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Abstract. In type-based program synthesis, the search
of inhabitants in typed calculi can be seen as a process
where a specification, given by a type A, is considered
to be fulfilled if we can construct a λ-term M such
that M : A, or more precisely if Γ ` M : A
holds, that is, if under some suitable assumptions Γ
the term M inhabits the type A. In this paper, we
tackle this inhabitation/synthesis problem for the case of
modal types in the necessity fragment of the constructive
logic S4. Our approach is human-driven in the sense
of the usual reasoning procedures of modern theorem
provers. To this purpose we employ a so-called
dual-context sequent calculus, where the sequents have
two contexts, originally proposed to capture the notions
of global and local truths without resorting to any formal
semantics. The use of dual-contexts allows us to define
a sequent calculus which, in comparison to other related
systems for the same modal logic, exhibits simpler typing
inference rules for the � operator. In several cases, the
task of searching for a term having subterms with modal
types is reduced to the quest for a term containing only
subterms typed by non modal propositions.

Keywords. Dual-context sequent calculus, constructive
necessity, type inhabitation, modal lambda calculus,
program synthesis.

1 Introduction

Modal logic, originated in Mathematics and
Philosophy, plays nowadays an important role in
Computer Science. The use of modalities is
relevant in the theory of programming languages
where modal formulas of the form �A designate
a type of encapsulated values, to be considered
enhanced, related to ordinary values of type A.

For instance in staged computation [8] where
�A is the type of run-time generated code that
computes values of type A. Another important
reading of modal types comes out in mobile
computation [23, 22] where �A is the type
of mobile code of type A. Other relevant
interpretations of the necessity modality appear in
the analysis of information flow either in computer
networks [6] or in software security [21].

Coming from practical applications in the
mentioned areas of computation, attention is
focused on abstracting this kind of behaviors
from real scenarios through specifications, which
generates an outstanding task: the problem of
constructing a program from a given specification.

In this paper we tackle a version of this
synthesis problem at the foundational level given
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by lambda-term type-based synthesis. This is
an instance of constructive/deductive synthesis [4]
where a type A, coming from the constructive
modal logic S4 for necessity in our case, plays
the role of the specification that the sought after
lambda-term has to meet together with a context Γ
to represent a collection of subcomponents,
specified again by their types, considered as
already synthetized.

This approach corresponds to the type inhabita-
tion problem: given a context Γ of type declarations
for variables and a type A, is it possible to find
a term M such that the typing Γ ` M : A
holds? which in turn corresponds, under the
Curry-Howard correspondence, to proof-search:
given a context of assumptions Γ and a formula A,
find a derivation of the sequent Γ ` A.

This problem has been addressed before in the
case of modal logic [1, 13, 26] but not from the
point of view we take here, which is an interactive
human-driven process reminiscent of the ways of
modern proof-assistants (like COQ [7]).

Let us show an example of the kind of programs
(lambda-terms) we want to synthetize.

The specification �(A → B) → �A →
�B corresponds to a program K witnessing
the fact that encapsulated values are well-
behaved under function application. In staged
computation this means that taking as inputs
run-time generated codes of types A→ B and
A, program K produces a code of type B:

K f x =def let box f
′ = f in,

let box x′ = x in,

box (f ′ ? x′).

Here the box constructor signals the encapsu-
lation process: if e denotes an encapsulated
value then, e′ denotes its ordinary associated
value so that the equality box e′ = e holds.
The ? operator corresponds to function
application of ordinary values retrieved from
their encapsulated versions.

The above program K corresponds to the
characteristic scheme of the modal logic S4,
namely K. This example emphasizes the

distinction between the two kinds of values1:
ordinary and enhanced. The idea behind an
enhanced value is that it does not depend on any
ordinary value. In summary we will consider two
kinds of values and two processes which can be
applied to any value, namely encapsulation and
retrieval. All these behaviors will be enforced by
the syntax and the type system.

We start in Section 2 by discussing the dual-
context sequent calculus GS4, as a lambda-term
type system. Our interactive program synthesis
procedure is presented in Section 3, including an
example. The soundness of the synthesis process
is developed in Section 4, followed by some final
remarks in Section 5.

2 A Dual-Context Sequent Calculus for
Interactive Program-Synthesis

There are several discussions and applications
involving deductive systems for modal logic,
see [27, 15] for a deep overview. However, to
the best of our knowledge, there is no dedicated
sequent calculus presentation of constructive S4
with the intention of human-driven proof-search or
program synthesis.

Although, there are works on automated
proof-search whose formalisms are therefore not
suitable for high-level human-reasoning [1, 26, 13,
15, 18]. Let us review some proposed rules for S4
present in the literature, adapted here for the case
of constructive logic:

A,�A, Γ ` B
�A, Γ ` B

(�L)
.

Although this left rule is adequate for proof-
search, keeping both A and �A in the premise
somehow entails redundant information and poses
loop problems for automated proof-search, solved
by means of sophisticated systems like the one

1Through the whole paper we allow ourselves to speak of
values when referring to any expression which, perhaps after
an adequate binding, would yield a well-defined value under any
fixed dynamic semantics.
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in [26]. In the case of right rules we mention two
alternatives:

Γ� ` A
Γ� ` �A

(�R2)
,

Γ◦ ` A
Γ ` �A

(�R3)
,

where Γ� denotes a context with only boxed
formulae and the context Γ◦ results from Γ by
eliminating all the non modal formulae.

