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Abstract. Typical deep learning models defined in terms
of multiple layers are based on the assumption that
a better representation is obtained with a hierarchical
model rather than with a shallow one. Nevertheless,
increasing the depth of the model by increasing
the number of layers can lead to the model being
lost or stuck during the optimization process.This
paper investigates the impact of linguistic complexity
characteristics from text on a deep learning model
defined in terms of a stacked architecture. As the optimal
number of stacked recurrent neural layers is specific to
each application, we examine the optimal number of
stacked recurrent layers corresponding to each linguistic
characteristic. Last but not least, we also analyze the
computational cost demanded by increasing the depth
of a stacked recurrent architecture implemented for a
linguistic characteristic.

Keywords. Recurrent neural networks, stacked
architectures, linguistic characteristics.

1 Introduction

Nowadays, the successful application of deep
learning models performing tasks without human
intervention is part of our daily lives. For
example, the use of deep learning models such
as convolutional networks in visual recognition
exhibited a spectacular success in the largest
contest in object recognition known as Ima-
geNet Large Scale Visual Recognition Challenge
(ILSVRC) [16]. Natural Language Processing is
another difficult task in which the implementation
of deep learning models such as recurrent neural
networks (RNN) has contributed to improve the
state of the art in multiple challenges of natural
language understanding.

For example, the work of Jain et al. to produce
short stories from short remarks is an evidence of
how text generation has exhibited great progress
[10]. The work of Wang et al. to predict sentiment
polarity from tweets is also an illustration of how
sequence classification tasks have attested good
results [23].

Bengio, one of the pioneers in the field, argues
the necessity of deep architectures for more
efficient representation of AI-high-level tasks by
making use of multiple hidden layers instead of
shallow models [1, 2]. In our case, we study the
use of stacked recurrent architectures, that is, deep
architectures based on stacking multiple recurrent
hidden layers on top of each other.

Since recurrent neural networks, ss fundamental
deep learning algorithms for sequence processing,
can be built in many different ways, we analyze
three basic and popular recurrent architectures:
simple recurrent networks [5], Long Short-Term
Memory (LSTM) networks [9], and Gate Recurrent
Unit (GRU) networks [3]. LSTM y GRU are more
sophisticated architectures that have been created
to cope not only with the necessity of memory
“to remember” previous elements in a sequence
but also with the “vanishing gradient problem” that
is experimented with neural networks of a big
depth, i.e. those feedforward networks with many
hidden layers.

To determine the right depth of a stacked
recurrent architecture to text processing is the
main focus in this investigation. Specifically,
our purpose is to provide empirical evidence
about the relationship between the linguistic
characteristics of the text and the stacked recurrent
learning models.

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 921–938
doi: 10.13053/CyS-26-2-4260

ISSN 2007-9737



In other words, the research question addressed
in this paper is: what is the proper depth of a
stacked recurrent architecture corresponding to a
particular level of linguistic complexity inherent in
the texts?

Nonetheless, in order to give answer to this
question, it is first important to elucidate another
concern: how to define the linguistic complexity
of the textual expressions? Based on the
literature review, we have identified some linguistic
properties to determine the complexity occurring in
the texts.

How much hard is the comprehension of a
text? Text comprehension is a crucial linguistic
property to determine the complexity of a text. Paul
Rhea argues that the difference between easy
and complex sentences is related to the number
of embeddings, that is, the number of nested
clauses within the sentence [19]. For example,
the difference between the following sentences is
notorious: the second sentence is more complex
and demands more computational processing.

(i) The sad reality is that most Canadians simply
don’ t care about access to information.

(ii) The sad reality is that most Canadians, as
long as they can watch Don Cherry on Sat nite and
as long as Tim Hortons keeps their donut prices
affordable, they simply don’ t care about access to
information.

Is it necessary to increase the depth of a recurrent
learning model when we process texts similar
to the first sentence? About texts containing
long-term dependencies as the second sentence,
will it be necessary to increase the number of
stacked recurrent layers?

In short, which stacked recurrent architectures
coping with particular linguistic characteristics
provide more representational power than a
single-layer recurrent model? To give answer to
these questions, it is paramount to determine the
linguistic properties of the texts to be processed.

In addition to the assessment of complexity
based on the number of embedded clauses in the
texts (as we explained above), we also explore the

entropy of the texts as a metric of how rich the
vocabulary of texts is.

Taking as reference the work of Keller [12] in
which he makes evident a correlation between the
entropy of a sentence and the complexity required
for its comprehension, the consideration of entropy
in this work is based on the assumption that if
the text is more complex, the author uses a more
varied vocabulary.

This study also consider the use of quantitative
methods as assessment of textual complexity such
as the analysis of how long a text is. In fact, the
number of sentences and the number of content
words in the text are regarded as textual properties
to determine the impact on the performance of a
stacked recurrent architecture.

