leukemia & healthy 891 variable RGB derived CNNg

[17] Public Leukemia: L1,L2, 420 1000x1000 RGB shape,texture,
color

SVMc ,GAh

M2,M3,M5 & healthy
[9] Private Leukemia & healthy 295 2582x1948 RGB shape,texture,

color
SVMc ,K-means

a PSO–Particle Swarm Optimization, b SSOA–Social Spider Optimization Algorithm, c SVM–Support Vector Machine, d KNN–K-Near Neighbor, e NB–Naive Bayes,
f DT–Decision Tree, f CNN–Convolutional Neural Network, g GA–Genetic Algorithm

labels yi. In this work, we address the problem
as a multiclass classification task. Hence, it is
assumed that in the minimization problem the
variables ((x,y),F,T,a,SC) are related in such
a way that the objective is to associate the
descriptors (domain) and the labels (codomain).

Since BP is a paradigm consisting of two main
stages, in the first stage, the purpose is to
discover functions to optimize complex models by
adjusting operations within them. In the second
stage, the parts (programs) are applied to a
hierarchical model for the feature extraction. It is
noteworthy that the second stage uses the concept
of composition of functions to extract features from
images. Thus, an outstanding characteristic of BP
is the possibility of changing the model to solve
either focus of attention to produce saliency [3] and
classification problems [2]. Fig. 1 presents the
general scheme of the proposal.

3.1 Stages of Brain Programming

3.1.1 Initialization

The evolutionary process of BP begins with a
randomized initial generation. In this way, a
set of initialization variables are defined such as
population size, size of solutions or individuals, and
crossing-mutation probabilities.

An individual represents a computer program
written with a set of syntactic trees included in
hierarchical structures. These individuals contain
four kinds of functions, one for each visual operator
(VO). Expert knowledge is used to define the
procedures to create trees whose nodes are
selected from a pool of functions and terminals,
which are shown in Table 2. A more extensive
description of these functions and terminals can be
found in [2].

An individual consists of a set of functions
taken from Table 2 and encoded in a multi-tree
representation. A variable number of syntactic
trees, ranging from four to 10, compose each
individual. These trees regard each type of
EVO (orientation, color, shape, and mental maps).
Crossover and mutation operations were designed
considering this representation. In this way,
BP creates symbolic solutions (individuals) to
recognition problems. We use the AVC model
to deal with the leukemia recognition problem, so
after completing each generation, the individuals in
the population are evaluated to score the fitness.

3.1.2 Feature Extraction and Classification
with the Artificial Visual Cortex

In contrast to conventional evolutionary algorithms
that commonly apply a fitness function to evaluate
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Fig. 1. General flowchart of the methodology

individuals’ quality, in BP like GP, the evaluation
consists of a set of EVOs designed to extract
features from input images.

Since the AVC models some aspects of the
human visual cortex, each layer of the artificial
visual cortex computes mathematical operations
that represent a visual function. The image’s visual

features are selected to construct an abstract
representation of the object of interest. In
this way, the model finds salient points in the
image to generate an image descriptor used for
the classification.

The AVC is composed of two phases. In the first,
the features that describe the object are acquired
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and transformed, whereas, in the second phase,
the descriptor obtained in the previous stage is
used to classify the object.

The first phase is based on the psychological
model of visual attention proposed by [22], in
which basic features such as orientation, color,
and shape are computed in parallel. Thus, the
input to the model is an RGB image I defined as
follows [15].

Image as the graph of a function. Let f be
a function f : U ⊂ R2 → R. The graph or
image I of f is the subset of R3 that consists of
the points (x, y, f(x, y)), in which the ordered pair
(x, y) is the value at that point. This is, the image
I = {(x, y, f(x, y)) ∈ R3|(x, y) ∈ U .

Note from this definition that images are
variations in the intensity of light along the two-
dimensional plane of camera sensors. In this way,
multiple color channels are considered to create
the set Icolor = {Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv},
whose elements refer to the color components of
RGB, HSV, and CMYK color spaces.

