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Abstract. For the last decades the work on audio
recognition has been directed to speech and music,
however, an increasing interest for the classification
and recognition of acoustic events is observed for the
last years. This poses the challenge to determine the
identity of sounds, their sources, and the importance
of analysing the context of the scenario where they
act. The aim of this paper is focused on evaluating
the robustness to retain the characteristic information of
an acoustic event against the background noise using
audio features in the task of identifying acoustic events
from a mixture of sounds that are produced in a kitchen
environment. A new database of kitchen sounds was
built by us, since in the reviewed literature there is
no similar benchmark that allows us to evaluate this
issue in conditions of 3 decibels for the signal to noise
ratio. In our study, we compared two methods of audio
features, Multiband Spectral Entropy Signature (MSES)
and Mel Frequency Cepstral Coefficients (MFCC). To
evaluate the performance of both MSES and MFCC,
we used different classifiers such as Similarity Distance,
k-Nearest Neighbors, Support Vector Machines and
Artificial Neural Networks (ANN). The results showed
that MSES supported with an ANN outperforms any
other combination of classifiers with MSES or MFCC for
getting a better score.

Keywords. Entropy, neural networks, mixture of
sounds, MFCC.

1 Introduction

Sounds are around human being everywhere
and due to physic properties of the sounds one
can heard the acoustics of these. Acoustic
events refer to several everyday sounds which

are generated in natural or artificial form (namely,
the sounds found in the environment of the
everyday life, excluding speech and music). The
development of an acoustic event recognition
system (AERS), contributes to the development of
intelligent systems capable to understand sound
within a context. These systems are important for
real-world applications such as activity monitoring
systems [15, 39, 45], ambient assisted living [28,
40, 50], human-computer interaction [8, 41, 42],
security surveillance [1, 2], assisted robotics [21,
38, 48], among others.

Automatic recognition of acoustic events in
real situations is not an easy task, because
the audio captured by microphones contains a
mixture of different sources of sound. Recent
research work about AERS has focused on two
types of classification problems: acoustic events
classification for a specific context and acoustic
events recognition into contextual classes [52, 53].
The former can be associated to, for instance, the
activity recognition in a home environment, where
acoustic events can offer information that occur in
a specific dwelling space.

The audio information for scene understanding,
can be more assertive if they exclusively recognize
the acoustic events that occur in a specific place.
On the other hand, there is the recognition of
human activity from the sounds that occur in
different places, for instance, the difference of
contextual events between the home and the office.
It would be difficult to say what kind of activity is
carried out, if the contextual classes of the sounds
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are not clear. Besides, not limiting the sounds in
the scene will be even more difficult this task.

Preliminary work with AERS adopted ap-
proaches used for the processing of speech and
music, however, the non-stationary characteristics
of the acoustic events made the recognition of
events problematic for databases with a great
number of sound sources [13]. For example, in
speech recognition is common to use a phonetic
structure that can be seen as a basic component
of voice, therefore, spoken words can be divided
into elemental phonemes over which it is possible
the application of probabilistic models. Conversely,
phoneme based approaches cannot be applied
to acoustic events coming from sounds created
by a car crash or due to pouring water in a
glass. Even, if it is possible to create a dictionary
of basic units of these events, modelling signal
variation in time would be difficult. The same
occurs whit the attempt to compare music and
acoustic events because the latter does not exhibit
significant stationary patterns such as melody and
rhythm [13].

The recognition of acoustic events involves two
phases: a feature extraction phase followed by a
classification phase. The feature extraction phase
allows to play two roles; a dimension reduction
role, and a representation role. An AERS uses
stationary and non-stationary feature extraction
techniques. Most of the features extraction
algorithms use a scheme called bag-of-frames.
The bag-of-frame approach consists of considering
the signal in a blind way, using a systematic
and general scheme where the signal is divided
into consecutive overlapping frames, from which a
vector of features is determined. The features are
supposed to represent characteristic information of
the signal for the problem at hand. These vectors
are then aggregated (hence the “bag”) and fed to
the next phase of an audio recognition system [3].

Audio signals have been traditionally charac-
terized by Mel Frequency Cepstral Coefficients
(MFCC). The methodology for computing MFCC
involves a filter bank that approximates some
important properties of the human auditory system.
MFCC has been shown to work well for structured
sounds such as speech and music [16, 23, 25,
26, 27, 37]. Since MFCC has been successfully

used in speech and music applications, some
work suggests the use of MFCC for characterizing
acoustic events that contains a large and diverse
variety of sounds, including those with strong
temporal domain [4, 35, 40]. In addition, MFCC
are often used by researchers for benchmarking
their works.

For the classification phase of an AERS there
are different machine learning techniques such
as Support Vector Machine (SVM). SVM is a
classifier that discriminates the data by creating
boundaries between classes rather than estimating
class conditional densities, or in other words, that
SVM could draw accurate classification rate even
if the sample size is small, a common scenario for
acoustic event classification [14, 24, 51].

Artificial Neural Networks (ANN) is another
machine learning technique being widely used
for audio recognition systems. ANN deals with
the study and construction of systems able to
learn from the data. ANN algorithms infer
unknowns from known data a characteristic that
might describe acoustic events where there is
an acoustic event of interest that need to be
differentiated from a mix of sounds. [7, 29, 36].

There are other techniques that can be used to
identify acoustic events such as audio signatures
recognition. In these technique the challenge is
to find the acoustic events that sound similar to
the audio that the system captures. The similarity
rate is evaluated using a distance function. Audio
signatures use two fundamental processes to be
determined, a feature extraction process and a
modeling process. The latter refers to the minimal
compacted representation that can be achieved to
describe a signal, but which robustness preserve
the model against typical audio degradation [40].
Audio signatures thus work very well on AERS,
but the problem is complicated when it is required
to identify an acoustic event present in a mixture
of sounds. This problem usually leads to
apply source separation techniques and machine
learning algorithms to treat with the complexity of
the signals.

