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Abstract. The one-dimensional Bin Packing Problem
(1D-BPP) is a classical NP-hard problem in combinato-
rial optimization with an extensive number of industrial
and logistic applications, considered intractable because
it demands a significant amount of resources for
its solution. The Grouping Genetic Algorithm with
Controlled Gene Transmission (GGA-CGT) is one of
the best state-of-the-art algorithms for 1D-BPP. This
article aims to highlight the impact that the crossover
operator itself can have on the final performance of
the GGA-CGT. We present a comparative experimental
study of four state-of-the-art crossover operators for
1D-BPP: Uniform, Exon Shuffling, Greedy Partition and
Gene-level; this is the first time that the Uniform, Exon
Shuffling and Greedy Partition operators are adapted
and studied as a part of the GGA-CGT; moreover,
the Uniform crossover has never been used before for
solving the 1D-BPP. We measure the performance of the
GGA-CGT by replacing its original crossover operator
(Gene-level) with each of the other three state-of-the-art
operators. Furthermore, we propose a new version of
the Uniform crossover and examine two replacement
strategies for the Gene-level crossover. Experimental
results indicate that the Gene-level crossover operator
is shown to have a greater impact in terms of the
number of optimal solutions found, outperforming the
other operators for the class of Hard28 instances,
which has shown the greatest degree of difficulty for
1D-BPP algorithms.

Keywords. Bin packing problem, group oriented
crossover operators, evolutionary computation, grouping
genetic algorithm.

1 Introduction

The off-line one-dimensional Bin Packing Problem
(1D-BPP) is a well-known grouping optimization
problem with many applications in logistics,
industry, telecommunications, transports, among
several others. Given an unlimited number of bins
with a fixed capacity c > 0 each, and a set of n
items, each one with a specific weight 0 < wi ≤ c,
1D-BPP consists of storing all of the items into
the minimum number of bins without exceeding
the capacity of any bin. 1D-BPP belongs to the
NP-hard class, i.e., the problem complexity grows
exponentially as the problem size increases.

It implies that there is no efficient algorithm
to find an optimal solution for every instance of
1D-BPP. Searching for the best possible solutions
to 1D-BPP, a wide variety of algorithms have
been designed. The proposals range from simple
heuristics to hybrid strategies, including branch
and bound techniques [7], metaheuristics [20] and
special neighbourhood searches [4].

However, despite the efforts of the scientific
community to develop new strategies, there is not
yet an efficient algorithm capable of finding the best
solution for all possible 1D-BPP instances, so it is
then important to try to identify the characteristics
that define the behavior of the algorithms to
understand and improve their performance.

One of the suggested methods to solve BBP is
the Grouping Genetic Algorithm (GGA) proposed
by Falkenauer in 1996 [10], who presented
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a design of three new components: (1) a
representation scheme for solutions in which
groups are seen as genes; (2) a fitness function
that evaluates the exploitation of bins’ capacity;
and, (3) grouping variation operators to modify and
re-combine the group-based solutions, including
a Segment-level crossover. Later, in 2015,
Quiroz-Castellanos et al. [20] proposed the
algorithm known as Grouping Genetic Algorithm
with Controlled Gene Transmission (GGA-CGT).

Unlike Falkenauer, Quiroz-Castellanos et al.
proposed the application of the variation operators
in a controlled way, inducting the fullest-bin pattern.
GGA-CGT is one of the best algorithms found in
the state-of-the-art to solve 1D-BPP; it focuses
on the transmission of the best genes on the
chromosomes (the fullest-bin pattern), keeping a
balance between selective pressure and diversity
in the population, in order to favor the generation
and evolution of high-quality solutions. GGA-CGT
includes an intelligent grouping crossover operator,
called Gene-level crossover, which gives the best
genes (the fullest bins) a higher probability of being
preserved.

The experimental results presented by Quiroz-
Castellanos et al. [20] exposed that the Gene-level
crossover showed an effectiveness improvement
of 30% when compared with the Segment-level
crossover proposed by Falkenauer [10]. Despite
the success of the Gene-level crossover, the
performance of the GGA-CGT is related mainly to
the mutation operator, which alone is capable of
finding quality solutions.

In the present work, three well-known group-
ing crossover operators are implemented to
solve 1D-BPP: Uniform crossover, Exon Shuffling
crossover and Greedy Partition crossover. These
operators have never been implemented within
the GGA-CGT algorithm before. Furthermore, the
Uniform crossover has not been used to solve
the 1D-BPP. The goal of the implementation is
to measure the performance of these crossover
operators whit respect to the predefined Gene-level
crossover operator. The performance of the
GGA-CGT is studied by replacing the original
Gene-level crossover operator with each of
these state-of-the-art crossovers as well as new

versions of the Gene-level and the Uniform
crossover operators.

The paper structure is as follows. Section
2 presents the most relevant state-of-the-art
algorithms for 1D-BPP; Section 3 comprises
a brief definition of the components of the
GGA-CGT; Section 4 includes an explanation for
the state-of-the-art grouping crossover operators
that will be implemented afterwards; Section 5
contains the experimental proposal to analyze the
performance of the mentioned grouping crossover
operators; finally, Section 6 summarizes the
conclusions and future research paths.

2 Releated Work

In the last three decades, different techniques
have been implemented in order to find the
best solution for the BPP, as it is one of the
most interesting problems of the optimization field.
Among the techniques that stand out the most are
hybrid algorithms and heuristics. For the 1D-BPP
study, most algorithms proposed in the literature
have been evaluated using a well-studied trial
benchmark [8]; it includes 1615 instances in which
the number of items n varies within [50, 1000], the
bin capacity c is within [100, 100000] and the ranges
of the weights are within (0, c].