Apart from discarding the symmetry between
left and right rules, rule (�R2) is not suitable for
proof-search, since it restricts the shape of the
assumptions to be boxed formulas.

In the case of rule (�R3), the conclusion sequent
has the desired general form for proof-search,
but in the generated subgoal Γ◦ ` A, we can
lose important information by passing from Γ to
Γ◦, although this can be alleviated by a clever
decision taken by a human-agent, in order to avoid
search flaws.

To mitigate the above mentioned issues and
tackle the problem of type-based program synthe-
sis we propose a sequent calculus which handles
sequents of the form ∆ | Γ ` M : A where M
is a lambda-term and ∆ and Γ are contexts. This
kind of formalism for modal logic has its origins in
systems for linear logic [3] and has been introduced
in [24] for reconstructing modal logic in the
light of Martin-Löf’s meaning of logical constants
and laws [17]. In this approach, propositions
obtain their meaning through judgments without
any semantic label (worlds), in particular, modal
operators are defined by means of judgments
over propositions.

The notion of so-called hypothetical judgments
is extended to categorical judgments where a
conclusion does not depend on hypotheses about
the constructive truth of propositions.

Hence, a distinction of two forms of primitive
judgments is essential: ‘A true’ means that
we know how to verify A under hypothetical
judgments, whereas ‘A valid ’ represents the fact
that A is a proposition whose truth does not
depend on any hypotheses, thus internalizing a
categorical judgment as a proposition syntactically
represented by the modal formula �A.

A disengagement similar to the context separa-
tion in dual-context systems is present in several

works, for instance the systems of Fitting [10]; or
the work of Avron et al. [2].

We move now to the technical definitions.
The types are generated by the following
grammar where B denotes a collection of primitive
basic types:

A,B ::= B | A→ B | A ∧B | A ∨B | �A.

Unlike other presentations, we include disjunction
and conjunction. Also note that neither negation
nor ⊥ are present. Thus, we are dealing with
minimal logic. Variable declaration contexts are
defined by means of so-called snoc lists:

Γ ::= · | Γ,x : A,

these are finite lists built from the empty list,
denoted here by ·, and a binary constructor that
generates a new list from a given one by adding
a fresh variable x of type A to its right-end. The
concatenation operation is inductively defined as
expected and denoted by Γ1; Γ2.

In the below inference rules the idea behind
the context separation is that hypotheses in ∆
are enhanced (modal), whereas those in Γ are
ordinary (intuitionistic). Nevertheless, this idea
does not represent a syntactic restriction, for we
can have arbitrary types, modal or intuitionistic, in
both contexts. This is an important difference with
other modal dual-context systems like those of [16].

Moreover, the context separation is strict, in
particular it is forbidden to declare the same
variable in both contexts. This is an important
difference with [24] where there is only one context
with two zones, a choice that requires the use of
explicit labels valid, true in the context formulae.

Since their introduction, dual-context modal
logics and their type systems have been presented
in the sequent-style of natural deduction [16, 8, 22,
9].

Such formalisms are not suitable for backward
proof-search, reason why we present a sequent
calculus GS4, adequate for our purposes. This
system is inductively defined by the following
inference rules, the corresponding lambda-terms
encoding proofs are the target of the synthesis
process discussed in detail in the next section:
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— Initial rules: we have two rules that allow
to conclude a hypothesis according to the
context it belongs:

∆ | Γ, x : A; Γ
′ ` x : A

(THYP)
,

∆, x : A; ∆
′ | Γ ` x : A

(VHYP)
.

— Right rules:

∆ | Γ `M : A ∆ | Γ ` N : B

∆ | Γ ` 〈M ,N〉 : A ∧ B
(∧ R)

,

∆ | Γ `M : A

∆ | Γ ` inlM : A ∨ B
(∨ R)

,

∆ | Γ `M : B

∆ | Γ ` inrM : A ∨ B
(∨ R)

,

∆ | Γ, x : A ` N : B

∆ | Γ ` λx.N : A→ B
(→ R)

,

∆ | · `M : A

∆ | Γ ` boxM : �A
(�R)

.

The rules for propositional connectives are
standard. In the case of a modal formula �A
the right rule corresponds to the so-called
necessitation rule and allows us to introduce
the box operator on the right hand side of
the turnstile, only in the absence of ordinary
assumptions.

It is important to remark that this right rule,
as rule (�R3), also suffers from loss of
information in its backward reading.

However, such issue can be avoided in some
cases by transferring to ∆ some or all the
boxed assumptions in Γ, which is not possible
with (�R3).

The left rules come in two versions, one for each
context.