In this work we considered the signals un-
processed. Also, we use no source separation
technique because our intention is to evaluate the
robustness to retain the characteristic information
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of an acoustic event against the background
noise using two audio features, MFCC that
is the state–of–the–art benchmark and the
multiband spectral entropy signature (MSES), a
technique that has been successfully used in
audio fingerprinting, speech recognition and others
applications of audio [6, 9, 10, 11, 12, 30].

In addition, MSES feature has never been
studied to recognize acoustic events exclusively for
indoor domestic environments. For the previously
mentioned, the audio signature approach is used,
namely, it is assumed that only there is one
instance per acoustic event (for the traditional
audio signature approach, only there is one version
of the songs) for the types of sound classes to be
considered and versions contaminated with noise
of that instance (it is similar to distort each song
with different types of degradations). Therefore,
the aim is not to classify different instances of
acoustic events into classes, but to evaluate
robustness of MFCC versus MSES using a low
level of SNR (Signal to Noise Ratio) in the mix of
acoustic events.

The machine learning techniques utilized in this
paper were selected according to the results in
recognition and classification issues of related
literature, besides the configuration of them are
performed follow the experimental ideas in that
literature and in some cases with optimization
algorithms [7, 14, 21, 26].

Regarding classification, an optimization with
genetic algorithm and particle swarm optimization
were developed in order to improve the perfor-
mance of the best combination achieved between
audio features and the studied classifiers.

The built database is an additional contribution
since there is no database in the reviewed works
similar to the one that we propose in this paper.
It has the particularity of being complex in its
construction by mixing sounds at a low level of
SNR. Forward, we describe in detail this database
and we encourage to the readers to use it in their
future works. In our case, it will be part of our
tested towards exploring recognition of activity for
elders living alone, for instance, to identify acoustic
of events that might indicate whether the elder is
using the blender or for identifying sounds of risk in
a home environment.

2 Theoretical Background

The characterization of audio signals is related to
the process of extracting the characteristics that
abstractly describe a signal and reflect their most
relevant aspects of perception. To extract the
characteristics of an audio signal, it is common
to segment the signal in short frames, possibly
overlapping it sufficiently close to each other, in
such a way that multiple events distinguishable or
perceptual are not covered in a single frame [3].
This process of splitting the signal into frames
is a characteristic part for computing MFCC and
MSES. The next subsections describe the process
for determining both audio features, as well as
the different classification techniques used in the
experiments that support our results.

2.1 Mel Frequency Cepstral Coefficients

MFCC are short-term spectral-based features and
its success have been due to their ability to
represent the amplitude spectrum in a compact
form. MFCC is based on the non-linear frequency
scale of human auditory perception which use
two types of filters, linearly spaced filters and
logarithmically spaced filters. The signal is
expressed in Mel’s frequency scale to capture the
most important characteristics of an audio [46].

For computing MFCC, the audio signal is divided
into short time frames for extracting from each one
a feature vector with L coefficients. We compute
the Short Time Fourier Transform for each frame,
which it is given by (1), for k = 0, 1, ...,N−1, where
k correspond to the frequency f(k) = kfs/N , and
fs is the sampling frequency in Hertz. Here, x(n)
denotes a frame of length N and w(n) is the Hann
window function which it is given by w(n) = 0.5 +
0.5cos(2πn/N):

X(k) =

N−1∑
n=0

x(n)w(n)e−i2πkn/N . (1)

The process continues scaling the magnitude
spectrum |X(k)| in both frequency and magnitude.
First, the frequency is scaled using the so-called
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Mel filter Bank H(k,m) and then the logarithm is
taken using (2):

X
′
(m) = ln

(
N−1∑
k=0

|X(k)|H(k,m)

)
, (2)

for m = 1, 2, ...,M , where M is the number of
filters and M � N . The Mel filter bank, H(k,m),
is a set of triangular filters, where the frequencies
in Mel scale of the filter bank are computed with
φ = 2595log10(f/700 + 1), which is a common
approximation. MFCC are obtained decorrelating
the spectrum X

′
(m) by computing the Discrete

Cosine Transform using (3):

c(l) =

M∑
m=1

X
′
(m)cos

[
l
π

M

(
m− 1

2

)]
, (3)

for l = 1, 2, ...,L, where c(l) is the lth MFCC.
With this procedure, a vector with L coefficients is
extracted from each frame.

In this work, we will focus on the ISP
implementation for computing MFCC [46], this
implementation considers a filter bankH(k,m) with
logarithmic spacing and constant amplitude, where
the number of filters is a custom parameter.

2.2 Shannon’s Entropy and Spectral Entropy

When the audio signals are severely degraded,
the features that describe it usually disappear,
therefore, the problem becomes finding the
features that would still be present in the signal
despite the level of degradation to which it was
subjected. Authors focused on this problem have
explored entropy to characterize audio signals
as robustly as possible to different types of
degradations. In this address, we will start
by discussing about the Shannon’s entropy and
spectral entropy concept.

In information theory, Shannon’s entropy is
related to the uncertainty of a source of
information [43]. For example, entropy is used
to measure the predictability of a random signal
and the “peakiness” of a probability distribution
function. In research, it is common to use
(4) to measure, through entropy, the amount of
information the signal carries. Here, pi is the

probability for any sample of the signal to have
value i being n the number of possible values the
samples may adopt:

H = −
n∑
i=1

piln(pi). (4)

Some estimate of the Probability Distribution
Function (PDF) is needed to determine the
entropy of a signal, therefore, it can be used
both parametric and non-parametric methods, and
histograms. If histograms are chosen, we have to
be careful that the amount of data involved is high
enough to avoid peaks in the histogram.

When talking about spectral entropy it is
necessary to review Shen’s work [44], since that
concept was introduced for the first time as an
additional feature for endpoint detection (voice
activity detection). The idea of spectral entropy
compromises to consider the spectrum of a signal
as a PDF to capture the peaks of the spectrum and
their location. In order to convert the spectrum into
a PDF, the individual frequency components of the
spectrum are separated and divided by sum of all
the components, namely, pk = X(k)/

∑N
i=1X(i),

for k = 1, 2, ...,N , where X(k) is the energy of
kth frequency component of the spectrum, p =
(p1, ..., pN ) is the PDF of the spectrum and N is
the total number of frequency components in the
spectrum. This ensures the PDF area is one and
can be used for computing entropy.