The specialized literature includes approximation
algorithms, which had their performances math-
ematically analyzed, being the most successful
ones: (1) First-Fit Decreasing (FFD), (2) Best-Fit
Decreasing (BFD) and (3) Minimum Bin Slack
(MBS) [13]. The proposals also include many
exact algorithms using dynamic programming, LP
relaxation, branch-and-bound, branch-and-price
and constraint programming methods [7, 17].
The most relevant results have been obtained
by means of metaheuristic and hybrid algorithms
covering proposals based on local search [2, 4],
evolutionary algorithms [3, 10, 20, 15, 5] and
swarm intelligence algorithms [1, 16, 18, 11]. The
most exploited approaches, which have allowed
obtaining the best results, consist mainly of: (1)
the use of simple 1D-BPP heuristics; (2) the
application of search space reduction methods;
(3) the inclusion of local search techniques based
on the dominance criterion; (4) the use of lower
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bounding strategies; and (5) the induction of the
fullest-bin pattern.

The review of the results obtained by the best
1D-BPP solution algorithms revealed that there
are still instances of the literature that present
a high degree of difficulty and the strategies
included in the procedures do not seem to lead
to better solutions. After the literature analysis,
it was observed that none of the state-of-the-art
strategies had been analyzed to explain the reason
for its high-grade or poor performance. Few studies
have centered on the analysis of the relationships
between the effectiveness of the algorithms and
the structure and complexity of the 1D-BPP
instances [6]. It is important to understand the
algorithms’ behavior and evaluate the strategies
that allow them to achieve their performance. This
work aims at studying the performance of different
grouping crossover operators trying to identify the
strategies that they use and that positively impact
their performance.

3 Grouping Genetic Algorithm with
Controlled Gene Transmission
(GGA-CGT)

The GGA-CGT proposed in 2015 by Quiroz-
Castellanos et al. [20] uses a group-based
representation in which each gene represents a
group of items or bin. The GGA-CGT is aimed
at maximizing the fitness of the individuals in
the population. The fitness function is described
as follows:

FBPP =
Σmi=1(Si/c)

2

m
, (1)

where m is the number of bins in the solution, Si
is the total weight of the items in the bin i and
c corresponds to the capacity of the bins. The
GGA-CGT algorithm generates an initial population
using the FF-n heuristic, in which the n objects of
weight greater than 50 percent of the bin capacity
are packed in n separate bins, then the remaining
objects are accommodated using the well-known
First Fit heuristic on a random permutation of this
subset.

GGA-CGT uses a controlled selection regarding
the choice of individuals to cross and mutate. The
strategy consist of an elitist approach together
with two inverted rankings to give all the solutions
a chance to contribute to the next generation
but forcing the survival of the best solutions.
For the crossover, nc parents are selected to
generate nc children. Two sets of parents G
and R are generated each with nc/2 individuals,
one set being randomly selected from the best
nc individuals with uniform probability (B) and
the other set randomly selected from the whole
population without considering the elite solutions
with uniform probability (R). For mutation, nm
individuals are taken from the best individuals in
the population.

GGA-CGT includes a new crossover operator
that is referred to as Gene-level crossover, which
generates two children c1 y c2 from two parents p1
y p2. In this operator, both parents are first sorted
in descending order with respect to how full each
gene (bin) is. Then, the genes of both parents
are compared in parallel, whereby the fuller gene is
inherited first. If both genes are equally full, then,
for the first child, preference is given to the first
parent’s gene and, for the second child, preference
is given to the second parent’s gene. If any parent
has more genes than the other, these are inherited
directly from this solution. Genes with repeated
items are eliminated from the children, and the
missed items are reinserted with the FFD heuristic.

Regarding the mutation, it consists of an
Elimination operator which works at the gene level,
promoting the transmission of the best genes on
the chromosome. The Adaptive mutation operator,
which considers the bins in descending order of
their filling, eliminating the nb least full bins of
the solution and reinserting their items with the
Rearrangement by Pairs heuristic. The number of
bins nb to be eliminated from the individual, unlike
traditional methods, is calculated in relation to the
size of the solution and the number of incomplete
bins. The equation is defined below:

nb = [ı · ε · pε], (2)

where ı corresponds to the number of incomplete
bins in the solution, ε corresponds to the
elimination proportion defined by Eq. 3, pε is the
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elimination probability defined by Eq. 4, and k is a
parameter that defines the rate of change of ε and
pε with respect to ı (k > 0):

ε =
(2 − (ı/m))

ı(1/k)
, (3)

pε = 1 − uniform(0,
1

ı1/k
)). (4)

The replacement strategy preserves the popula-
tion diversity and the best solutions by replacing
duplicated fitness individuals and the worst fitness
solutions with new offspring. The controlled
replacement method for the crossover consists of
introducing the nc children such that nc/2 replace
the individuals in the set of random parents R and
the other nc/2 replace the individuals with repeated
fitness first, if there are still un-reinserted children
and no solutions with repeated fitness, they are
added by replacing the solutions with the worst
fitness solutions.

When the mutation operator is applied, some
of the elite solutions whose age is less than a
predefined life span parameter are cloned. Every
clone can be entered into the population in two
ways; first, by replacing solutions with repeated
fitness, then if there are no solutions with repeated
fitness, they are added by replacing the worst
fitness solutions.

The details of the heuristics used to generate the
population, the rearrangement heuristics to repair
solutions, as well as the remaining mechanisms
and the parameter settings can be consulted in the
work of Quiroz-Castellanos et al. [20].