— Left rules for the ordinary context:

∆ | Γ, x : A, y : B; Γ
′ `M : C

∆ | Γ, z : A ∧ B; Γ
′ ` letpair(z, x.y.M) : C

(∧L)
,

∆ | Γ, x : A; Γ
′ `M : C

∆ | Γ, y : B; Γ
′ ` N : C

∆ | Γ, z : A ∨ B; Γ
′ ` case(z, x.M , y.N) : C

(∨ L)
,

∆ | Γ, x : A→ B; Γ
′ `M : A

∆ | Γ, x : A→ B; Γ
′ ` xM : B

(→L)
,

∆, x : A | Γ; Γ
′ `M : B

∆ | Γ, y : �A; Γ
′ ` letbox(y, x.M) : B

(� L)
.

For disjunction and conjunction, the rules are
standard. The left rule (�L) represents a
type transference principle between contexts:
in the proof-search process we can move an
encapsulated type in the ordinary context to
the enhanced context by unboxing it.

The rule (→ L) is not usual, for instead of
decomposing the implicative hypothesis, in
order to prove/use its components, like the
regular left rule for implication, it only uses it
to derive its consequent, once its antecedent
has been derived.

This rule captures the local reasoning with
implication common in informal proofs, instead
the usual left rule for implication models an
on the-fly prove/use of a lemma. This feature
rarely figures in actual paper-and-pencil proofs
and thus makes the original rule clumsy for
proof-search purposes.

To the best of our knowledge this left rule,
which is inspired by the apply tactic of the
COQ proof-assistant, has been considered
only by us [20, 19], though it is also related
to the rule (→ L)◦ of Schroeder-Heister [28].

Let us also note that, under the presence
of the cut or substitution rule, the rule (→L)
is equivalent to the ordinary left rule for
implication. The details of this claim are
omitted due to lack of space.
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— Left rules for the enhanced context:

∆, x : A, y : B; ∆
′ | Γ `M : C

∆, z : A ∧ B; ∆
′ | Γ ` eletpair(z, x.y.M) : C

(∧LE)
,

∆; ∆
′ | Γ, x : A `M : C

∆; ∆
′ | Γ, y : B ` N : C

∆, z : A ∨ B; ∆
′ | Γ ` ecase(z, x.M , y.N) : C

(∨ LE)
,

∆, x : A→ B; ∆
′ | Γ `M : A

∆, x : A→ B; ∆
′ | Γ ` x ? M : B

(→LE)
,

∆, x : A; ∆
′ | Γ `M : B

∆, y : �A; ∆
′ | Γ ` eletbox(y, x.M) : B

(� LE)
.

The rule for conjunction is again standard,
whereas for implication the rule is analogous
to the version for ordinary contexts. In the
case of an enhanced disjunctive hypothesis
the case analysis on z : A ∨ B is performed
only by ordinary hypotheses x : A and
y : B, otherwise the rule would be unsound 2.
Finally, the rule �LE, introduced by us
in [19], reduces the synthesis of a program
involving an enhanced and encapsulated
component �A to the search of a program
involving only the non-encapsulated enhanced
component A.

— Substitution or cut rules: these are essential
for human-driven proof-search:

∆ | Γ `M : A ∆ | Γ, x : A ` N : B

∆ | Γ ` let(M , x.N) : B
(SUBST)

,

∆ | · `M : A ∆, x : A | Γ ` N : B

∆ | Γ ` elet(M , x.N) : B
(SUBSTE)

.

The enhanced substitution rule (SUBSTE) is
derivable from (SUBST), but we keep both rules for
the sake of symmetry. Moreover, it is relevant to
mention that this ordinary rule is not admissible.
This is not important for our purposes since the
reasoning pattern provided by the cut rule is
essential for human-driven proof search. A further
discussion on this matter has to be presented
elsewhere, due to lack of space.

With respect to the left rules for necessity
we consider important to emphasize that, since

2For instance, it would allow to derive � (A ∨B) → �A ∨
�B, which is invalid in all known semantics of S4.

they permit to encapsulate/retrieve values at the
hypotheses level, the synthesis process involving
an enhanced value can be reduced to one that
requires only an ordinary value. This transference
process (see [11, Section 4.2]) allows us to reason
in a more intuitive and straighforward way, as
shown in the example of Section 3.

To finish the section is important to review the
more usual elimination rule for � in dual-context
systems presented for instance in [25, 8, 16, 9].
This typing rule for a letbox operator is:

∆ | Γ `M : �A ∆, x : A | Γ ` N : B

∆ | Γ ` letb x = M inN : B
(� E)

.

We can observe that such rule entails a
specific substitution (cut) process that provides
the primitive way of using an ordinary value (the
assumption x : A) retrieved from an enhanced
value (the term M : �A), at the price of
requiring an explicit derivation of M . Of course
this is characteristic of (generalized) elimination
rules in sequent-style natural deduction and can
be simulated in GS4 by means of the (�L) and
(SUBST) rules. The definition of letb, in concrete
syntax, witnessing this simulation is: letbx =
M inN =def let y = M in letboxx = y inN .

It is easy to see that in a dual-context natural
deduction system, with (�E) as a primitive rule,
our rules (�L) and (�LE) can be simulated as
well. Thus, both systems turn out to be equivalent
(more details are provided in [19]). Moreover,
in [11] we prove that the system of dual-context
natural deduction is equivalent to an S4-axiomatic
system. Then we can conclude that the present
system captures exactly the necessity fragment of
the constructive logic S4.