The concept of multiband spectral entropy was
introduced by [32], and it consists of dividing the
spectrum into equal-sized sub-bands to compute
entropy on each one of them by using (4), where
each sub-band spectrum should be assumed a
PDF. Additionally, [33] proved that the multiband
spectral entropy works very well with additive
wide-band noise and at low levels of SNR.

2.3 Multiband Spectral Entropy Signature

Based on the idea presented by Misra et al. [32,
33], spectral entropy concept can be used for
getting a robust signature that can be useful in
different audio recognition issues [6, 9, 10, 11, 12,
30]. Unlike Misra et al., this work compute entropy
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at each sub-band by using the entropy of a random
process [9].

Let x = [x1,x2, ...,xn]
T be a vector of n

real-valued random variables, then, x is said to
be a Gaussian random vector where the random
variables xi are said to be jointly Gaussian if the
joint probability density function of the n random
variables xi is given by p(x) = N (mx,Σx), where
mx = [m1,m2, ...,mn]

T is a vector containing the
means of xi, this is, mi = E[xi]. Σx is a symmetric
positive definite matrix with elements σij that are
the covariances between xi and xj , this is, σij =
E[(xi −mi)(xj −mj)].

Taking some precautions, the entropy of a
Gaussian random vector can be determined using
the continuous version of the Shannon’s entropy,
which is given by (5):

H(x) = −
∫ +∞

−∞
p(x)ln[p(x)]dx. (5)

If it is assumed that the random vector follows
a Gaussian distribution with a mean of zero and
the covariance matrix given by N(0,Σx), then
replacing p(x) into (5), we get the equation for
determining the entropy of a vector on a random
process [34], equation (6), where |Σx| is the
determinant of the covariance matrix:

H(x) =
n

2
ln(2πe) +

1

2
ln(|Σx|). (6)

In order to compute MSES, the audio signal
should be divided into frames, and for each of
these to extract a vector with L coefficients of
entropy. Next, the Short Time Fourier Transform
is computed on each frame by using (1). For the
division of the full-band spectrum into sub-bands,
we take into account the idea about how people
identify sounds. The human ear perceives better
lower frequencies than higher ones, but not all
frequencies can be heard with the same sensitivity.
This process can be modeled in the whole
bandwidth of the response of the ear using the
Bark scale, which it is divided in 25 critical bands
[49, 47]. Table 1 shows the first 24 critical bands
with their respective bandwidths.

Table 1. Critical bands for the Bark scale

Critical Lower Central Higher Bandwidth
Band cut-off Frequency cut-off (Hz)

(Hz) (Hz) (Hz)
1 0 50 100 100
2 100 150 200 100
3 200 250 300 100
4 300 350 400 100
5 400 450 510 110
6 510 570 630 120
7 630 700 770 140
8 770 840 920 150
9 920 1000 1080 160
10 1080 1170 1270 190
11 1270 1370 1480 210
12 1480 1600 1720 240
13 1720 1850 2000 280
14 2000 2150 2320 320
15 2320 2500 2700 380
16 2700 2900 3150 450
17 3150 3400 3700 550
18 3700 4000 4400 700
19 4400 4800 5300 900
20 5300 5800 6400 1100
21 6400 7000 7700 1300
22 7700 8500 9500 1800
23 9500 10500 12000 2500
24 12000 13500 15500 3500

We use (7) to change Hertz to Barks, where f is
the frequency in Hertz:

Barks = 13tan−1
(
0.75f

1000

)
+3.5tan−1

[(
f

7500

)2
]
.

(7)
The process continues computing entropy for

each one of the critical bands using (6). It
was considered for each sub-band that spectral
coefficients are distributed normally. This
consideration is due to that a good estimate
of the PDF cannot be determined by using
non-parametric methods, since the lowest bands
of the spectrum have too few coefficients. For
computing entropy, a random process with two
random variables was considered. Real and
imaginary parts of the spectral coefficients are
assumed to be random variables with a normal
distribution and zero mean, hence, for the
two-dimensional case the entropy is determined by
H = ln(2πe) + (1/2)ln(σxxσyy − σ2

xy), where σxx
and σyy are the variances of the real and imaginary
parts, respectively, and σxy is the covariance
between the real and imaginary parts. The result of
this process is a L×T matrix (named as signature),
where L is the number of coefficients of entropy
and T denotes the number of frames.
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Fig. 1. Illustration of MSES signature with its
corresponding signal and spectrogram. This signature
corresponds to three seconds of audio from the acoustic
event called ”Bread being sliced”

This signature captures the level of information
content for every critical band and frame position
in time.

Figures 1 and 2 show the signatures of two
acoustic events that are obtained with the MSES
method. The signals in time domain of the acoustic
events ”Bread being sliced” (Fig.1) and ”Microwave
On-Off” (Fig.2) are showed in the upper panels,
whereas the spectrograms of both signals appears
in the middle panels. The bottom of each one of the
Figures displays the signatures for both acoustic
events using MSES method.

2.4 Similarity Distance Functions

A measure of similarity indicates the strength of the
relationship between two data points. The more the
two data points resemble one another, the larger
the similarity measure is. Let x = (x1,x2, ...,xd)

Fig. 2. Illustration of MSES signature with its
corresponding signal and spectrogram. This signature
corresponds to three seconds of audio from the acoustic
event called ”Microwave On-Off”

and y = (y1, y2, ..., yd) be two d-dimensional data
points. Then the similarity between x and y will be
some function of their attribute values, as shown
in (8):

s(x,y) = s(x1,x2, ...,xd, y1, y2, ..., yd). (8)

A similarity distance function refers to a function
s(x, y) measured on any two arbitrary data
points in a data set that satisfies the following
properties [17]:

1. 0 ≤ s(x,y) ≤ 1,

2. s(x,x) = 1,

3. s(x,y) = s(y,x).

The idea of similarity is more consistent if one
considers the function of Hamming distance, since
it determines the distance between two arbitrary
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data points as the number of symbols or bits in
which they differ. Another distance that is adopted
to measure the similarity between two data points
is the Cosine distance [17]. Cosine distance
measures the similarity between two vectors in a
space that has an internal product with which the
value of the cosine of the angle between them
is evaluated.