In order to identify the impact of the Gene-level
crossover operator (GLX) on the GGA-CGT per-
formance, an experimental study was performed
by using nine different values for the crossover
rate, to vary the number of individuals selected
for the crossover process (nc). Fig. 1 and
Fig. 2 present the number of optimal solutions
found and the average number of generations with
different configurations for the GLX. The figures
allow observing how the crossover operator seems
to have a low impact on the performance of
the GGA-CGT. As it can be seen from figures
the inclusion of the GLX operator improves
the performance of the GGA-CGT, however an

increase in the crossover rate does not seem to
contribute to the effectiveness of the algorithm.

The following sections will present a series
of studies consisting of: (1) implementing the
state-of-the-art crossover operators in the GGA-
CGT algorithm; (2) performing experimentation
with different crossover percentages within the
algorithm; and (3) analyzing the results of the
GGA-CGT algorithm with each operator.

Fig. 1. Number of optimal solutions obtained by the
GGA-CGT with the original Gene-level crossover (GLX)
for different crossover rates

Fig. 2. Average number of generations executed by the
GGA-CGT with the original Gene-level crossover (GLX)
for different crossover rates

4 Grouping Crossover Operators

The crossover is one the most frequently used
genetic operators. This operator combines the
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information of two or more solutions (called
parents) to produce descendants (called children
or offspring). The state-of-the-art algorithms
includes different grouping crossover operators
(see Ramos-Figueroa et al. [21] for a survey of
grouping genetic operators). Grouping crossover
operators perform the transmission of the genetic
material considering the characteristics of every
gene, performing a more controlled combination
process, by giving the best genes a higher
probability of being preserved.

The state-of-the-art algorithms present four
grouping crossover operators that work with
the group-based encoding: Gene-level crossover
(GLX), Uniform crossover (UX), Exon Shuffling
crossover (ESX), and Greedy Partition crossover
(GPX). GLX was described in Section 3. The
following sections describe the general procedure
of the other three operators.

4.1 Uniform Crossover

The Uniform crossover (UX) variation operator
generates two children c1 and c2 by combining the
genes of the parents solutions p1 and p2. In this
operator the parents are considered in parallel, i.e.
gene 1 of p1taken on a par with gene 1 of p2.
For every pair of genes of the parents, a random
value with uniform distribution in the interval (0,1)
is generated; a value less than or equal to 0.5
indicates that child c1 and c2 receive the gene from
the parent p1 and p2 respectively, otherwise child c1
receives the gene from p2 and offspring c2 receives
the gene from p1. During this process, there is the
possibility of creating infeasible solutions, which
is why heuristics are used to repair them. The
performance of the UX operator has only been
tested in a Grouping Genetic Algorithm for the
Multiple Knapsack problem in 2008 [12]. In our
implementation of UX for 1D-BPP, the genes with
repeated items are eliminated from the children,
and the missed items are reinserted with the FFD
packing heuristic. Figure 3a depicts an example of
the crossover process followed by UX.

4.2 Exon Shuffling Crossover

The Exon Shuffling crossover (ESX), was pro-
posed by Kolkman and Stemmer (2001) [14]. It
has been often used to tackle 1D-BPP [9, 25, 19].
This is an operator that generates a single child
c from two parent solutions p1 and p2. The first
step consists in joining the parents. Then their
genes are ordered from best to worst with respect
to their fullness. Finally, the genes are inherited
to the child as long as none of the items of the
respective gene exist previously in the child [21].
In our implementation of ESX for 1D-BPP, the
missed items are reinserted with the FFD packing
heuristic. Figure 3b depicts an example of the
crossover process followed by ESX.

4.3 Greedy Partition Crossover

The Greedy Partition crossover (GPX), is also
among the state-of-the-art grouping oriented
crossover operators that have been used to tackle
1D-BPP in other Grouping Genetic Algorithm [23].
This particular operator has two versions and this
paper focuses on the group oriented one. Given
two parent solutions p1 and p2, GPX generates
two children c1 and c2 using a greedy heuristic.
Here the first step is to order the genes of the
parent solutions p1 and p2 from most to the least
filled. Then, for each child, a vector of probabilities
with uniform distribution of the size of the parent
solution with more genes is generated. The
probability defines from which parent the offspring
will receive the gene; if the value generated is less
than or equal to 0.5, it indicates that the child c1
receives the gene from p1; otherwise, it will receive
the one from p2. The same process is employed
to create the child c2. Like in the previous cases,
in our implementation of GPX for 1D-BPP, the
genes with repeated items are eliminated from the
children and the missed items are reinserted with
the FFD packing heuristic. Figure 4c depicts an
example of the crossover process followed by GPX.

4.4 Gene-Level Crossover

The operator is described in Section 3. This
operator was proposed by Quiroz-Castellanos et
al. [20] for the GGA-CGT algorithm and has been
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used several times to solve the 1D-BPP due to its
performance [15, 22, 24]. Figure 4d depicts an
example of the crossover process followed by GLX.

Since the above operators, are considered the
best grouping crossover operators amongst the
state-of-the-art, the next section comprises an
analysis of these operators to determine which
one enables the GGA-CGT to reach the best
performance for 1D-BPP. The experiments cover:
(1) the integration of the operators in the GGA-CGT
algorithm; (2) the study of different crossover
percentages; and, (3) the robustness analysis of
the results of the best crossover operators inside
the GGA-CGT algorithm.

