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Abstract. Similarity searching is the most important
task in multimedia databases, It consists in retrieving the
most similar elements to a given query from a database,
knowing that an element identical to the query would not
be found. Dissimilarity between objects is measured with
a distance function (usually expensive to compute), this
allows approaching this problem with a metric space.
Many algorithms have been designed to address this
problem, in particular, the Permutation Based index has
shown an unbeatable performance. This technique uses
reference objects to determine a string for each element
in the database that is a permutation of the same string.
However, Huge databases and the memory required for
these indexes make this problem a real challenge. In this
paper, we present an improvement to the first approach
where classes of reference objects were used instead of
single references. In this paper, a new way to choose
these classes is proposed and a new way to evaluate
similarity between permutations. Our experiments show
that we can avoid distance evaluations up to 90% with
respect to the original technique, and up to 80% to the
first approach.

Keywords. Similarity searching, metric spaces, pattern
recognition, nearest neighbor.

1 Introduction

Similarity searching consists in retrieving the most
similar objects to a given query from a database.
This task has become essential in different areas
such as, pattern recognition, artificial intelligence,
etc. Actually, it can be applied to any field with a set
of objects and a similarity measure between any
two objects of the set is defined.

Dissimilarity is a measure of how different two
objects are and is preferably computed with a
distance function. This measure is normally
defined by an expert in the specific application
domain and can be used as a black box. A distance
function is frequently very expensive to compute,
therefore our goal is to reduce the number of
distance computations needed to solve each query.

Many important databases are huge and lack
of structure. Perfect examples are the multimedia
databases. These are challenging and should not
be handled with traditional database manipulation
systems but rather with metric-space indices. A
metric space is defined by a collection of objects
and a distance function, we describe it in Section
2.1. An important challenge is to keep the index in
main memory, thus, as the size of the database
increases more efficient techniques in terms of
memory space are needed.

In general, the complete process is split in
two parts: building an index, which is an offline
process, and querying the index. The performance
of a proximity index depends on the intrinsic
dimensionality (IDim) of the data; in practice, when
the IDim is too high the index performance might
collapse [8, 19]. In this paper, we are proposing a
novel improvement to one of the best algorithms in
high dimension, with a very small index, that can
be kept in main memory.

This paper is organized as follows. Section
2 gives details about the related work. Section
3 describes our proposal, some definitions
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about permutants, classes, etc.; its experimental
evaluation is shown in Section 4. Section 5
provides some conclusions and future work. An
early version of this work appeared in [13].
The main changes are We propose to use a
recent metric between permutations, a new way
for selecting the elements per class, and new
distances from elements to classes..

2 Related Work

2.1 Basic Concepts

Let X be the universe of objects and d a distance
function (d : X× X→ R+ ∪ {0}). Function d is
usually expensive to compute (think, for instance,
in computing the distance between two images), d
must satisfy these properties: reflexivity, d(x,x) =
0; strict positiveness, x 6= y ⇒ d(x, y) > 0;
symmetry, d(x, y) = d(y,x); and the triangle
inequality, d(x, z) ≤ d(x, y) + d(y, z).

Formally, a metric space is a pair (X, d). The
actual database is a finite set U ⊆ X of size n = |U|.

Basically, there are two kind of queries: Range
queries and K-Nearest Neighbor queries. A Range
query R(q, r) retrieves those objects within a
region centered on a given query object q; formally,
R(q, r) = {u ∈ X, d(u, q) ≤ r}. A K-Nearest
Neighbor query NNK(q) retrieves the K elements
of U that are closest to q, that is, NNK(q) is a set
such that for all x ∈ NNK(q) and y ∈ U \ NNK(q),
d(q,x) ≤ d(q, y), and |NNK(q)| = K. To solve
these queries, we resort to the use of indices.

2.2 Metric Space Indices

A complete survey of metric space searching can
be seen in [8, 23, 21]. Metric spaces indices are
classified in three categories: pivot-based indices,
partition-based indices, and permutation-based
indices.