2.5 Artificial Neural Networks

The Artificial Neural Network (ANN) is a math-
ematical model that simulate the behavior of a
biological neuron of humans. The ANN emulate
the process of learning of the humans based at
the equation (9). The approach for succeeding
learning depends of the inputs xi which they are
multiplied with weights wi, later, a transfer function
f(∗) is applied for obtain the final result y for
the ANN:

y = f

(
n∑
i=1

xiwi

)
. (9)

The transfer function used in a neural network
can be the sigmoidal function, linear function and
hyperbolic tangent sigmoid function. For training
the neural network is utilized the back-propagation
method for update the weights in each epoch.
The algorithm for learning can be the descendent
gradient with the variants of learning rate,
momentum and the use of both, also the
scaled conjugate gradient and the variants of
Fletcher-Reeves, Polak-Ribiére and Powell-Beale
for the conjugate gradient.

2.6 Support Vector Machine

The Support Vector Machine (SVM) model is a
supervised algorithm that creates a hyperplane
which separates data into classes. The objective
is to find an optimal plane that maximizes the
distance between the separating hyperplane and
the closed points (defined as support vectors)
of the training data set. If the data is
non-linear separable, there is a modified version
of SVM which projects the original data to a
high-dimensional space by the implementations
of kernel functions. In the literature, there have
been proposed different kernels such as linear,

Gaussian and polynomial. In the case of a
multi-class scenario, the SVM model assigns the
label of +1 to one of them and -1 to all the
remaining classes. This results in K binary SVM
models, hence a model for each k class. This
strategy is known the multi-class approach one
versus all, and based on the principle of the
“winner-takes-all”.

3 Database

The kitchen is one of the home’s spaces where
different sound sources can occur at the same
time specially when cooking. For this work we
are interested in a kitchen environment where
three different sound sources are occurring at the
same moment. We believe that by mixing three
sounds it can achieve a kitchen environment more
realistic. Sounds mixing process considers as
background disturbance (the noise) two of the
three sounds sources, and the remain sound is
the acoustic event (the signal) to be recognized.
Additionally, we add an extra component to the
sounds mixing process, which it consists of making
the identification of the signal into the noise more
perceptually difficult. The previous can be carried
out using 3dB (decibels) of SNR.

In the literature, it is common to find databases
containing different kinds of acoustic events,
however, it is difficult to find a database with a
mixture of kitchen sounds. Due to the above,
our work consisted in building a database using
the scheme presented in Beltrán-Márquez et al
[5]. Sixteen archives of audio were collected
where each one is a class of kitchen sound.
The portals where these sounds were downloaded
are, www.soundsnap.com, www.freesfx.co.uk and
www.sounddogs.com. The audio files are WAV
format, with a 44100Hz of sampling frequency and
coded to 16 bits. No copyright infringement was
intended. The downloaded sounds are presented
in Table 2.

The audio signatures approach suggests the
use of signatures between one to fifteen seconds.
All downloaded audio files have a length of
three seconds (we consider that three seconds
of audio is enough to identify a sound from the
environment). As indicated above, the database
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consists of sixteen original sounds for mixing.
First, mixing process consists of forming a dataset
with the mixture of all the combinations of pairs
of sounds. Second, all the elements from the
dataset are combined with each one of the sixteen
original sounds for getting mixtures with three
sounds. Repetitions of sounds in a single mixture
are avoided. All mixtures are obtained using
3dB of SNR, for this, the sixteen original sounds
are considered the “signal” (the acoustic events
to identify) and the elements of the dataset as
the “noise”. Figure 3 shows a illustration of the
mixing process of sounds. The equation SNR =
10×log10(Psignal/Pnoise) is used to determine SNR
between signal and noise, where Psignal is the
power of the signal and Pnoise is the power of the
noise. Finally, the database has 1680 audio files,
all of them grouped into 16 classes, where each
class has 105 audio files.

In the experiments, we used classifiers such as
Similarity Distance, k- Nearest Neighbors (KNN),
SVM and ANN. For the experiments with KNN,
ANN and SVM, we generated a training dataset to
train the models of classification (this is because
the elements of the database will be used as
test elements to assess the classification models).
This training dataset is built by using the original
signal of each one of the sixteen kitchen sounds
and two degraded versions of each one of them
(this procedure guarantees having more data for
training since there are not more instances for
each class of sound). Degradation consists of
distorting the signal by adding white Gaussian
noise. We use awgn(signal,SNR) MATLABr

function for this matter, where signal is the original
kitchen sound and SNR take the value of 35dB
and 50dB respectively for each degraded version.
The total number of audios in the training dataset
is of 48. Original and mixtures of audios are
available in https://drive.google.com/open?

id=1ALkT-nVt3HMFK66CjcWrC3dHrNhiyZuk

4 Experiments

In this work, we use measures of similarity as
baseline experiment to have a starting point or a
first measurement in relation to the performance
indicators of the considered classifiers. Certainly,

Fig. 3. Illustration of the mixing process of sounds
considering the acoustic event named ”Bread being
sliced” as the signal and the couple of sounds ”Pouring
Soda - Chicken Frying” as the noise. First three panels
show the signals in time domain and the last panels show
the MSES signatures associated to every signal

the search by similarity identifies which candidate
identities are more similar to one or more input
entities for coincidence. In the next section,
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Fig. 4. Flow chart of the activities of the proposed
approach

we describe how compute this entities from an
approach of audio signatures.

On the other hand, as previously stated, the
ANN and SVM algorithms have already been used
in acoustic event classification tasks [7, 14, 24,
29, 51, 36]. Therefore, we consider it appropriate
to include these models in our experiments by
using the Bayesian optimization strategy for SVM
and different architectures for ANN to identify their
best parameters. Also, as a baseline model, the
KNN algorithm was included in our study because
of its easy implementation, and for this particular
case, to test different distance metrics and number
of neighbors.

To understand the process to be followed in our
experiments, Figure 4 shows the block diagram of
the sequential activities carried out in this section.