The following step is the decomposition of
the image into relevant characteristics. The
orientation, color, and shape dimensions transform
independently the input images Icolor to emphasize
specific aspects of the object. Hence, individuals
represent possible configurations for feature
extraction that describe input images. These
are optimized through the evolutionary process.
After applying each EVO, a visual map (VM)
generated for each dimension d (orientation, color,
and shape) represents a partial output within the
whole process. These are topographic maps that
refer to the characteristics of the image.

From the obtained VMs, the next step is to
compute a center-surround process. First, scale
invariant features are extracted and stored in
a conspicuity map (CM). The CM is calculated
as the difference between different scales that
are obtained through a pyramid of 9 levels
Pσd = {Pσ=0

d ,Pσ=1
d ,Pσ=2

d , ...,Pσ=8
d }. A Gaussian

smoothing filter on each VM is used to calculate
each pyramid. This produces an image half the
size of the input map. The process is repeated 8
times to obtain the pyramid of 9 levels.

In the next step, the differences between each
pyramid level Pσd are calculated using Eq. (3)
as follows:

Qj
d = P

σ=b j+9
2 c+1

d − P
σ=b j+2

2 c+1

d , (3)

where j = 1, 2, ..6. Each level of Pσd is normalized
and scaled to the dimension of the VM using
polynomial interpolation. Finally, the six levels are
combined into a single map with a summation, and
a CM is obtained for each dimension.

The second phase of the AVC begins with the
description and classification. This phase aims
to synthesize the whole information obtained into
a vector descriptor of the image input to a MLP
classifier. To begin, a mental map MM is built
from the CMs using Eq. 4, where d is the
dimension, and k is the cardinality of the set
EV OMM . This MM discriminates the unwanted
information, highlighting the most salient features
of the object. The EVOs are defined through
syntactic trees, and the MMs occupies the fourth
position of the tree onward:

MMd =

k∑
i=1

EV OMMi
(CMd). (4)

From the MMs obtained and concatenated with
the remainder of syntactic trees, the generated
program is applied to each image. The n highest
values are used to define the descriptor vector −→v
for the image in turn. In this way, the next step is to
train a classifier using the feature vectors from the
dataset. In this work, a MLP is trained to create a
model f(x) that maps a set of descriptors vectors
xi to their corresponding labels yi, satisfying Eq. 2.

Selection, crossover, and mutation processes
are performed as suggested in [15]. Finally, the
stop conditions are: (1) the algorithm reaches
a predefined number of generations, or (2) the
algorithm fitness reaches an optimal value; in this
case that all images are correctly classified.

4 Experiments and Results

Experiments were executed on a computer with
Intel Core i9-7900X CPU 3.31Ghz, 64GB RAM,
222Gb hard drive, 64-bit Windows10 Enterprise
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Table 2. Functions and Terminals for the evolutionary visual operators (EVOs)

Functions Terminals
Orientation (EV Oo)

A + B, A − B, A ∗ B, A/B, |A+B|,
|A−B|, inf(A,B), sup(A,B),

√
A, A2,

log (A), thr(A), round(A), bAc, dAe, Gσ=1(A),
Gσ=2(A), |A|, Dx(A), Dy(A), k + A, k − A,
k ∗A, k/A

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Gσ=1(Ix),
Dx(Ix), Dy(Ix), Dyy(Ix), Dxx(Ix), Dxy(Ix)

Color (EV Oc)
A + B, A − B, A ∗ B, A/B, k + A, k − A,
k ∗ A, k/A, thr(A), round(A), bAc, dAe,

√
A,

A2, log (A), (A)c, exp(A)

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv, Opr−g(Irgb),
Opb−y(Irgb)

Shape (EV Os)
A+B, A−B, A ∗B, A/B, k+A, k−A, k ∗A,
k/A, thr(A), round(A), bAc, dAe, A ⊕ SEdm,
A⊕ SEs, A⊕ SEd, A	 SEdm, A	 SEs, A	
SEd, Sk(A), Perim(A), A ~ SEdm, A ~ SEs,
A~SEd, That(A), Bhat(A), A}SEs, A�SEs

Ir, Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv

Mental Maps (EV OMM )
A + B, A − B, A ∗ B, A/B, |A+B|, |A−B|,√
A, A2, log (A), Dx(A), Dy(A), |A|, k ∗ A,

Gσ=1(A), Gσ=2(A)

CMd, Dx(CMd), Dy(CMd), Dxx(CMd),
Dyy(CMd), Dxy(CMd)

(a) L1 (b) L2 (c) L3

Fig. 2. Types of lymphocytic leukemia cells

Edition operating system, graphics processing unit
(GPU) GeForceGTX 1080, and MATLAB R2018a.