A pivot-based index (PiBI) chooses a small set of
elements called pivots, and every pivot computes
and stores all the distances to the rest of the
elements, these computed distances are stored
as an index. There are several proposals about
storing these distances in a data structure using
PiBI ([2, 8, 15, 19] to mention a few).

At querying time, first query q is compared
to every pivot, and using the triangle inequality
property it is possible to approximate the distance
between the query q and the rest the elements in
the database. Those which are too far from the
query can be safely discarded. However PiBIs
work well only in low dimensional spaces.

The second family is a partition-based index
(PaBI), which splits the space using some
reference objects, called centers. Centers define
partitions (by several criteria: closer ones, whithin
a radio, etc), and the set of objects is partitioned.
At query time, subsets that do not intersect with
the query are discarded [17, 23, 7, 16, 9]. PaBIs
work reasonable well in high dimension, but usually
need O(n2) distance s to compute the index,
however in [6] authors showed that PaBIs were
defeated by Permutation-Based Indices.

2.2.1 Permutation-Based Indices

In [5, 6, 1], the authors introduced the permutation-
based index (PeBI) as follows: Let P =
{p1, p2, . . . , pk} be a subset of objects from U,
which are called permutants. Each element u of
the database computes and stores a permutation
Πu of {1, . . . , k} which contains all the permutants
in increasing order of distance to u. Formally, for
1 ≤ i < k, d(pΠu(i),u) ≤ d(pΠu(i+1),u), where
Πu(i) means a permutant in position i.

Ties are broken using any consistent order. The
hypothesis is Similar objects are expected to have
similar permutations. To find relevant objects to
a given query, permutations similar to the query
permutation should be reviewed. The new problem
is to find these similar permutations.

There are many similarity measures between
permutations and in [6] the authors showed the
performance of some. The simplest one (and
with a competitive performance) was Spearman
Footrule (Sf ) similarity, defined as:

Sf (Πq, Πu) =
∑

1≤i≤k

∣∣Π−1
u (i)−Π−1

q (i)
∣∣ . (1)

where Π−1(i) represents the position of the i-th
permutant in the permutation.

For example, let Πq = [p1, p2, p3, p4, p5] be the
query’s permutation and let Πu = [p2, p5, p3, p1, p4]
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be the permutation of an element of the database;
in this example Π−1

u (5) is 2, because the permutant
p5 is at position 2 in Πu.

Note that permutant p1 in Πq is 3 positions away
with respect to its position in Πu. As the absolute
values of position differences for each permutant
are 3,1,0,1, 3, then in this example, Sf (Πq, Πu) = 8.

PeBIs have an excellent performance in high
dimension and large permutations work better than
short ones. Authors in [10, 20] did no use all but
just a few permutants (the prefix of the closest ones
to the object for each permutation). The prefixes
are structured in an index in RAM. This way
the authors achieved better compression, saving
the space used by the index at the expense of
loosing precision in the retrieval stage [11, 18].
There is another kind of PeBI using nSimplex
projected vectors, however, not all databases can
be processed with this technique [22].

An exact answer for a similarity query retrieves
all the objects that satisfy it. As the IDim of the
dataset increases the cost of computing the answer
exponentially grows, phenomenon known as the
curse of dimensionality. In some cases we can
trade precision in the results for computing time.
This is known as approximate retrieval, and is very
useful in metric spaces of high IDim.

PiBIs work well for exact retrieval in low
IDim, while PaBIs perform reasonable well for
exact and approximated retrieval in high IDim.
Finally, PeBIs work very well in high IDim for
approximated retrieval.