4.1 MFCC and MSES Signatures

To extract both MFCC and MSES signatures, the
next procedure was implemented. a) First, stereo
signals are changed to monoaural by averaging
both channels, and each audio is cut to three
seconds of length. b) Frames of 30ms are used
to divide the monoaural signal (i.e. we use 1323
samples per frame using a sampling frequency of
44100Hz). c) Consecutive frames have an overlap
of 50%, hence, there are 200 frames (T = 200) for
three seconds of audio. d) A Hann window function
is applied to each frame. e) The FFT is computed
for each frame.

With the FFTs we are ready to compute Mel
Frequency Cepstral Coeffcients (section 2.1), and
the Multiband Spectral Entropy Signature (section
2.3). An additional point is that MSES signatures
are extracted considering a bandwidth of 0Hz
up to 8000Hz, hence, only 21 critical bands are

used. The above entails each feature vector be
21-dimensional (L = 21). To have similar conditions
between MSES and MFCC features, we compute
MFCC using 21 triangular band-pass filters within
the bandwidth mentioned before. Besides, MFCC
vectors are also 21-dimensional.

4.2 Baseline Experiment with Similarity
Distances

Baseline experiment consists of using similarity
distances for recognition of acoustic events from
the database of the kitchen sounds. Baseline
experiment considers two different signatures,
one uses normalized values and the other
binary values. To normalize the signatures, we
normalized the L×T matrix by computing the mean
and standard deviation of all data of the matrix.

Haitsma’s work presents a method to binarize
audio signatures. This method consists of taking
the sign of the differences between consecutive
values [22]. For the baseline experiment the sign
of the differences is encoded using sij = 1, if
vij − vij−1 ≥ 0 and sij = 0 by other way, where sij
denotes the i, jth binary value, vij denotes the ith
value referred to the frame j, and vij−1 denotes the
ith value referred to the frame j−1 of the signature,
for i = 1, 2, ...,L and j = 1, 2, ...,T .

4.3 Experiment with Artificial Neural Networks

This experiment consists of training neural
networks to classify the acoustic events that are
considered the signal (not the noise) in the audios
of the database. Two neural networks were
considered, one trained with MFCC signatures
and the other trained with MSES signatures. To
train the neural networks, we used the normalized
signatures that are extracted from each audio
of the training dataset. Therefore, we have 48
signatures for training the neural network for MFCC
and other 48 signatures for training the neural
network for MSES.

For both MFCC and MSES, the neural networks
consist of 2 hidden layers and 16 neurons in the
output layer; the input layer has 4200 neurons (i.e.,
each signature of size 21 × 200 is converted to
vector). The design of each ANN was proposed
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according to the works cited in [18, 31] for the
selection of the different elements of the learning
algorithms. We tested three designs of neural
networks with the following architectures: In the
first design, the descendent gradient with adaptive
learning rate back-propagation is implemented with
95 neurons in the first hidden layer and 28 neurons
in the second hidden layer. For the second
design, the descendent gradient with momentum
and adaptive learning rate back-propagation is
utilized with 150 neurons in the first hidden layer
and 35 neurons in the second hidden layer.

In the third design, the scaled conjugate gradient
back-propagation is applied with 79 neurons in the
first hidden layer and 22 neurons in the second
hidden layer. To set the number of neurons,
a search was made for the best performance
of the neural network in the learning stage by
increasing one neuron from 10 up to 200 in
the hidden layers. Finally, for each ANN, the
first and second hidden layers, the hyperbolic
tangent sigmoid transfer function is applied and for
the output layer, the logarithmic-sigmoid transfer
function is implemented.

The classification process consisted of assess-
ing the neural networks using the normalized
signature of the mixture of kitchen sounds of the
database. If a neural network correctly classifies
a given acoustic event in the entire database,
then there will be 105 true positives for that
class. The performance goal and numbers of
epochs for all the neural networks are 1e-06 and
8000, respectively.

4.4 Experiment with Support Vector Machines

The same training dataset used for the ANN
is used for the experiments with SVM. In our
implementation, the fitcsvm() MATLABr built-in
function has been used to train the SVM classifiers.
There were trained 16 binary SVM models, one
for each kitchen sound class. Gaussian, linear
and polynomial kernels were compared in order to
select the most appropriate for each model. The
Bayesian optimization strategy was implemented
in order to select optimal hyper-parameters by the
evaluation of 30 models for each binary classifier.
The best results were achieved with Gaussian

kernels and the Sequential Minimal Optimization
solver. Once the parameters of the 16 SVM models
were defined, each mixture of sounds is classified
with the model that achieved the highest score.

4.5 Experiment with K-Nearest Neighbors

Similar than the models based on SVM, the
optimizer hyper-parameter function of MATLABr,
fitcknn(), was implemented to perform a Bayesian
optimization strategy. In this implementation,
different distance metrics, such as Euclidean, City-
block, Cosine, Minkowski, Correlation, Spearman,
Hamming, Mahalanobis, Jaccard, and Chebychev,
were evaluated. Also, different number of
neighbors were implemented within each search.
In total, there were compared the performance of
30 different models.

5 Results and Discussion

In this section, we compare results about the
performance of MSES and MFCC using four types
of classifiers: similarity distances, KNN, ANN and
SVM. Results are showed using True Positives
(TP) and False Positives (FP) from the confusion
matrices, the best experimental outcomes and
the averages achieved with each classifier are
summarized in Table 7.

5.1 Similarity Distance Results

Table 2 shows the results for each signature
using Hamming distance and Cosine distance,
here the recall metric is used for results
comparison. Although it is common to use
binary signatures in an audio signature-based
approach, the results of Table 2 suggests that
binary signatures are not convenient to represent
acoustic events, especially, when they have
non-stationary characteristics.