5 Experimentation and Results

This section presents the experiments to analyze
the way the different crossover operators can
impact on the performance of GGA-CGT. The
experimental design consists of three phases. The
first one covers the analysis of the state-of-the-art
grouping crossover operators (UX, ESX, GPX
and GLX) to determine which ones have the
best impact on the effectiveness of GGA-CGT.
The second one comprises an analysis of the
best operators to observe the influence of the
number of children generated and their reinsertion
to the population. Finally, the third one
studies the robustness of the GGA-CGT with
the best crossovers, comparing with the original
GLX operator.

The performance assessment of each operator
involves solving the 1615 standard instances [8],
which are distributed among nine sets: data set 1
(720 instances), data set 2 (480 instances), data
set 3 (10 instances), triplets (80 instances), uniform
(80 instances), hard28 (28 instances), was 1 (100
instances), was 2 (100 instances), and gau 1 (17
instances). Sets data set 1, data set 3, gau 1
and hard28, have shown to have test cases with
a high degree of difficulty. Standing out hard28,
where there is a higher number of instances that
the algorithms cannot solve optimally.

To analyze the performance of each operator
on the GGA-CGT, for each instance, a single
execution of the algorithm GGA-CGT was run, with
the initial seed for the random number generation

set to 1. For each operator ten different crossover
rates were explored, from 0% to 90% of the
population. For all the parameters, different from
the crossover rate, we used the configuration
proposed by Quiroz-Castellanos et al. [20].

5.1 State-of-the-Art Grouping Crossover
Operators

The GGA-CGT employs the controlled reproduc-
tion technique proposed by Quiroz-Castellanos et
al. [20], for the state-of-the-art crossover operators
we used the same strategy. Both, the UX operator
and the GPX operator, generate a set C of nc
children from nc parents. Like in the original
GGA-CGT, the first nc/2 children are introduced
to the population replacing the individuals in the
set of random parents R. The other nc/2 children
are introduced replacing individuals with repeated
fitness and replacing the worst solutions. On the
other hand, concerning the ESX operator, where
nc/2 children are generated from nc parents (since
only one child is generated for every two parents)
the reintegration into the population is done in one
way: the nc/2 children are introduced replacing the
individuals in the set of random parents R.

Table 1, Table 2, Table 3, and Table 4 show
the results obtained by the GGA-CGT with each of
the state-of-the-art crossover operator (UX, ESX,
GPX and GLX, respectively). For every class
of instances, each table first shows the number
of test cases (Inst.), followed by the number of
optimal solutions found by the GGA-CGT with each
crossover rate. The last row of each table shows
the total number of optimal solutions obtained by
each configuration. Moreover, Fig. 5 and Fig.
6 show the number of optimal solutions that are
found and the average number of generations
executed, when we explore ten different crossover
rates (from 0% to 90%) over the four different
crossover operators.

The results obtained from implementing the
UX variation operator in the GGA-CGT algorithm,
are shown in Table 1. As can be seen, the
highest number of instances solved is 1592, with
a crossover rate of 30%, however, with 90% of
crossover rate, the performance of the GGA-CGT
is affected since it only solves 1574 of the
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Fig. 3. An example of each state-of-the-art crossover operator for a 1D-BPP instance: UX (Uniform Crossover), ESX
(Exon shuffling Crossover), GPX (Greedy partition Crossover), and GLX (Gene-level Crossover) (Part 1)
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Fig. 4. An example of each state-of-the-art crossover operator for a 1D-BPP instance: UX (Uniform Crossover), ESX
(Exon shuffling Crossover), GPX (Greedy partition Crossover), and GLX (Gene-level Crossover) (Part 2)
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1615 instances less than those solved with 0%
crossover rate. In terms of the average number
of generations, with a 90% of crossover rate, the
algorithm iterates 100.22 generations per instance,
as it is shown in Fig. 6.

Fig. 5. Number of optimal solutions obtained by
the GGA-CGT with each state-of-the-art crossover for
different crossover rates

The results obtained from implementing the
ESX variation operator in the GGA-CGT algorithm
are shown in Table 2. As can be seen, the
highest number of the optimally solved instances
is 1596, with a 50% crossover rate. Something
interesting in this operator is that the optimally
solved instances are between 1592 and 1596,
and it is not affected with any crossover rate.
Concerning to the average number of generations,
the algorithm performs a maximum of 91.6
generations, corresponding to a crossover rate of
80%, as it is shown in Fig. 6.

The results obtained from implementing the GPX
operator in the GGA-CGT algorithm, are shown
in Table 3. The operator solves optimally at most
1595 instances with a 10% crossover rate. As the
UX operator, the performance of the GGA-CGT
is affected with a 90% crossover rate, since it
only finds the optimal solution of 1576 instances
less than those solved with 0% crossover rate.
It is important to mention that it performs 99.56
generations on average with a 90% crossover rate,
as it is shown in Fig. 6.

The same experiment was performed for the
crossover operator of the GGA-CGT algorithm,
GLX [20]. The results are presented in the Table 4,
which with a 20% crossover rate solves optimally

Fig. 6. Average number of generations executed by
the GGA-CGT with each state-of-the-art crossover for
different crossover rates

1602 instances out of 1615. The minimum number
of optimal solutions is found with a crossover rate
of 80%, being 1589, and it indeed benefits the
algorithm, since without crossover, it finds only
1581 optimal solutions.

From Fig. 5 and Fig. 6 it can be observed
that ESX and GLX outperformed the performance
of the other two crossover operators, presenting a
more stable behavior with different crossover rates.