On the other hand, in [14] the authors introduced
another metric to measure similarity between
permutations. The authors considered penalizing
harder when in two permutations one specific
permutant appears in different positions. This
metric takes advantage of the fact that at solving
queries near positions of a specific permutant
in two permutations gives you more valuable
information than the oposite. The metric proposed
in [14] was defined as follows: φi, 1 ≤ i ≤ m, for
some Πu and Πq, as follows:

φi = |Π−1
u (i)−Π−1

q (i)|, 1 ≤ i ≤ m. (2)

and the new metric is:

Tα(Πu, Πq) =
∑
i∈k

Φi. (3)

where

Φi =

{
φαi : φi ≥ µ,
φi : φi < µ.

(4)

µ is a parameter that depends on the dimension
of the space. Also, reagrding α, the authors
claimed that with α = log10(φ), they achieved a
competitive performance.

3 Our Proposal

The main problem of PeBIs, causing loss of
accuracy in retrieval stage, is depicted in Fig. 1.

Notice that query q has a different permutation
than that of its nearest neighbor u1. This is
because they are both near the middle between
permutants p1 and p2. On the other hand, even
though u2 is far from q, since they are both closer
to p1, they have the same permutation:

= [     ,      ]= [     ,      ]= [     ,      ]

1 u2 u1q

p1 p2Π u2
p2p1Π q p2 p1Π u1

p2p

Fig. 1. The Main problem of the PeBI. In the example
shown here u2 is assumed to be q’s closest object since
they have the same permutation According to Eq. (1) .
However, the nearest nearest neighbor of q is actually u1

In this paper, we extend [13], which is a novel
way to reduce the permutation size as compared
to that needed for standard PeBI, without reducing
the retrieval precision. Our proposal consists in
having permutations of classes of permutants (ΠG)
instead of isolated permutants.

Formally, let G = {G1,G2, . . . ,Gk} be a partition
of P, where each class has exactly m elements,
and P = G1 ∪ G2 . . . ∪ Gk. Also, let D : U ×
G → R be the function that computes the distance
between an element u ∈ U of the database and a
class Gi ∈ G.

We compute D(u,Gi),∀ u ∈ U, i ∈ [1, k], and
sort these distances by proximity to u.

In the next sections, we discuss criteria
for selecting elements for each class and
computing D.
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Algorithm 1 C1e

Require: U, m , k
Ensure: I

1: for i := 1 to k do
2: /* select each first element of each class */
3: Gi[1]← Random(U)
4: U← U−Gi[1]
5: end for
6: for i := 1 to k do
7: let NNm−1(Gi[1]) the closest elements to

Gi[1]
8: Gi ← NNm−1(Gi[1])
9: end for

10: Return I

Algorithm 2 C2e

Require: U, m , k
Ensure: I

1: for i := 1 to k do
2: /* select each first element of each class */
3: v ← Random(U)
4: w ← NN1(v) /* except v*/
5: Gi ← {v,w}
6: U← U− {v,w}
7: end for
8: for i := 1 to k do
9: let v,w ∈ Gi

10: Gi ← the closest m − 2 that
min∀u∈U (d(v,u) + d(w,u))

11: end for
12: Return I

3.1 Criteria to Select Groups of Permutants

In order to explore this technique, we use several
criteria to form classes of permutants:

1. Rand This criterion consists of choosing each
class randomly.

2. C1e selects the first element of each class
randomly and adds its m − 1 closest
permutants to the class. See Algorithm 1.

3. F1e selects the first element of each class
randomly and adds its m − 1 farthest
permutants to the class.

Algorithm 3 SSS

Require: U, m , k
Ensure: I

1: Let NG ← 1
2: Let M the maximum distance between each

par in U
3: Let GNG

[1]← Random(U)
4: Let U← U−GNG

[1]
5: for all u ∈ U and NG < k do
6: for all v ∈ G and NG < k do
7: if d(v,u) < 0.4×M then
8: NG := NG + 1
9: GNG

← u
10: U← U− u
11: end if
12: end for
13: end for
14: for i := 1 to k do
15: Gi ← NNm−1(Gi[1]))
16: end for
17: Return I

4. C2e selects, for each class, a pair of mutual
nearest neighbors and the m − 2 permutants
that minimize the sum of distances to the
previous ones in the class. See Algorithm 2.