3 Interactive Program Synthesis

The lambda-terms that appear in the sequent
calculus typing rules of Section 2, formalize the
kind of programs target of the synthesis process.
They include modal constructors in the lines of
some related languages [25, 8, 16, 9] as well
as distinct variable binding operators (let or case
expressions). Let us collect them precisely.
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Definition 3.1. A pseudoterm is an expression
generated by the following grammar:

M ::= x | X | R | O | E | P
R ::= λx.M | 〈M ,M〉 | inlM | inrM | boxM
O ::= MM | letpair(M ,x.y.M) |

case(M ,x.M , y.M) | letbox(M , y.M)

E ::= M ?M | eletpair(M ,x.y.M) |
ecase(M ,x.M , y.M) | eletbox(M , y.M)

P ::= let(M ,x.M) | elet(M ,x.M)

The metavariable M denotes pseudoterms which
are classified as right pseudoterms, those gener-
ated by the metavariable R; ordinary pseudoterms,
generated by O and enhanced pseudoterms, gen-
erated byE. A left pseudoterm is either an ordinary
or an enhanced pseudoterm. Finally, those
generated by P are called strong let-expressions.

As our matter of interest is to synthetize
lambda-terms we define pseudoterms, which
are expressions corresponding to programs with
unknown templates to be filled during the synthesis
process. A basic and least informative template
is represented by a category of metavariables
or search-variables, disjoint from the usual
term variables, denoted by a capital X. A
pseudoterm M is called a term or a program if M
does not contain search variables.

Apart from the usual lambda term constructors
for functions, sums and products, we use twin
program constructors in order to make explicit
the manipulation of ordinary or enhanced values,
the only difference being a prefix e indicating
the need for an enhanced input (we use an
infix application operator ? in the case of an
enhanced function). There is no need to have twin
constructors for right pseudoterms, due to the fact
that an enhanced value can be constructed directly
by the box operator.

Let us sketch next our program synthesis
technique: given two contexts of type declarations
for variables, ∆ and Γ (for enhanced and ordinary
assumptions respectively) and a type specification
A, the goal is to construct a program M such that
the typing ∆ | Γ ` M : A holds. The program M

is currently unknown and it is represented with a
search-variable X. The task is to find a value for X
such that ∆ | Γ ` X : A holds.

Analyzing the specific form either ofA or of some
assumption type; and applying a backward reading
of the typing rules, some restrictions on the form
of M are generated in order to give a solution
for X. These conditions are given by pseudoterm
equations which, if solvable, will allow to construct
the desired program.

For instance, the search for an X such that
· | x : A ` X : A ∨ B holds, is reduced to
the search for a Y such that · | x : A ` Y : A
holds. The search-variables X and Y are related
by the equation X ≈ inlY . The last goal is directly
solved by the equation Y ≈ x. By solving these
two equations, we obtain that M =def inlx verifies
· | x : A `M : A ∨B.

However, let us observe that sequents involving
search-variables are not derivable, for, according
to Section 2, there is no typing rule for this
kind of variables. Such underivable sequents
represent synthesis problems, which are program
search tasks formalized by the following notion
of pseudosequent.

Definition 3.2. A pseudosequent or search-
sequent, P, is a 4−tuple of the form ∆ | Γ `?

X : A where X is a search-variable.

For the synthesis process we will need to handle
finite sequences of pseudosequents defined
as follows:

Definition 3.3. The set of finite sequences of
pseudosequents is recursively defined with the
grammar:

S ::= • | P , S

where • denotes the empty sequence. For
clarity, a singleton sequence is identified with
its unique element. As for contexts, the
semicolon operator ; is used for concatenation of
pseudosequents sequences.

The restrictions generated during the program
search will be captured by constraint sets defined
as follows:
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Definition 3.4. A constraint is an equation of the
form X ≈ e where X is a search-variable and e is
a pseudoterm. A set of equations:

R = {X1 ≈ e1,X2 ≈ e2, . . . ,Xk ≈ ek},

where all Xi are different, is called a constraint
set. According to the category of the pseudoterm
e, a constraint can be right, ordinary, enhanced, left
or strong.

Next we define what is a solution of a
constraint set.

Definition 3.5. Given a constraint set R, a
pseudoterm M is solution of the constraint X ≈ e
in R, if M is a term and there is a substi-
tution3 of search-variables by terms, say σ =
[X1, . . . ,Xn/M1, . . . ,Mn], such that M ≡ eσ (i.e M
is syntactically identical to eσ up-to α-equivalence).
In such case the solution is written as M =
SolR(X ≈ e).

Sequences of pseudosequents interact with
constraint sets by means of goals, defined
as follows.

Definition 3.6. A goal is a pair S ‖ R consisting of
a sequence of pseudosequents S and a constraint
set R. The set of goals is denoted by Goal.

The program synthesis process is defined next
by means of a transition system where the goals
play the role of states and the transitions, which
are called tactics, transform a goal into another
goal according to the backward reading of the
typing rules. We consider this formal definition
and handling of backward lambda-term synthesis
as the second main contribution of this paper.