The difference in recall between both features
is about the 3.46%, therefore, no advantage can
be seen by using MFCC or MSES features. An
audio signature using normalized values seens
to work better, allowing to differentiate more the
performance of both feature extraction methods,
especially, when working with low levels of SNR.
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Table 2. Results about Recall

Soundsa Hamming Distance Cosine Distance
MFCC MSES MFCC MSES

C1 43.80 51.42 49.52 95.23
C2 0 0 0.95 6.66
C3 100 100 90.47 94.28
C4 100 100 84.76 100
C5 99.04 100 80 80.95
C6 100 98.09 100 51.42
C7 41.90 40 44.76 97.14
C8 65.71 62.85 42.85 100
C9 27.61 40 36.19 45.71
C10 57.14 79.04 69.52 78.09
C11 14.28 38.09 28.57 17.14
C12 43.80 35.23 61.90 87.61
C13 100 100 94.28 96.19
C14 53.33 70.47 63.80 97.14
C15 98.09 84.76 85.71 100
C16 100 100 81.90 100
Average 65.29 68.75 63.45 77.97
aThe different acoustic events are: (C1) Bread being sliced, (C2)
Chop food quickly and strongly, (C3) Pouring soda into a glass,
(C4) Electric blender liquefying food, (C5) Frying chicken in a pan,
(C6) Hot oil in a pan, (C7) Burner of a stove, (C8) Making popcorn
in a microwave, (C9) Cooking fryer, (C10) Peeling potatoes,
(C11) Making popcorn in a pot, (C12) Turning a microwave on
and off, (C13) Pouring water into a glass, (C14) Slicing onions,
(C15) Boiling teapot, and (C16) Boiling eggs.

Hamming distance results, Table 2, shows that
C2 was the worst classified class because it has
zero in recall score, while, C3, C4, C13 and C16
are the classes of sounds with the higher recall in
both features, 100% in all of them. The average
recall for MFCC features is 65.29% and 68.75% for
using MSES features.

The results with Cosine distance using MSES
feature, shows that C4, C8, C15 and C16 are
the classes of sounds getting the higher recall
score, whereas C2 was the worst classified class
for both features.

In this case, the average recall obtained for
MFCC features is 63.45% and 77.97% for MSES
features (i.e., the difference of recall between both
features is about the 14.52%).

The results of this experiment mark the
baseline and the starting point to evaluate the
contribution of machine learning methods. An
image-based representation of the results with
similarity distances, KNN, SVM and ANN methods

Fig. 5. Confusion matrices obtained from similarity
distances, KNN, SVM and ANN methods.

for both MFCC and MSES methods is showed in
Figure 5 using confusion matrices.

5.2 Artificial Neural Network Results

Table 3 shows the results obtained with the neural
network architectures using back-propagation with
gradient descendent and adaptive learning rate
(NNGDA), gradient descendent with momentum
and adaptive learning rate (NNGDX) and scaled
conjugate gradient (NNSCG). The best recall
achieved for MFCC features is of 75% and for
MSES features is 90.95%, both with NNGDX.
The average is obtained for 30 experiments, but
only 10 experiments are presented in Table 3.
The best average recall score was 73.42% and
88% for MFCC and MSES respectively, both from
NNGDX method.

Table 4 shows the results about True Positives
(TP) and False Positives (FP) from the confusion
matrix obtained for the best performance with
artificial neural networks using MFCC and MSES,
respectively. For MFCC, C5 and C6 are the classes
that obtained the higher scores, 1 and 2 errors
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Table 3. Results for artificial neural networks using recall
metric

Experiment NNGDA NNGDX NNSCG
MFCC MSES MFCC MSES MFCC MSES

1 73.21 88.1 75 90.95 73.69 89.05
2 73.15 87.92 74.88 90.24 73.51 88.99
3 73.04 87.8 74.52 86.76 73.27 88.33
4 73.04 87.8 74.17 89.23 73.15 88.21
5 72.98 87.8 74.11 89.17 73.15 88.21
6 72.92 87.68 73.87 89.17 73.1 88.1
7 72.92 87.5 73.81 89.11 72.98 87.74
8 72.86 87.5 73.81 89.05 72.92 87.74
9 72.8 87.5 73.75 88.75 72.92 87.62
10 72.8 87.44 73.75 88.69 72.86 87.62
Best Result 73.21 88.1 75.00 90.95 73.69 89.05
Average 72.62 86.94 73.42 88.00 72.59 87.23

Table 4. Results about True Positives (TP) and False
Positives (FP) with artificial neural networks

Sounds MFCC MSES
TP FP TP FP

C1 91 32 98 5
C2 37 5 105 18
C3 97 3 104 0
C4 56 5 105 17
C5 104 176 105 1
C6 103 41 81 1
C7 72 19 63 0
C8 88 18 104 14
C9 38 0 77 1
C10 89 15 90 0
C11 46 4 75 1
C12 89 9 101 0
C13 96 26 105 9
C14 75 16 105 48
C15 90 37 105 31
C16 89 14 105 6

respectively. At least 14 samples of each class
of kitchen sounds (except by C6) are classified
erroneously as C5.

For MSES, C7 is the class with more errors,
42 in total, followed by C11 (30 errors) and C9
(28 errors). Unlike the experiment with similarity
distances, here the sound class C2 is 100%
classified. The others classes with higher scores
are C3, C4, C5, C8, C13, C14, C15 and C16.
Indeed, experiments with ANN show that there
is an increase in the recall with which kitchen
sounds are identified. Comparing the average
value achieved with distances of similarity and
neural networks, there is an increase of recall of
8.13% for MFCC and 10.03% for MSES.

5.3 Support Vector Machine Results

Table 5 shows the results for TP and FP from the
confusion matrix obtained with the SVM classifier
using MFCC and MSES features, respectively.
The recall obtained by using the MFCC features
is 67.2%. C5 and C6 are the classes that
obtained the higher recall, zero and one errors
respectively. For MFCC, at least 14 samples of
each class of kitchen sounds (except by C5 and
C6) are classified erroneously as C5. All the sound
samples of C14 are miss classified (105 errors).
C7 and C2 obtained 77 and 73 errors, respectively.
For MSES, the recall achieved is 83.99%. C8 is
the class with more errors, 89 in total, followed by
C6 (61 errors) and C5 (46 errors). Comparing the
average value achieved with distances of similarity
and SVM, there is an increase of recall of 1.91%
for MFCC and 6.02% for MSES.