After the execution of the GGA-CGT with the
four crossover operators it was concluded that the
ESX operator with a configuration of a 50% of
crossover rate and the GLX operator with a 20%
crossover rate, found a higher number of optimal
solutions, which is why a series of experiments
were performed, based on these results and they
are described below.

5.2 Reinsertion of Children to the Population

Considering that the GLX algorithm generates two
offspring for each pair of crossed parents, for
the following experiments, the replacement criteria
within the GGA-CGT algorithm were considered.
Two versions of the GGA-CGT algorithm were
implemented, where the GLX crossover operator
generates only one child for each pair of parents.

For the implementation of the following ex-
perimentation, the following three cases were
addressed: (1) when the ESX algorithm reinserts
offspring into the population by replacing individ-
uals with repeated fitness and, if there are still
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Table 1. Results obtained by the GGA-CGT with the Uniform crossover (UX) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 718 719 719 718 718 718 718 719 718
data set 2 480 480 480 480 480 480 480 480 479 480 479
data set 3 10 9 9 10 10 10 10 10 9 10 10
triplets 80 80 80 80 80 79 80 78 78 78 69
uniform 80 80 80 80 80 79 80 80 80 79 80
hard28 28 9 11 9 10 8 8 7 6 7 5
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 13 13 13 13 13 13 13 13 13
Total 1615 1581 1591 1591 1592 1587 1589 1586 1583 1586 1574

Table 2. Results obtained by the GGA-CGT with the Exon Shuffling crossover (ESX) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 719 719 719 718 718 719 719 718 720
data set 2 480 480 480 480 480 480 480 480 480 480 480
data set 3 10 9 9 10 9 9 10 9 10 9 9
triplets 80 80 80 80 80 80 80 80 80 80 80
uniform 80 80 80 80 80 80 80 80 80 80 80
hard28 28 9 9 10 10 10 12 9 10 9 8
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 15 16 16 16 16 15 15 15 15
Total 1615 1581 1592 1595 1594 1593 1596 1592 1594 1591 1592

offspring without reinsertion, by replacing the worst
solutions; (2) when the GLX algorithm reintegrates
the created offspring into the population by
replacing individuals within the set of random
parents R; and, (3) as in the case of the
ESX operator, when the GLX algorithm reinserts
the offspring into the population by replacing
individuals with repeated fitness and, if there are
still offspring without reintegration, by replacing the
worst solutions.

The case where ESX reinserts the children into
the population by replacing individuals within the
set of random parents R was presented in Table 2,
Fig. 5 and Fig. 6. These results are used in Fig. 7
and Fig. 8 for the ESX-1 operator.

The results obtained by the ESX variation
operator, corresponding to the case when using
reinsertion into the population by replacing the
solutions within the repeated fitness group and
worst solutions (ESX-2), are shown in Table 5. The
GGA-CGT algorithm manages to solve optimally
a maximum of 1593 instances with crossover
rates of 30% and 40%. The lowest number of
instances that it solves optimally is 1589 with a
10% crossover rate.

On the other hand, the results of the imple-
mentation of the GLX operator with the reinsertion
into the population by replacing the parents of the
random group (GLX-1) are presented in Table 7.
As it can be seen, the operator implemented within
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Table 3. Results obtained by the GGA-CGT with the Greedy Partition crossover (GPX) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 720 719 718 719 718 719 719 718 718
data set 2 480 480 480 480 480 480 480 480 480 480 478
data set 3 10 9 9 10 10 10 10 10 10 10 9
triplets 80 80 80 79 80 79 80 79 80 75 73
uniform 80 80 80 80 80 80 80 79 80 80 79
hard28 28 9 11 12 8 9 6 8 6 6 6
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 15 14 14 13 13 14 14 13 13
Total 1615 1581 1595 1594 1590 1590 1587 1589 1589 1582 1576

Table 4. Results obtained by the GGA-CGT with the Gene-level crossover (GLX) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 719 720 719 718 718 718 718 718 719
data set 2 480 480 480 480 480 480 480 480 480 480 480
data set 3 10 9 9 10 9 9 9 9 9 8 9
triplets 80 80 80 80 79 79 78 76 77 74 78
uniform 80 80 80 80 80 79 80 79 79 79 80
hard28 28 9 14 16 15 16 15 13 14 14 12
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 16 16 16 16 16 16 15 16 15
Total 1615 1581 1598 1602 1598 1597 1596 1591 1592 1589 1593

the algorithm finds a maximum number of 1599
optimal solutions with a 20% crossover rate, while
the lowest number of optimal solutions is 1591 with
a 80% crossover rate.

The last experiments, corresponding to the
GLX with the reinsertion of the offspring in the
population replacing the solutions with repeated
fitness and worst fitness (GLX-2), are shown in
Table 6. This operator allows the GGA-CGT to
find a maximum of 1598 optimal solutions with
crossover rates of 40%, 60% and 80%, while the
minimum number of instances optimally solved is
1595 for 70% and 90% crossover rates, without
taking into account the results when there is
no crossover.

Based on the results discussed earlier in this
section, with respect to the implementation of the
two versions of the ESX operator, it is concluded
that the ESX operator using a reinsertion of the
children in the group of random parents (ESX-1),
has a better performance, since it solves on
average 1593.22 instances in an optimal way out
of 1615. Moreover, the highest number of optimal
solutions found by the ESX operator are solved
with this reinsertion (1596). On the other hand, the
other reinsertion, replacing parents with repeated
and worst fitness solves an average of 1591.55
instances in an optimal way.