Definition 3.7. The transition system is defined
as follows:

— A state is a goal S ‖ R.

— An initial state is a goal of the form ∆ | Γ `?

X : A ‖ ∅, that is, a goal composed
of a unique pseudosequent and the empty
constraint set.

3Substitution in the usual sense.

— A terminal state is a goal of the form • ‖ R, that
is, a goal composed of the empty sequence
of pseudosequents and an arbitrary constraint
set.

— The transition relation B ⊆ Goal × Goal
is inductively defined by the axioms and
inference rule below, where a transition S1 ‖
R1 B S2 ‖ R2 can be read as to solve the
current goal S1 ‖ R1 it suffices to solve the
subgoal S2 ‖ R2.

In each basic transition, the search-sequent ∆ |
Γ `? X : A dictates the action according to the
backward reading of a typing rule, updating the
constraint set accordingly.

In the following, we define the transition system
axioms according to four synthesis process. In
each case we assume that the search-variables
introduced in the pseudosequents of the reduct are
fresh, that is, do not occur in the redex.

3.1 Direct Synthesis

Direct synthesis triggers the synthesis by directly
analyzing the shape of the typing specification
producing a right constraint:

intro x :
∆ | Γ `? X : A→ B ‖ R B

∆ | Γ, x : A `? X1 : B ‖ R,X ≈ λx.X1,
split :
∆ | Γ `? X : A ∧ B ‖ R B

∆ | Γ `? X1 : A ;
∆ | Γ `? X2 : B ‖ R,X ≈ 〈X1,X2〉,

left :
∆ | Γ `? X : A ∨ B ‖ R B

∆ | Γ `? X1 : A ‖ R,X ≈ inlX1,
right :
∆ | Γ `? X : A ∨ B ‖ R B

∆ | Γ `? X1 : B ‖ R,X ≈ inrX1,
unbox :
∆ | Γ `? X : �A ‖ R B

∆ | · `? X1 : A ‖ R,X ≈ boxX1,
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3.2 Indirect Synthesis

Indirect synthesis focuses on a type in any of the
contexts, generating a left constraint:

apply x :
∆ | Γ, x : A→ B; Γ′ `? X : B ‖ R B

∆ | Γ, x : A→ B; Γ′ `? X1 : A ‖ R,X ≈ xX1,
apply x :
∆, x : A→ B; ∆′ | Γ `? X : B ‖ R B

∆, x : A→ B; ∆′ | Γ `? X1 : A ‖ R,X ≈ x ? X1,
destruct z :
∆ | Γ, z : A ∧ B; Γ′ `? X : C ‖ R B

∆ | Γ, x : A, y : B; Γ′ `? X1 : C ‖ R,X ≈ letpair(z, x.y.X1),
destruct z :
∆, z : A ∧ B; ∆′ | Γ `? X : C ‖ R B

∆, x : A, y : B; ∆′ | Γ `? X1 : C ‖ R,X ≈ eletpair(z, x.y.X1),
destruct z :
∆ | Γ, z : A ∨ B; Γ′ `? X : C ‖ R B

∆ | Γ, x : A; Γ′ `? X1 : C ;
∆ | Γ, y : B; Γ′ `? X2 : C ‖ R,X ≈ case(z, x.X1, y.X2),

destruct z :
∆, z : A ∨ B; ∆′ | Γ `? X : C ‖ R B

∆; ∆′ | Γ, x : A `? X1 : C ;
∆; ∆′ | Γ, y : B `? X2 : C ‖ R,X ≈ ecase(z, x.X1, y.X2),

retrieve x :
∆ | Γ, x : �A; Γ′ `? X : B ‖ R B

∆, y : A | Γ; Γ′ `? X1 : B ‖ R,X ≈ letbox(x, y.X1),
retrieve x :
∆, x : �A; ∆′ | Γ `? X : B ‖ R B

∆, y : A; ∆′ | Γ `? X1 : B ‖ R,X ≈ eletbox(x, y.X1).

In this case, distinct tactics have the same
name for they share the same functionality: the
apply tactics correspond to the application of a
functional hypothesis; the destruct tactics trigger
the destruction of a specific hypothesis, replacing it
by simpler hypotheses in the subgoals. Finally, the
manipulation of modal hypotheses is managed by
the retrieve tactics.

3.3 Strong Synthesis

Strong synthesis requires to guess the type
corresponding to the first premise of a substitution
rule and generates a strong constraint. This calls
for an explicit interaction 4 with the human agent,
which is why we speak of a strong synthesis:

4Nevertheless, the reader can note that the indirect
synthesis process also requires interactivity in order to choose
an adequate hypothesis and match a particular tactic.

assert A :

∆ | Γ `? X : C ‖ R B
∆ | Γ `? X1 : A ;

∆ | Γ, x : A `? X2 : C ‖ R,X ≈ let(X1, x.X2),

enough A :

∆ | Γ `? X : C ‖ R B
∆ | Γ, x : A `? X1 : C;

∆ | Γ `? X2 : A ‖ R,X ≈ let(X2, x.X1),

eassert A :

∆ | Γ `? X : C ‖ R B
∆ | · `? X1 : A ;

∆, x : A | Γ `? X2 : C ‖ R,X ≈ elet(X1, x.X2),

eenough A :

∆ | Γ `? X : C ‖ R B
∆, x : A | Γ `? X1 : C ;

∆ | · `? X2 : A ‖ R,X ≈ elet(X2, x.X1).