5.4 K-Nearest Neighbors Results

As previously mentioned, the fitcknn() MATLABr

function was used to compare the performance
of 30 different models. The one that obtained
the best performance with MFCC features was the
model that uses the Spearman distance function
with two neighbors. Table 6 shows the results
about TP and FP from the confusion matrix of this
implementation. The recall metric was 65.77%.
C3, C4, C5, C6 and C13 obtained the best results.
Contrary, only one sample of C2 was correctly
classified. The results obtained with MSES feature
(Table 6) showed that the best KNN model uses
the correlation distance function and one neighbor.
The recall metric obtained was 87.38%. C8, C13,
C14 and C16 obtained zero errors in classification.
Four classes obtained between 1, 2 or 3 errors.
The more difficult class to identify was C6 with 88
errors in total.

Comparing the average value achieved with
distances of similarity and KNN, there is an
increase of recall of 0.48% for MFCC and 9.41%
for MSES.

Table 7 shows the summary of the obtained
results for both MFCC and MSES features and all
classifiers: Similarity distances, ANN, SVM and
KNN. We can observe first that all the classifiers
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Table 5. Results about True Positives (TP) and False
Positives (FP) with support vector machine

Sounds MFCC MSES
TP FP TP FP

C1 68 24 103 26
C2 32 13 88 12
C3 93 3 104 0
C4 81 63 97 10
C5 105 191 59 0
C6 104 3 44 2
C7 28 10 90 40
C8 83 29 16 0
C9 43 4 89 9
C10 88 9 105 9
C11 40 3 93 27
C12 88 31 105 7
C13 94 72 105 31
C14 0 0 105 71
C15 91 72 103 9
C16 91 24 105 16

Table 6. Results considering True Positives (TP) and
False Positives (FP) for k-nearest neighbors

Sounds MFCC MSES
TP FP TP FP

C1 58 11 104 18
C2 1 0 90 12
C3 104 1 103 0
C4 105 113 103 25
C5 104 134 73 1
C6 105 37 17 0
C7 60 57 100 29
C8 45 17 105 34
C9 39 3 85 3
C10 72 21 95 0
C11 19 6 72 5
C12 50 2 102 4
C13 105 77 105 11
C14 54 9 105 22
C15 94 70 104 29
C16 90 17 105 19

have an improvement in the recall metric when
working with MSES feature.

Second, the ANN classifier has the high-
est performance for both MFCC and MSES
(73.42% and 88%, respectively), followed by
a combination MSES-KNN (87.38%), then a

Table 7. Best results for the classification of kitchen
sounds

Method Feature
MFCC (%) MSES (%)

Similarity Distance 65.29 77.97
ANN 73.42 88.00
SVM 67.20 83.99
KNN 65.77 87.38

combination MSES-SVM (83.99%), and finally,
similarity distances-MSES with a score of 77.97%.
Regarding MFCC, the second best performance
was achieved with SVM (i.e., 67.2%).

Third and fourth best performance were
achieved with KNN and similarity distances
(65.77% and 65.29%, respectively). We attribute
the good performance of ANN to the fact this
machine learning technique works with variations
that allow their learning to be more robust and
effective than the other methods.

5.5 Test of Statistical Significance

To further analyze the differences between MFCC
and MSES methods, we applied a non-parametric
Mann-Whitney’s test with a significance level of α =
0.05. For this test, two population samples were
related which belong to the recall metric scores
of the 30 models evaluated using ANN, SVM and
KNN for both MFCC and MSES features. The
results show a value p = 0.0003, which makes us
reject the null hypothesis and conclude that the
medians of both methods are different and that
they do not depend on the type of classifier or the
sounds to be recognized.

5.6 Optimization of ANN with GA and PSO

Previous results showed that the combination
MSES-ANN (audio features-classifier) achieved
the best score for all the combinations. In
this part, we realized an optimization looking
for the best artificial neural network with MSES.
This optimization is performed using the genetic
algorithm (GA) and particle swarm optimization
(PSO). The use of the GA and PSO optimization
algorithms are decided in consideration because
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these algorithms performed good results in
optimization of parameters for machine learning
algorithms [19, 20].

The optimization looks up for the following ANN’s
values and parameters:

1. Number of neurons in the first hidden layer.

2. Number of neurons in the second hidden layer.

3. The transfer functions for the neurons in the
first and second hidden layer, and for the
neurons in the output layer. The transfer
functions for optimizing are the next:

— Positive linear transfer function.

— Linear transfer function.

— Inverse transfer function.

— Log-sigmoid transfer function.

— Hyperbolic tangent sigmoid transfer func-
tion.

— Triangular basis transfer function.

— Hard-limit transfer function.

— Saturating linear transfer function.

— Elliot symmetric sigmoid transfer func-
tion.

— Symmetric saturating linear transfer func-
tion.

— Symmetric hard-limit transfer function.

— Elliot 2 symmetric sigmoid transfer func-
tion.

4. The learning algorithms implemented in the
neural network:

— Levenberg-Marquardt backpropagation.

— One-step secant backpropagation.

— Gradient descent with adaptive learning
rate backpropagation.

— Gradient descent with momentum and
adaptive learning rate backpropagation.

— Scaled conjugate gradient backpropaga-
tion.

— Resilient backpropagation.

— Gradient descent backpropagation.

Table 8. Parameters for GA

Population 100 Individuals
Individual 6 Genes (real)
Generations 100
Assign Fitness Ranking
Selection Stochastic universal sampling
Mutation 16.67 %
Crossover Single Point (80%)

Table 9. Parameters for PSO

Population 100 Particles
Particle 6 Dimensions (real)
Iterations 100
Constriction Coefficient 1
Inertia Weight 0.1
R1, R2 Random in the range [0,1]
C1 Lineal decrement (2–0.5)
C2 Lineal increment (0.5–2)

— Gradient descent with momentum back-
propagation.

— Conjugate gradient backpropagation with
Fletcher-Reeves updates.

— Conjugate gradient backpropagation with
Polak-Ribiére updates.

— Conjugate gradient backpropagation with
Powell-Beale restarts.

In Table 8, the parameters for the performance of
GA are showed and Table 9 shows the parameters
for the performance of PSO.