5. SSS selects k head of classes following the
method in [4] to chose objects scattered in the
space.

Let M be the maximum distance between all
object pairs. According to the authors, the
heads of classes are at least at a distance of
0.4∗M between them. Classes are completed
with the closest element to each head of class.
See Algorithm 3.

3.2 Distance to a Class

Since we have m elements in each class, we can
define several criteria to compute the distance to a
class. We consider these four options:

1. Dmin is the lowest distance to all the objects
in the class. Formally, Dmin(u,Gi) =
minp∈Gi

d(p,u).
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1

p7p8

p9

p2

p4

p5p6

p3

u1 [1, 3, 2]    ma

[1, 2, 3]    av

[1, 2, 3]    max

[3, 1, 2]    min

p

Fig. 2. Classes 1, 2 and 3 in blue, green and red
respectively. We show the permutations by classes
according to the four options of distances. That is, using
Dmin, p3 of G3 is closest that anyone, so, according to
Dmin the closest class is 3, then 1, and 2

2. Dmax is the greatest distance to all the
objects in the class. Formally, Dmax(u,Gi) =
maxp∈Gi d(p,u).

3. Dav is the average of all the distances to
objects in the class. Formally, Dav(u,Gi) =∑
p∈Gi

d(p,u)/m.

4. Dam is the sum of distances Dav and
Dmin. This is Dam(u,Gi) = Dav(u,Gi) +
Dmin(u,Gi).

In order to illustrate our ideas, in Fig. 2 all classes
were selected in random way. For object u1,
Πu1

= [3, 6, 7, 2, 9, 5, 8, 4, 1], while the permutations
formed by classes are ΠG

u1
= [3, 1, 2]min according

to Dmin; ΠG
u1

= [1, 2, 3]max due to Dmax; ΠG
u1

=
[1, 2, 3]av to Dav; and ΠG

u1
= [1, 3, 2]am according to

Dam.

Our proposal is to use a new metric for
evaluating how similar classes of permutations are
instead of using Spearman’s metric.

4 Experimental Results

We ran the experiments in synthetic and real
world datasets. Synthetic ones allow us to assess
the strength of our technique while varying some
parameters, such as dimensionality, dataset size,
number of permutants and classes, distance to
classes and the way to conform the classes.

On the other hand, real world datasets
show the performance of our technique in
practical situations.

The performance of our proposed technique is
measured in terms of distance computations.

4.1 Synthetic Databases

Our proposal was tested using a synthetic
database composed by vectors uniformly dis-
tributed in the unitary cube. Our dataset consists
of 100,000 points in Rd with d ∈ [16, 128], using
Euclidean distance to measure how far they are to
each other.

In Figure 3 the performance of our technique
as the dimension increases is showed. As we
expected, the number of distances rises as the
dimension increases. Notice that the PeBI idea
has a good performance when we use just 16
permutants, however, for k = 64 the idea of classes
is better than PeBI, in particular, when the space is
uniform we can use the Rand criterion and distance
Dav.

It is important to notice that we have two phases
of distance computations: when a query q is given,
we compute d(q, p) where p ∈ P (i.e. internal
distances) in order to get the permutation of the
query; the second phase is when we have a
promissory order to compare against the query (i.e.
external distances).

The internal distances are unavoidable, and
external distances allow us to answer the queries
quickly. All images reported are the total distances
(internal + external distances).

4.2 Real Databases

In this section we show the performance of our
similarity searching method in real-world metric
spaces using the benchmark set for similarity
searching community [12].