Let us observe that each substitution rule has
two corresponding tactics, namely assert and
enough, the difference being only operational:
either we first synthetize the auxiliar component A
and then invoke it or viceversa.

3.4 Immediate Synthesis

Immediate synthesis generates a synthesis prob-
lem which is trivially solved by an initial inference
rule. The constraints generated here are
necessarily of the form X ≈ x.

assumption :

∆ | Γ, x : A; Γ′ `? X : A ‖ R B • ‖ R,X ≈ x,

eassumption :

∆, x : A; ∆′ | Γ `? X : A ‖ R B • ‖ R,X ≈ x.

The names of some of the above tactics, though
not the ones involving modal types, coincide with
the names of analogous tactics implemented in the
COQ proof assistant.

3.5 Inference Rule for Transition

All the above tactics constitute the basic axioms
of the transition system. Next we give the sole
inference rule for transitions.
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Sequencing:
Several basic transitions cause the sequence
of search-sequents in a goal to grow. In such
cases we need to choose a specific search-
sequent within the current goal to perform the
next transition. The sequencing rule (seq)
determines the choice order, namely from the
first (left most) search-sequent:

S1 ‖ R1 B S2 ‖ R2

S1;S ‖ R1 B S2;S ‖ R2
(seq).

We show an example of how the transition
system of tactics performs the synthesis process.
Let us recall that the solution of a constraint is
not unique and depends on the solutions of the
later constraints found in the synthesis process.
The application of any tactic guarantees that each
search-variable appears in a pseudoterm in the
constraint set.

Example 3.1. A program t corresponding to the
specification given by the modal scheme K is
synthetized as follows.
· | · `? X : �(A→ B)→ �A→ �B ‖ ∅,
B intro x

· | x : �(A→ B) `? X1 : �A→ �B ‖ X ≈ λx.X1,

B intro y

· | x : �(A→ B), y : �A `? X2 : �B ‖ R,X1 ≈ λy.X2,

B retrieve x

x1 : A→ B | y : �A `? X3 : �B ‖ R′,X2 ≈ letbox(x, x1.X3),

B retrieve y

x1 : A→ B, y1 : A | · `? X4 : �B ‖ R′′, X3 ≈ letbox(y, y1.X4),

B unbox

x1 : A→ B, y1 : A | · `? X5 : B ‖ R′′′, X4 ≈ boxX5,

B apply x1

x1 : A→ B, y1 : A | · `? X6 : A ‖ Riv , X5 ≈ x1 ? X6,

B eassumption,

• ‖ R′′′,X4 ≈ boxX5, X5 ≈ x1 ? X6, X6 ≈ y1,

where

R = X ≈ λx.X1,
R′ = X ≈ λx.X1, X1 ≈ λy.X2,
R′′ = R′,X2 ≈ letbox(x, x1.X3),
R′′′ = R′′,X3 ≈ letbox(y, y1.X4),

Riv = R′′′,X4 ≈ boxX5,

and the solution for X is:
t =def λx.λy. letbox(x,x. letbox(y, y. box(x1 ? y1))).

Example 3.2. A program M corresponding to the
specification given by type �(A∧B)→ (�A∧�B)
is synthetized as follows.

· | · `? X : �(A ∧ B)→ (�A ∧�B) ‖ ∅,
B intro x
· | x : �(A ∧ B) `? X1 : �A ∧�B ‖ X ≈ λx.X1,
B retrieve x
x1 : A ∧ B | · `? X2 : �A ∧�B ‖ R, X1 ≈ letbox(x, x.X2),
B destruct x1

y1 : A, y2 : B | · `? X3 : �A ∧�B ‖ R′, X2 ≈ eletpair(x, y1.y2.X3),
B split
y1 : A, y2 : B | · `? X4 : �A ;
y1 : A, y2 : B | · `? X5 : �B ‖ R′′, X3 ≈ 〈X4, X5〉,
B unbox,
y1 : A, y2 : B | · `? X6 : A ;
y1 : A, y2 : B | · `? X5 : �B ‖ R′′, X3 ≈ 〈X4, X5〉, X4 ≈ boxX6,
B eassumption

• ; y1 : A, y2 : B | · `? X5 : �B ‖ R′′′, X6 ≈ y1,
B unbox

y1 : A, y2 : B | · `? X7 : B ‖ R′′′, X6 ≈ y1, X5 ≈ boxX7,
B eassumption

• ‖ R′′′, X6 ≈ y1, X5 ≈ boxX7, X7 ≈ y2,

where

R = X ≈ λx.X1,
R′ = R,X1 ≈ letbox(x, x1.X2),

R′′ = R′, X2 ≈ eletpair(x1, y1.y2.X3),
R′′′ = R′′, X3 ≈ 〈X4, X5〉, X4 ≈ boxX6,

and the solution for X is:
M =def λx. letbox(x,x1. eletpair(x1, y1.y2.〈box y1, box y2〉))