Regarding the results of the implementation
of the GLX operator in the version that only
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Table 5. Results obtained by the GGA-CGT with the Exon Shuffling crossover with replacement to individuals with
duplicated fitness and the worst solutions (ESX-2) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 718 719 719 718 718 718 718 718 718
data set 2 480 480 480 480 480 480 480 480 480 480 480
data set 3 10 9 9 9 10 10 9 10 9 9 10
triplets 80 80 80 80 80 80 79 79 79 80 79
uniform 80 80 80 80 80 80 80 80 80 80 80
hard28 28 9 8 9 9 10 9 10 10 10 9
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 14 15 15 15 16 15 15 15 15
Total 1615 1581 1589 1592 1593 1593 1591 1592 1591 1592 1591

Table 6. Results obtained by the GGA-CGT with the Gene-level crossover with replacement to individuals with
duplicated fitness and the worst solutions (GLX-2) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 719 719 719 718 719 719 719 720 719
data set 2 480 480 480 480 480 480 480 480 480 480 480
data set 3 10 9 10 9 9 10 10 10 9 10 9
triplets 80 80 80 80 80 80 80 80 80 80 79
uniform 80 80 80 80 80 80 80 80 80 80 80
hard28 28 9 12 13 13 14 12 13 11 12 13
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 15 16 16 16 16 16 16 16 15
Total 1615 1581 1596 1597 1597 1598 1597 1598 1595 1598 1595

creates one child for every two parents, when
the reinsertion into the population is performed by
replacing the solutions with repeated and worst
fitness (GLX-2), it has better results, finding on
average 1596.77 optimal solutions. In the case of
the GLX operator with reinsertion to the population
by replacing the set of random parents (GLX-1),
an average of 1595.44 optimal solutions are found.
Moreover, by means of this replacement the
highest number of optimal solutions are found by
the GLX operator (1599).

5.3 Uniform Crossover with Ordered Genes

After analyzing the different features involved in
the crossover operators, we observe that the
UX operator was the only one that did not
sort the parent solutions in descending order
before performing the crossover process. A final
implementation of the UX operator was done,
where the genes of the parents were first sorted in
descending order of their filling, and then the usual
crossover process of the operator was performed
(UX-sorted). The results are shown in the Table
8. As we can see, the algorithm with a 10%
crossover rate solves a total of 1596 instances in
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Table 7. Results obtained by the GGA-CGT with the Gene-level crossover with replacement to individuals in the set of
the random parents R (GLX-1) for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 719 720 719 720 719 718 718 718 719
data set 2 480 480 480 480 480 480 480 480 480 480 480
data set 3 10 9 10 10 9 9 9 10 9 9 9
triplets 80 80 79 79 79 78 79 76 78 75 79
uniform 80 80 80 80 80 80 80 80 79 79 79
hard28 28 9 13 14 14 15 13 14 15 15 11
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 16 16 16 16 16 15 16 15 16
Total 1615 1581 1597 1599 1597 1598 1596 1593 1595 1591 1593

Fig. 7. Number of optimal solutions with different
replacements. ESX-1 GLX-1: children replace the
individuals in the set of the random parents. ESX-2,
GLX-2: children replace the individuals with duplicated
fitness and also the worst solutions

an optimal way, while with a 90% crossover rate
it affects the performance of the algorithm as it
only solves 1574 instances. In addition to the
above, a comparison was made between the UX
operator and UX-sorted. The results are shown in
two tables, one presenting the maximum number
of instances solved per class in the (Table 9) and
the other with respect to the minimum number of
instances solved per class in the (Table 10).

Fig. 8. Average number of generations with different
replacements. ESX-1 GLX-1: children replace the
individuals in the set of the random parents. ESX-2,
GLX-2: children replace the individuals with duplicated
fitness and also the worst solutions

5.4 Robustness of Crossover Operators

To evaluate all of the potential of the best crossover
operators, we performed a robustness test by
executing three versions of the GGA-CGT thirty
times with different seeds of random numbers.
These last experiments arose from the comparison
of the ESX and GLX operators.

For the GLX operator we used the version in
which the children are reinserted in the population
by replacing the random parents (GLX-1) with
a 50% crossover rate, as well as the original
version of the GLX included in the the GGA-CGT
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Table 8. Results obtained by the GGA-CGT with the UX-sorted crossover for different crossover rates

Class Inst. Crossover rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

data set 1 720 708 719 720 719 719 719 719 718 718 718
data set 2 480 480 480 480 480 480 480 479 480 480 478
data set 3 10 9 10 10 10 10 10 10 10 10 9
triplets 80 80 80 80 80 78 79 77 77 76 71
uniform 80 80 80 80 80 80 80 79 79 79 79
hard28 28 9 13 10 8 9 7 7 7 7 6
was1 100 100 100 100 100 100 100 100 100 100 100
was 2 100 100 100 100 100 100 100 100 100 100 100
gau 1 17 15 14 13 13 13 13 13 14 14 14

Total 1615 1581 1596 1593 1590 1589 1588 1584 1585 1584 1575

Table 9. Results of the highest number of optimally
solved instances by the GGA-CGT with the UX and
UX-sorted crossover operators

Class Inst.
UX UX-sorted

Crossover rate

30% 10%

data set 1 720 719 719
data set 2 480 480 480
data set 3 10 10 10
triplets 80 80 80
uniform 80 80 80
hard28 28 10 13
was1 100 100 100
was 2 100 100 100
gau 1 17 13 14

Total 1615 1592 1596

algorithm by Quiroz-Castellanos et al. [20], that
generates two children with a 20% crossover
rate. On the other hand, for the ESX operator
we also used the version in which the children
are reinserted in the population by replacing the
random parents (ESX-1) with a crossover rate of
50%. These operators were selected as they
are within the group of operators that showed the
higher effectiveness. The experiment consists of
30 executions of the GGA-CGT algorithm (48,450
runs) with each crossover operator.