Table 10 shows the results for acoustic event
recognition for 10 experiments that combine
MSES-ANN with both optimization techniques GA
and PSO. The average in recall metric was 91.46%
and 91.55% for GA and PSO, respectively,

The best recall for the optimization of the neural
network was obtained with PSO achieving a 93.93
% of recognition for the kitchen sounds. The
parameters of the best ANN architecture with PSO
are:

— 1st Hidden layer (1HL) with 186 neurons.

— 2nd Hidden layer (2HL) with 238 neurons.

— The transfer function in 1HL was saturating
linear transfer function.
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Table 10. Results about optimization of ANN-MSES with
GA and PSO

Experiment Algorithm
GA PSO

1 92.20 90.89
2 91.31 89.35
3 91.67 91.85
4 91.01 93.21
5 91.67 91.90
6 91.31 91.37
7 91.19 91.13
8 91.13 90.71
9 91.19 91.13
10 91.90 93.93
Best result 92.20 93.93
Average 91.46 91.55

Table 11. Results with the best ANN architecture

Experiment Recall
1 94.52
2 93.51
3 94.11
4 94.70
5 93.21
6 93.39
7 93.15
8 93.81
9 93.04
10 93.10
Best result 94.70
Average 93.46

— The transfer function in 2HL was symmetric
saturating linear transfer function.

— The transfer function in output Layer was
symmetric saturating linear transfer function.

— The training learning algorithm was conju-
gate gradient backpropagation with Fletcher-
Reeves updates.

Finally, 30 experiments were realized using ANN
with the above configuration parameters with the
aim of testing the optimization robustness. Table
11, presents only the best 10 results where one
can observe that the average recall achieved
for the optimized combination MSES-ANN was
93.46%, that is, 15.49% of improvement when

compared with the average value achieved with
distances of similarity and optimized ANN-MSES.

Table 12 shows the results about True Positives
(TP) and False Positives (FP) from the confusion
matrix obtained for the best performance with
the couple MSES-ANN and optimized with PSO.
The results of the table showed that, excepting
the C7 sound, all classes have a success ratio
between 90% and 100% for the recognition of
acoustic events that define each class. The
optimization of the neural network helps to
improve the recognition rate and to reduce the
number of miss classified sounds (False Positives).
An image-based representation of the confusion
matrix of this experiment is showed in Figure 6.
Notice that the color of the diagonal indicates that
there is a high recognition rate for each of the
classes.

6 Conclusions

In this work, we identify acoustic events using
the approach of audio signatures in combination
with machine learning algorithms. When different
instances of a sound class are not available, the
audio signatures approach should be used since
this approach only requires the original sound and
degraded versions of it.

Audio signatures help us to cope with the small
database of the kitchen sound sources, which
in our case consisted of sixteen original sounds
and some degraded versions of these. In order
to complement the audio signatures approach,
we studied the performance of machine learning
algorithms when there is only an instance of the
sound classes and degraded versions of them.

The two audio features considered in this
work are MFCC and MSES. MFCC is one
most cited audio feature when working with
audio-based activity recognition, and the reason to
be considered as our benchmark feature. MSES is
an interesting audio feature being widely adopted
because of its robustness to noise.

The results showed that the representation of
acoustic events based on MSES is more con-
venient when working with different classification
methods. Although the comparison between
MSES and MFCC is not conclusive, it seems that
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Table 12. Results about True Positives (TP) and False
Positives (FP) with optimized ANN

Sounds MSES
TP FP

C1 96 1
C2 99 6
C3 104 0
C4 103 14
C5 104 5
C6 100 1
C7 63 0
C8 104 3
C9 102 4
C10 95 0
C11 102 6
C12 103 2
C13 104 3
C14 104 16
C15 103 3
C16 105 26

Fig. 6. Confusion matrix obtained with the couple ANN-
MSES and optimized with PSO

MSES is an audio feature that is very robust for
identifying acoustic events in a mixture of sounds.

One thing to note is that MSES captures the
location of energy peaks in each sub-band that
are less corrupted by noise, even in the presence
of low SNR levels, something that affect the
performance of MFCC. Nevertheless, both MFCC
and MSES represent very well the non-stationary
characteristics of audio signals.

A database with a mixture of everyday kitchen
sounds was created using 3dB of SNR. The
way in which this database is constructed should

encourage readers to use it in future works since
this database considers noisy contexts, something
that to our understanding is not available in the
literature. Yet there are databases with sound
sources from different and independent tasks
but never mixed, such the one provided by the
DCASE2020 database.

The results presented here showed a way
for identifying acoustic events when they are
immersed in a mixture of sounds and they are not
predominant, which is important for recognizing
activities in real indoor environments. In the
classification stage, four types of classifiers were
used, Similarity Distances, k-Nearest Neighbors,
Support Vector Machines and Artificial Neural
Networks.

The results of Table 7 showed that MSES
combined with Artificial Neural Networks has an
score of 88% in recall metric which outperforms
any other combination of classifiers with MSES or
MFCC. In addition, a test of statistical significance
was realized, getting a value of p = 0.0003, which
makes us reject the null hypothesis and conclude
that MFCC and MSES features have different level
of robustness and that their performance do not
depend on the type of classifier nor on the sound
to be recognized.

Furthermore, the use of a genetic algorithm
and a particle swam optimization improved
the performance of audio features recognition
supported by machine learning classifiers, being
the combination MSES-ANN the one the best
performance (93.46%). Table 10 showed that PSO
performs better than GA achieving a average recall
of 91.55%.

Finally, the experiments presented in this work
focused on the evaluation MSES and MFCC audio
features techniques that are supported by machine
learning algorithms for the recognition of acoustic
events on noisy environments. We considered
the context of a kitchen context where different
sound sources are present, for instance, when
a person is preparing meals. In an attempt to
make a more realistic scenario sound sources
were mixed and applied a low SNR level. This is
an acoustic recognition approach that would help
better understand the nature of human activity in
the home setting.
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The identification of all the sounds that are
present in the environment might help to develop
systems that can assist people or that can be
aware of potential dangers.
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