Example 3.3. A program M meeting the speci-
fication given by �(�A ∨ �B) → �(A ∨ B) is
synthetized as follows:

· | · `? X : �(�A ∨�B)→ �(A ∨ B) ‖ ∅,
B intro x

· | x : �(�A ∨�B) `? X1 : �(A ∨ B) ‖ X ≈ λx.X1,

B retrieve x

x1 : �A ∨�B | · `? X2 : �(A ∨ B) ‖ R, X1 ≈ letbox(x, x1.X2),

B unbox

x1 : �A ∨�B | · `? X3 : A ∨ B ‖ R′, X2 ≈ boxX3,

B destruct x1,

· | x2 : �A `? X4 : A ∨ B ;

· | x3 : �B `? X5 : A ∨ B ‖ R′′, X3 ≈ ecase(x1, x2.X4, x3.X5),

B left

· | x2 : �A `? X6 : A ;

· | x3 : �B `? X5 : A ∨ B ‖ R′′′, X4 ≈ inlX6,

B retrieve x2

x4 : A | · `? X7 : A ;

· | x3 : �B `? X5 : A ∨ B ‖ Riv, X6 ≈ letbox(x2, x4.X7),

B eassumption

• ; · | x3 : �B `? X5 : A ∨ B ‖ Rv, X7 ≈ x4,

B right

· | x3 : �B `? X8 : B ‖ Rv , X7 ≈ x4, X5 ≈ inrX8

B retrieve x3

x5 : B | · `? X9 : B ‖ Rvi, X8 ≈ letbox(x3, x5.X9),

B eassumption

• ‖ Rvi, X8 ≈ letbox(x3, x5.X9), X9 ≈ x5,
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where

R = X ≈ λx.X1,
R′ = R, X1 ≈ letbox(x, x1.X2),
R′′ = R′, X2 ≈ boxX3,
R′′′ = R′′, X3 ≈ ecase(x1, x2.X4, x3.X5),
Riv = R′′′, X4 ≈ inlX6,

Rv = Riv , X6 ≈ letbox(x2, x4.X7),
Rvi = Rv ,X7 ≈ x4, X5 ≈ inrX8,

and the solution for X is:

M =defλx. letbox(x,x1. box(ecase(x1,x2. inl

letbox(x2,x4.x4),x3. inr letbox(x3,x5.x5))))

Let us observe that, since the unbox and
retrieve tactics replace a modal with a pure
propositional assumption, as announced, we are
replacing a modal reasoning with a proposi-
tional inference.

4 Soundness of the Synthesis Process

In this section we prove the soundness of the
synthesis process. Given an initial goal ∆ | Γ `?

X : A ‖ ∅ we want to guarantee that: if the
transition relation succeeds, that is, if applying the
transition rules a finite number of times from this
goal, we arrive to a final goal • ‖ R, then there is a
program M , constructed by solving the contraints
in R, such that ∆ | Γ ` M : A holds. Let us start
by stating a convenient definition for the transitive
closure of the transition relation.

Definition 4.1. The transitive closure of the
relation B, denoted B+ , is inductively defined by
the following rules:

S ‖ RB S ′ ‖ R′

S ‖ RB+ S ′ ‖ R′
,

S ‖ RB S ′ ‖ R′ S ′ ‖ R′ B+ S ′′ ‖ R′′

S ‖ R B+ S ′′ ‖ R′′
.

Given an initial goal ∆ | Γ `? X : A ‖ ∅, let us
observe that the transition process succeeds from
this goal exactly when there is a constraint set R
such that ∆ | Γ `? X : A ‖ ∅ B+ • ‖ R holds.

Definition 4.2. A pseudosequent ∆ | Γ `? X : A
is solvable with respect to a constraint set Q (or
Q-solvable), if there is a constraint X ≈ e ∈ Q and
a program M = SolQ(X ≈ e) such that the typing
∆ | Γ `M : A holds.
Given a constraint set Q we say that a goal S ‖ R
is Q-solvable if R ⊆ Q and all pseudosequents in
S are Q-solvable.

We remark that the solution is not unique,
moreover, there can be an infinite number of
solutions. Thus, it should be the human agent
who decides the desired solution as she is
conducting the whole process. This rules out
some relevant inquiries of automated proof-search
like the question of the complexity of the
proof-search space.

The next lemma guarantees that the solvability
of goals is rearward preserved by the transition
relation, this characteristic will imply the desired
soundness property.

Lemma 1. Let Q be a constraint set such that
R1,R2 ⊆ Q. If S1 ‖ R1 B+ S2 ‖ R2 and S2 ‖ R2 is
solvable with respect to Q then S1 ‖ R1 is solvable
with respect to Q.