Table 10. Results of the lowest number of optimally
solved instances by the GGA-CGT with the UX and
UX-sorted crossover operators

Class Inst.
UX UX-sorted

Crossover rate

90% 90%

data set 1 720 718 718
data set 2 480 479 478
data set 3 10 10 9
triplets 80 69 71
uniform 80 80 79
hard28 28 5 6
was1 100 100 100
was 2 100 100 100
gau 1 17 13 14

Total 1615 1574 1575

The results of the experiments are shown in
Table 11, Table 12 and Table 13. The second
column (Inst.), corresponds to the total number
of instances belonging to the class in the first
column. The column “Optimal solutions in the 30
executions” includes the total number of optimal
solutions found in the 30 executions.

The column “Average number of optimal”
corresponds to the average number of instances
optimally solved in each set. Finally, the column
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Table 11. Results for the 30 executions of the GGA-CGT with the ESX when it generates only one child

Class Inst.

Optimal
solutions
in the 30

executions

Average
number of

optimal
%

data set 1 720 21562 718.73 99.82%
data set 2 480 14400 480.00 100.00%
data set 3 10 282 9.40 94.00%
triplets 80 2396 79.87 99.83%
uniform 80 2400 80.00 100.00%
hard28 28 299 9.97 35.60%
was 1 100 3000 100.00 100.00%
was 2 100 3000 100.00 100.00%
gau 1 17 467 15.57 91.57%

1615 47806 1593.53 98.67%

Table 12. Results for the 30 executions of the GGA-CGT with the GLX when it generates only one child

Class Inst.

Optimal
solutions
in the 30

executions

Average
number of

optimal
%

data set 1 720 21562 718.73 99.82%
data set 2 480 14400 480.00 100.00%
data set 3 10 281 9.37 93.67%
triplets 80 2370 79.00 98.75%
uniform 80 2393 79.77 99.71%
hard28 28 394 13.13 46.90%
was 1 100 3000 100.00 100.00%
was 2 100 3000 100.00 100.00%
gau 1 17 476 15.87 93.33%

1615 47876 1595.87 98.82%

“%” corresponds to the percentage of optimal
solutions found.

It is observed that the GGA-CGT algorithm with
the GLX operator, which generates two children,
found on average a higher number of optimal
solutions, with a 98.99% percentage.

While the GLX and the ESX that generate one
child found 98.8% and 98.67% of the optimal
solutions, respectively. Furthermore, on average,
the original GGA-CGT with the GLX operator that
generates two children resolves in an optimal way

an average of 1598.67 instances out of 1615.
Regarding to the GLX and the ESX that generate
one child, they found on average 1595.87 and
1593.53 optimal solutions, respectively.

5.5 Statistical Analysis of the Effectiveness of
GGA-CGT with the Best Crossover
Operators

A series of statistical tests were applied to the
results of the 30 executions of the GGA-CGT
algorithm with the ESX, GLX and GLX-V1
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Table 13. Results for the 30 executions of the original GGA-CGT with the GLX that generates two children

Class Inst.

Optimal
solutions
in the 30

executions

Average
number of

optimal
%

data set 1 720 21571 719.03 99.87%
data set 2 480 14400 480.00 100.00%
data set 3 10 291 9.70 97.00%
triplets 80 2391 79.70 99.63%
uniform 80 2400 80.00 100.00%
hard28 28 430 14.33 51.19%
was 1 100 3000 100.00 100.00%
was 2 100 3000 100.00 100.00%
gau 1 17 477 15.90 93.53%

1615 47960 1598.67 98.99%

operators. The statistical test applied was the
Wilcoxon Rank-sum test with a 95% confidence.
These tests were performed on two result sets.
First, the error of the results was calculated
for each instance in each execution, which was
determined as the relative difference defined as:
(y − x)/x, where x corresponds to the optimal
number of bins and y corresponds to the number
of bins obtained.

For the first set of experiments, the average
error of the 30 executions was obtained for
each instance.

Next, the Wilcoxon test was applied to the
average errors of the algorithm per class of
instances with the three operators: ESX vs
GLX-V1, ESX vs GLX and GLX-V1 vs GLX,
obtaining 9 p-values (one for each class). The
results are shown in the Table 15.

For the second set of tests, all instances
were considered separately. A Wilcoxon test
was performed for each instance with the results
obtained from the algorithm with the different
operators, i.e.: ESX vs GLX-V1, ESX vs GLX and
GLX-V1 vs GLX. The Table 16 shows the results
of the instances where a significant difference was
observed in the results obtained with the different
operators.

The Wilcoxon test, at the class level, shows no
significant difference between the operators, which

would indicate that the performance is the same
among the three. However, the test at the instance
level does show a difference, in some instances
of the Hard28 and Gau 1 classes, between the
ESX operator and the GLX-V1 and GLX operators,
indicating that for these instances the ESX operator
is the worst operator.

5.6 Difficult 1D-BPP Instances

Finally, with the objective to identify the features
of the 1D-BPP instances that present the highest
degree of difficulty for the four state-of-the-art
grouping crossovers, Table 16 shows the set
of instances for which the optimum was not
found. These results were obtained from the
set of experiments performed with the different
crossover rates, selecting those instances that
were not solved optimally in at least one of
the configurations.