From parameters values in Table 3, the
evolutionary loop starts by computing the fitness
of each AVC using an MLP to calculate the
classification rate using the training and validation
sets. The MLP has one intermediate layer with
50 neurons.

In the next step, a set of AVCs is selected
from the population with a probability based on
fitness using a roulette-wheel selection, and the
best AVC is retained for further processing. The
new individual is created from the selected AVC by
applying a crossover or mutation at chromosome
or gene levels as in [15]. Although we do not use

Table 3. Initialization values for the algorithm

Parameter Description
Generation 30
Population size 30 individuals
Initialization Ramped Half and Half
Crossover rate 0.4
Mutation 0.1
Tree depth Dynamic depth selection
Dynamic max depth 50 levels
Maximum length of genes 10
Selection Roulette-wheel
Elitism Keep the best individual

a strategy for bloat handling, we limit to 10 the
maximum gene length.

The evolutionary loop ends until a classification
rate is equal to 100%, or the algorithm reaches the
number of generations N = 30.

4.1 Dataset

The dataset used is composed of bone marrow
smear images from three subtypes of Acute
Lymphoblastic Leukemia (ALL): L1, L2, and L3,
like in previous work [13]. Images RGB are
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in BMP format with a resolution of 1280 × 1024
pixels. Image acquisition was made employing an
optical microscopic with a magnification of 1250
times and a camera coupled to the microscope
with a resolution of 1.3 megapixels. The images
were resized to 256 × 320 pixels using bicubic
interpolation due to the high computational cost.
We use 217 images per class. Typically, the
images contain one or more interest cells that
appear like irregular purple regions, as you can see
in Fig. 2.

We divide the dataset into three parts; the
learning set, the validation set, and the testing set.
Fig. 3 shows the details of the data division. To
obtain a reliable fitness, each new individual is
estimated by the average classification error rate
with the MLP using five-fold cross-validation. The
learning set is randomly divided into five equal
parts and perform five training cases with the MLP
on 4 out of 5 and the result is computed with the
remaining validation 1 set.

To select the best-performed solution, we test
the classification error for every fold on the
validation set 2. Hence, we select one solution
with the best validation error as the (near-)optimal
feature descriptor for the final testing.

Finally, the test set is divided as a five-fold with
the aim of computing statistical results of the best
solution discovered in the previous stage. We
apply the same process for the learning set, and
the overall classification result is calculated as the
average of the 5 MLP test-fold accuracies.

4.2 Results

The following is a description of the results from
the evolutionary process to recognize leukemia
images. To evaluate the proposed method, we
repeat the above process seven times. From these,
the best solution is shown in Table 4; while Fig. 4
illustrates the range of descriptor values of the best
solution found.

Since we use a balanced dataset and 261
images for the test, in Fig. 4 the image index 1...87
corresponds to class L1, the following 87 to class
L2 images, and the remainder to group L3 images.
It is worth noting that the descriptors’ values
clearly show the difference between categories,

which in some cases can be evaluated with simple
techniques instead of the MLP classifier; thus
simplifying the overall process.

The depth and number of nodes quantify the
complexity of the best individual, see Fig. 5
(a)-(b). It depicts the complexity of the evolutionary
run for each generation, and we recognize that
both variables–the number of nodes and depth of
trees–decrease as the generations progress. This
means that the final solution is of lower complexity.
The genetic diversity found in the population at
each generation along the run that produces the
fittest individual in the experiment is presented in
Fig. 6.