And last but not least, we also analyze the
computational cost demanded by increasing the
depth of a stacked recurrent architecture put
into practice for each linguistic characteristic. In
summary, the main contributions of this research
work are the following:

— Providing empirical evidence about the impact
of linguistic complexity characteristics from
texts on a deep learning model defined in
terms of a stacked recurrent architecture.

— Using qualitative (embedded clauses and
entropy) and quantitative (number of sen-
tences and words) methods, multiple linguistic
complexity characteristics of the texts are
considered in this research.

— Applying deep learning algorithms (RNN,
LSTM and GRU), various stacked recurrent
architectures are implemented in this study.

2 Related Work

In this section we first proceed with a brief de-
scription of preceding works about the investigation
of deep networks for machine learning purpose.
Then we comment on previous works about text
analysis and the use of linguistic properties for the
computational processing of the texts.
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2.1 Stacked Architectures

Utgoff and Stracuzzi presented many-layered
learning as the need of many layers of knowledge
for learning non-trivial concepts [22]. When
a difficult problem is broken into a sequence
of simple problems, learning is modeled with
layered knowledge structures defined in terms
of interdependent and reusable concepts named
building blocks. In this way, assimilation of new
knowledge makes use of previous knowledge.

By using equivalent Boolean functions, where
one of them is defined in terms of nested
basic elements in a more compact expression, a
model learning for the assimilation of the target
concept require different number of layers for
each equivalent function. In fact, a nested
Boolean function, that denotes a complex concept
described in terms of simple elements (i.e. building
blocks), requires more learning layers to assimilate
and reuse the target concept sometime thereafter.

In contrast, the equivalent Boolean function, that
has not been described in terms of building blocks,
requires less learning layers (i.e. shallow network)
to assimilate a concept hardly reusable. In other
words, since knowledge reuse is an essential factor
for achieving successful learning, this investigation
shows how shallow networks make difficult the
learning process.

Graves et al. showed how a deep learning
model based on a stacked recurrent architecture
was effective for phoneme recognition [8]. Even
tough RNNs are a type of neural networks
suitable for sequential data, in speech recognition
better results were obtained by deep feedfor-
ward networks (vanilla neural networks). This
antecedent was the main reason to investigate
the use of deep recurrent neural networks for
speech recognition. In particular, a deep LSTM
architecture was applied to speech recognition and
better performance was obtained over learning
models based on single-layer LSTM.

Two key elements were considered in the
definition of a deep learning model for speech
recognition. First, with the use of a recurrent
architecture as LSTM, not only the analysis of
previous elements is considered but also the
analysis of a long range context in the sequence.

Furthermore, the LSTM architecture was enriched
with bidirectional layers so the elements in the
sequence were examined in both directions.

Secondly, a deep architecture was defined by
stacking multiple bidirectional recurrent layers on
top of each other, with the output sequence of
one layer forming the input sequence for the next.
By stacking recurrent layers, the model generates
multiple levels of representation which proved to
be relevant in the processing of the phonemes.
In this way, the combination of multiple levels of
representation with long range context analysis of
the acoustic sequence was essential for building
up an effective stacked recurrent architecture for
speech recognition.

Pascanu et al. explored different ways to extend
a recurrent neural network (RNN) to a deep RNN
[18]. This research was inspired by previous works
showing how increasing the depth of a classic
neural network proved to be more efficient at
representing some functions than a shallow one.
Based on the processing of a simple RNN, they
analyzed the basic steps carried out by an RNN in
order to identify points of deeper extensions.

Since the basic steps: input-to-hidden function,
hidden-to- hidden transition and hidden-to-output
function are all shallow, that is, there is no
intermediate layer, an alternative deeper design
was proposed for each shallow point, and in this
way, deeper variants of an RNN.

For example, the hidden-to-hidden transition was
made deeper by having one or more intermediate
nonlinear layers between two consecutive hidden
states (ht−1 and ht).

Two deeper variants of an RNN were empirically
evaluated on the tasks of polyphonic music pre-
diction and language modeling. The experimental
results proved how the depth of the proposed
variants of an RNN was essential to outperform
the shallow RNNs. Another interesting outcome
of the experimentation was that each of the
proposed deep RNNs has a distinct characteristic
that makes it more, or less, suitable for certain
types of datasets.
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2.2 Linguistic Features

We now briefly describe some interesting works
about text complexity and constructiveness classi-
fication. Santucci et al. investigated the complexity
level of an Italian text from the classification
task perspective [20]. The experimentation made
use of a collection of texts produced for second
language teaching purpose and a large set of
linguistic features were defined to be used among
ten machine learning models where the random
forest stood out from the rest. But beyond the
good accuracy results obtained, the key point was
the conduction of a deep analysis to identify the
set of linguistic features that influenced the good
prediction results.