The first column includes the name of the
sets of instances that include cases for which
the optimal solutions could not been found for
some of the configurations of the four crossover
operators. The second column contains the name
of the difficult instances, and the following columns
include an X for each operator that fails to find
the optimal solutions for each instance in one of
its configurations. The instances belong to the
classes: data set 1, data set 2, data set 3, triplets,
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Table 14. Instances for which the GGA-CGT does not find the optimal solution with each operator for any of the
crossover rates

Class Inst. UX ESX GPX GLX Class Inst. UX ESX GPX GLX

data set 1
N3c1w2 r X

triplets
t501 17 X

N3c3w4 c X X X X t501 18 X X
N4c3w4 s X X X X t501 19 X

data set 2 N2w1b2r5 X X Uniform u250 12 X X X
N2w1b2r8 X

hard28

h1D-BPP832 X X X
data set 3 Hard2 X h1D-BPP40 X X X X

triplets

t60 00 X h1D-BPP360 X X X
t60 01 X X h1D-BPP645 X X X X
t60 05 X h1D-BPP742 X X X
t60 06 X X h1D-BPP766 X X X X
t60 07 X h1D-BPP60 X X X X
t60 08 X h1D-BPP13 X X X X
t60 10 X h1D-BPP195 X X X X
t60 11 X h1D-BPP709 X X X X
t60 12 X h1D-BPP785 X X X X
t60 13 X h1D-BPP47 X X X X
t60 14 X h1D-BPP181 X X X X
t60 15 X h1D-BPP485 X X X X
t60 17 X h1D-BPP640 X X X X
t60 18 X h1D-BPP144 X X X X
t60 19 h1D-BPP561 X X X
t120 03 X h1D-BPP781 X X X X
t120 14 X h1D-BPP900 X X X X
t249 04 X h1D-BPP178 X X X X
t501 00 X h1D-BPP419 X X X X
t501 04 X h1D-BPP531 X X X
t501 05 X X X h1D-BPP814 X X X
t501 08 X

gau1

TEST0058 X X
t501 09 X TEST0014 X X X X
t501 14 X X TEST0030 X X X X
t501 16 X TEST0005 X X X

Total 46 25 39 36

uniform, hard28 and gau 1. The highest number of
instances where the optimum is not found belong
to the triplets class. With respect to the class
data set 3 and uniform, only one instance is not
optimally solved.

As it can be seen, the instances belonging to
the hard28 class are the most complicated for
the 4 operators. The operator with the lowest
number of optimally solved instances is the ESX

operator. Although the GLX operator optimally
solves the highest number of instances, these
instances tend to be more variable with different
crossover percentages.

The UX operator, on the other hand, is the
one that has the greatest diversity with respect
to the number of instances not optimally resolved,
being a total of 46. With respect to the instances
belonging to the triplets class, the ESX operator
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Table 15. p-value of the Wilcoxon test for the error of the
GGA-CGT with the ESX, GLX-V1 and GLX crossovers
in the different classes of instances

Class p-value for the average error

ESX vs
GLX-V1

ESX vs
GLX

GLX-VI vs
GLX

data set 1 0.9637 0.9636 1
data set 2 1 1 1
data set 3 0.9698 0.9698 0.9698
triplets 0.2459 0.1557 0.8618
uniform 0.8914 0.8914 0.9986
hard 28 0.5552 0.5121 0.9151
was 1 1 1 1
was 2 1 1 1
gau 1 0.7828 0.7828 0.9862

is the only operator that has no problem in finding
the optimum, besides being the only one to solve
optimally all the instances of the Uniform class.

Although the GGA-CGT algorithm finds the
optimal solution of most of the well-known
benchmark instances within the state-of-the-art, it
has been shown that it does not perform well with
the 2800 new difficult instances, referred to as
BPPvu c, proposed by Carmona-Arroyo et al. [6].
The results that were obtained by the GGA-CGT
demonstrated that for most of these instances, the
operators included in the GGA-CGT do not appear
to lead to better solutions.

6 Conclusion and Future Work

In this research we propose an experimental
study about the GGA-CGT for the 1D-BPP, in
which different grouping crossover operators were
used to compare and mesure the performance.
The conclusions of this research are presented
as follows.

From the experiments carried out in Section 5, it
is concluded that the original Gene-level crossover
operator (GLX), when generating two children,
outperforms the other state-of-the-art grouping
crossovers, achieving a better performance with
respect to the number of optimal solutions found,
being 1602 out of 1615. The second experiment,

also explained in Section 5, on the implementation
of the ESX and GLX operators in their two versions
(generating only one child, with replacement to
random parents, and, with replacement to solutions
with repeated fitness and worst solutions), shows
that the best operator is the GLX operator with
the reinsertion to the population through the
replacement to random parents, since it solves
optimally a total of 1599 instances out of 1615.

The last experiment allow us to validate that the
original GLX operator, that generates two children,
is the one that achieves the best performance,
showing a robust behavior in different runs of
the GGA-CGT. Finally, it can be concluded that
the GLX operator performs better within the
GGA-CGT algorithm.

Although the GLX operator solves a larger
number of instances, per class there is no
significant difference between the operators. But
there is a difference for some instances of the
Hard 28 class, where it has been shown that the
GLX operator has the best performance of the
operators.

For future work, a detailed review of the
operators is planned to identify the strategies that
allow for them to improve their performance in the
different classes instances, with the objective of
using this knowledge to design a new crossover
operator with a better performance in terms of
time, number of generations and number of optimal
solutions found for instances of different classes.
It is also intended that the GGA-CGT algorithm
with the operator to be designed will improve the
performance of the algorithm for the BPPvu c
instances with which it does not perform well.
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