In this case, we have a non-uniform database,
we can use the technique proposed in this paper:
Dam, and SSS technique, of course we are
comparing against the best previous works that
used this database (Dav and Random selection).
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Fig. 3. Computed distances for solving 2NN queries for the synthetic database of uniformly distributed vectors in the
unitary cube as the dimension increases to show the dependence on dimensionality for permutations. The figures at
the top use 16 permutants, the figures at the bottom use 64 permutants, parameter m = 2 for the figures at the left and
m = 3 for the figures at the right

4.2.1 NASA Images

This dataset consists of 40,150 feature vectors
in R20. These 20-dimensional vectors were
generated from images downloaded from NASA1,
duplicate vectors were eliminated.

We used the Euclidean distance to compare
the feature vectors of this collection of images.
We chose 500 histograms randomly as test set,
for querying, and the rest as our database to be
indexed.

In Figure 4, we are using two different size
of classes k = 16, 32. Notice that as we are
looking for more nearest neighbors, our proposal
is working better than PeBI technique (red line).
However, in this database with k = 16 top image

1http://www.dimacs.rutgers.edu/Challenges/Sixth/software.-
html

the best performance is achieved with Dam, SSS
m = 3, and another metric between permutations,
with 3 elements per class (µ ≥ 8). But, when
k = 32 (bottom image), the best performance is
with m = 2, Dam,SSS.

4.2.2 Colors

This database consists of 112,682 color his-
tograms, represented as 112-dimensional feature
vectors. This dataset was obtained from the
SISAP project’s metric space benchmark set [12].
We chose 500 histograms randomly as test set,
for querying, and the rest as our database to
be indexed.

In Figure 5 we show that our proposals have
excellent results.
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Fig. 4. Total distances computed for finding nearest
neighbors as the number of nearest neighbors increase
for the NASA database. The number of permutans is
k = 16 for the figure at the top, and k = 32 for the figure
at the bottom

Notice that PeBIs technique (red line, using
k permutants, that is m = 1) has the same
performance of the PeBIs with the new metric (PM
µ ≥ 8, black line, that ism = 1), and the proposal of
permutations of classes is almost 90% less work.

However, our new proposal is better, in particular
notice that using Dam distance and SSS has
the best performance specially when we use 3
permutants per class and the new metric is used
µ ≥ 8 (label with SPM), see top image.

Finally, using k = 32 (bottom image) the new
metric with m = 3 (with µ ≥ 8) has the best
performance. That is, in this kind of databases,
using the new metric is helpful.
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Fig. 5. Total distances computed for finding nearest
neighbors as the number of nearest neighbors increase
for the COLORS database. The number of permutans is
k = 16 for the figure at the top, and k = 32 for the figure
at the bottom

4.2.3 CoPhIR

This database consists of 10 million objects
selected from the CoPhIR project [3]. Each
object is a 208-dimensional vector and we use the
L1 distance.

Each vector was created in a linear combination
of five different MPEG7 vectors as described in [3].
We chose the first 500 vectors from the database
as queries. Each query consisted of searching for
twenty nearest neighbors.

In Figure 6 we show two images, the top
plot considers all computed distances (internal +
external, where internal is k ∗ m), while Figure in
bottom shows the performance our new proposal.
Notice we can get the nearest neighbor using up to
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Fig. 6. Total distances computed for finding nearest
neighbors as the number of nearest neighbors increase
for the CoPhIR database using k = 128 permutants, at
the top the sum of internal and external distances, at the
bottom just the externals

42% less work than the original technique (PeBI).
That is, using classes of permutants instead single
ones, also, using the metric proposed in [14] and
the criterion SSS to select elements in each class,
and using Dam distance to define which class is
nearest to an element.

5 Conclusion and Future Work

In this paper, we presented an extended version
of [13]. The original idea of to use classes
of permutants instead of single ones in the
permutation based algorithm [6]. In this paper,
we introduced a new distance between classes

and experimented with different ways of selecting
elements inside classes.

Our experimental results showed that we can
improve the permutation based algorithm up to
90% in real databases.

As a future work, we would like to test how this
technique works using different size of classes.
Also, another interesting idea is to mix different
criteria to choose a class, in this paper, all classes
are selected using exactly the same criterion.
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