Proof. Let Q be as required. The proof goes by
induction on B+ . In the base case we have
S1 ‖ R1 B S2 ‖ R2 and proceed by a nested
induction on B. We give some cases as example.
The remaining are analogous:

— Case (intro x): We have ∆ | Γ `? X : A →
B ‖ R B ∆ | Γ,x : A `? Y : B ‖ R,X ≈
λx.Y . Let us assume that M = SolQ(Y ≈ N)
with ∆ | Γ,x : A ` M : B. In this case we
have ∆ | Γ ` (λx.Y )[Y/M ] : A → B by rule
(→ R). Noting that λx.M is a program, for so
is M , and that λx.M ≡ (λx.Y )[Y/M ] we get
that λx.M = SolQ(X ≈ λx.Y ). Thus the goal
∆ | Γ `? X : A → B ‖ R is solvable with
respect to Q and the case is done.

— Case (vassert A :): In this case we have ∆ |
Γ `? X : C ‖ R B ∆ | · `?

X1 : A ; ∆,x : A | Γ `? X2 : C ‖
R,X ≈ elet(X1,x.X2). Let us assume that
∆ | · ` M1 : A and ∆,x : A | Γ ` M2 : C
where M1, M2 are programs such that there
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are equations Y1 ≈ N1,Y2 ≈ N2 ∈ Q with
M1 = SolQ(Y1 ≈ N1),M2 = SolQ(Y1 ≈
N2). From the above typings we get, by the
(SUBSTE) rule, that ∆ | Γ ` elet(M1,x.M2) :
C. Finally we observe that elet(M1,x.M2) =
SolQ(X ≈ elet(X1,x.X2)). Thus the goal
∆ | Γ `? X : C ‖ R is solvable with respect
to Q as desired.

— Case (seq): We have here that there exists a
sequence S such that S1;S ‖ R1 B S2;S ‖
R2 where S1 ‖ R1 B S2 ‖ R2. Let us
assume that S2;S ‖ R2 is solvable with
respect to Q. This implies in particular that
S2 ‖ R2 is Q-solvable, from which the nested
induction hypothesis now yields that S1 ‖ R1

is Q-solvable. From this we can conclude that
the sequence S1;S isQ-solvable (observe that
the part S was already Q-solvable due to the
original assumption). Thus, the goal S1;S ‖
R1 is solvable with respect to Q, as desired.
This finishes the nested induction that proves
the base case.

For the inductive step, we have that S1 ‖ R1 B+

S2 ‖ R2 where there is a goal S3 ‖ R3 such that
S1 ‖ R1 B S3 ‖ R3 and S3 ‖ R3 B+ S2 ‖ R2.
Assuming that S2 ‖ R2 is solvable with respect toQ
the I.H. yields S3 ‖ R3 is solvable with respect toQ,
the already proved base case now yields that S1 ‖
R1 is solvable with respect to Q, as desired.

Theorem 4.1 (Soundness of the synthesis
process). Let ∆ | Γ `? X : A be a synthesis
problem. If ∆ | Γ `? X : A ‖ ∅ B+ • ‖ R then
there is a program M such that ∆ | Γ `M : A.

Proof. It is clear that the goal • ‖ R is solvable
with respect to R, hence, the Lemma 1 yields that
∆ | Γ `? X : A ‖ ∅ is also solvable with respect
toR. This fact ensures the existence of the desired
program M .

According to this theorem our type-based
synthesis process is correct. This ends our
exposition. Let us finish this paper with some
remarks.

5 Final Remarks

In this paper we presented a dual-context sequent
calculus GS4 for the necessity fragment of
the constructive modal logic S4, originated in
our previous work [19], as a type system for
lambda-terms. The modal types allow us to
make a distinction between values with essentially
the same functionality, namely ordinary values
(inhabiting the type A) and enhanced values
(inhabiting the type �A). This distinction is
required by several applications.

The specific left rules for implication and
necessity as well as the dual-context feature
enable us to define a simple and intuitive
sound bottom-up synthesis process involving a
left-to-right depth-first proof-search, which, with
the help of constraint-sets and the backward
reading of the typing rules succeeds in returning
a correct-by-construction modal lambda-term.

The procedure is human-driven, in the sense
of modern interactive theorem provers, a feature
that allows to define the synthesis process
without technical modifications of the inference
rules, unlike some proposals of automated
proof-search [29, 1, 26].

Towards a more realistic programming environ-
ment we intend to extend the current approach
to a dual-context sequent calculus for the full
modal logic S4, related to our work in [12].
Another important task is to extend the here
presented results to the classical version of S4.
This requires a handling of classical negation
suitable for proof-search, in particular the use of a
traditional multi conclusion sequent calculus is not
convenient.

Some other programming language features, like
a detailed study of the operational semantics and
the extension of GS4 with recursion and memory
references in the lines of [22, 8], have to be
integrated in this quest.

Another important research topic consists of
mechanizing5 the current results, following our
previous work [11]. With respect to other
approaches of type-based synthesis in modal logic,
we consider important to relate our approach with

5This is the main reason for defining contexts as lists instead
of sets or multisets.
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those involving intersection types, like [14, 9]. This
would complicate the constraints, due to the fact
that the typing rules for intersection are obviously
not syntax-directed. This happens also in other
richer type systems, for instance [5] involving some
kind of polymorphism.

In some cases the constraints might be
unsolvable, for example if the constraint-sets are
cyclic or contain a recursive constraint. But
even if they are solvable, their solutions would
certainly require more powerful tools, such as
(higher-order) unification.
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