Diversity is defined as the percentage of
operators’ uniqueness within the population. It
should be noted that the best individual is a
structure of EVOs and same as complexity,
diversity decrease as the generations progress.

Fitness behavior along the evolution is shown in
Fig. 7. It depicts average, standard deviation, and
best so far run corresponding to the best solution.

Additionally, we evaluated the proposal with a
balanced dataset composed of 261 images of
3 types of myelocytic leukemia: M3, M4, and
M5. This dataset was acquired under the same
conditions mentioned in Section 4.1. Fig. 8
presents typical images of these cells.

In contrast to the above experiment, in this
evaluation, we executed only two experiments.
However, the results are similar for both datasets.
The validation accuracy for the best solution was
91.02%, which is a competitive result considering
that the content of images is visually more different
than the previous problem.

Although we do not find a similar symbolic
learning approach for the recognition of these
subtypes of leukemia, we provide next another
proposal for comparison with our model. Thus,
experiments with a convolutional neural network
have been performed using the same datasets.

The network structure consists of four convolu-
tional and max-pooling layers. The feature maps
are flattened and reduced to an output of size
three. Data augmentation was used on the training
set. Augmentation operations contained horizontal
and vertical reflexion (flipping).
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Fig. 3. Division of dataset

Fig. 4. Descriptors of the best solution

Accordingly, the result is the addition of a random
number of augmented images to the training set in
each epoch.

The number of filters in the four convolutional
layers are 4, 8, 16, and 32. Five-fold
cross-validation was used to assess training

performance using the sets of learning and
validation shown in Fig. 3. The training was
stopped when the validation loss did not decrease
for 20 epochs.

After this, the best net model from the five-fold
was selected and used with the test set to assess
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Table 4. Structure of best solution after seven experiments

Validation accuracy=92.82%
EV Oo = Gσ=1(S)
EV Oc = M
EV Os = round(0.36−K)
EV OMM1 = Dy(Dy(CMd))
EV OMM2 = Gσ=1(|Dx(Dy(CMd))|/Dy(CMd))
EV OMM3 = Dy(Dy(||||Dx(Dx(CMd))) + CMd||||))
EV OMM4 = Gσ=1(Dx(CMd)/Dx(Dx(CMd)))

(a) Depth

(b) Nodes

Fig. 5. Complexity of the best individual

the net performance.

To evaluate the global classification perfor-
mance, we repeated the experiment for ten
times, from which an accuracy of 97.05% ± 2.56
(mean±s.d., runs=10) for the classes L1, L2 and
L3; and an accuracy of 97.51%± 1.37 (mean±s.d.,
runs=10) for the classes M3, M4 and M5. For one
of the folds, the training and validation accuracy are
shown in Fig. 9.

Fig. 6. Genetic diversity

From the results, it is worth noting that
although a CNN shows higher performance for the
classification task, a critical problem is the lack of
information about the learning process that led to
the solution. This fact is undesirable since experts
need to identify the illness from the features of the
image and to know the way to learn to recognize
these cell types.

5 Conclusions

This work proposes the use of evolutionary
vision for the recognition of leukemia cell images.
Since the biological visual cortex inspires the
methodology, then visual extraction and description
are addressed through a hierarchical structure and
function composition using a set of mathematical
operations. Hence, the results show that all
functions embedded within this structure can be
discovered by the evolutionary cycle.
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Fig. 7. Fitness behavior of the best solution

(a) M3 (b) M4 (c) M5

Fig. 8. Types of myelocytic leukemia cells

Furthermore, the characteristics of the proposed
methodology apply new structures for the machine
vision task. As it has been shown, the approach
also can be framed as an optimization problem
due to its structural characteristics, and as a
consequence, is susceptible to being improved.

In conclusion, since in the problem of leukemia
cells recognition, it is of utmost importance to know
how the features are derived in a natural way, as
well as their meaning and their significance for the
recognition task, in this work was proposed the use
of symbolic learning as a white box methodology to
study the problem of leukemia cells recognition.

Thus, the model can be applied in diverse fields.
The task of object recognition requires a clear
explanation to understand better the subject of
the research.
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