Another interesting investigation was carried out
by Yasseri et al. They investigated the complexity
of two categories of English texts from Wikipedia:
Simple and Main texts where both text samples
exhibit rich vocabulary. Statistical analysis of
linguistic units such as n–grams of words and part
of speech tags provided empirical evidence of how
the language of Simple texts is less complex due
to the use of shorter sentences.

With the comparison of these categories by the
Gunning readability index was evident the linguistic
complexity not only in terms of the linguistic
units but also in terms of the topic addressed
in texts: the language of conceptual articles is
more elaborate compared to biographical and
object–based articles [24].

Kolhatkar and Taboada implemented classical
(SVM classifiers) and deep (biLSTMs) learning
models to recognize constructive comments by
making use of two datasets for training: the
New York Times Picks as positive examples
and the Yahoo News Annotated Comments
Corpus as negative examples of constructive
online comments.

The learning models were evaluated on a crowd-
annotated corpus containing 1,121 comments. In
this investigation, multiple sets of constructiveness
features were defined: length, argumentation,
named–entity and text–quality features. The
purpose of such sets was the identification of those
crucial features to determine how argumentative
or constructive a comment is [13]. These sets of

constructiveness features provided the inspiration
for a deep work.

3 Learning Models and Linguistic
Characteristics

This section describes the stacked recurrent
architectures and the linguistic characteristics
of the texts contemplated in this study. As
we previously mentioned, the motivation of this
research is to investigate the impact of linguistic
complexity characteristics from texts on a deep
learning model defined in terms of a stacked
recurrent architecture. We first explain each
recurrent neural network and the corresponding
linguistic peculiarities that caused it. Then,
we describe the linguistic characteristics for the
analysis of how complex a text is.

3.1 Stacked Recurrent Architectures

Stacked Recurrent Architectures are the focus of
our attention in this work. A model based on vanilla
neural networks that increases its representational
capacity with more layers and more hidden units
per layer was the antecedent for the investigation of
stacked recurrent architectures. As we previously
said in section 2, stacked recurrent architectures
outperform single-layer networks on multiple tasks
such as phoneme recognition [8].

A stacked recurrent architecture can be defined
as a deep learning model comprised of multiple
recurrent layers where the output of one layer
serves as the input to a subsequent layer. The
intention of stacking recurrent layers is to increase
the representation power of a single recurrent
neural network in order to induce representations
at differing levels of abstraction across layers [11].
Critically important in this stacked architecture is
how a recurrent layer provides a full sequence
output rather than a a single value output obtained
at the last timestep. Figure 1 shows the structure
of a stacked recurrent architecture.

Now we describe the kind of recurrent layers
to be stacked in the definition of a deep learning
model, that is, the kind of recurrent neural networks
specialized for processing a sequence of elements
where the order of the textual elements (e.g.
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Fig. 1. Stacked Recurrent Architecture

words) is relevant to understand a document.
Since recurrent neural networks can be built in
many different ways, we study three basic and
popular architectures: simple recurrent networks
(SimpleRNN), LSTM and GRU.

Each of these architectures was created to
address some linguistic concern. Simple recurrent
networks (SimpleRNN), also known as Elman
Networks [5], are the first neural architecture to
represent the temporal nature of language as each
element of a sequence is processed at a time. The
key point in this model is the computation of the
hidden layer: to activate the current hidden layer
is necessary the value obtained in the previous
hidden layer corresponding to a preceding point
in time.

Equation (1) expresses the computation of the
hidden layer h where x denotes the sequence
(i.e. input) and g an activation function. W
denotes the weight matrix corresponding to the
input xt whereas U denotes the weight matrix
corresponding to the hidden layer of the previous
timestep ht−1. In this way, this connectionist model
is concerned with the context corresponding to
each element of the sequence:

ht = f(U ht−1 + W xt). (1)

However, since only previous elements are taken
into consideration, SimpleRNN cannot keep track
of long-term dependencies.

Long Short–Term Memory (LSTM) networks
were created to include the consideration of distant
constituents and, in this way, to extend the local
context to be analyzed. Vanishing gradient problem
is another difficulty with SimpleRNNs that arises
during the backward process for updating the
weights. In order to overcome these problems,
LSTM networks were created with three more
gates to forget information that is no longer needed
and to add information for posterior decisions [9].

It is precisely the addition of these gates that
makes of LSTM a complex recurrent network: 4
gates and 2 weights (U and W) to learn for each
gate. As an alternative to the LSTM network, the
Gated Recurrent Unit (GRU) was created by [3].
By reducing the number of gates to only 2 and
removing the context vector, GRU was introduced
as an architecture so effective as LSTM but less
complicated. Goldberg mentions, in his analysis
of the multiple neural network models for NLP [6],
the work of comparison between LSTM and GRU
carried out by Chung et al [4]. This investigation
evaluated these two recurrent architectures on two
tasks and found how the performance of GRU was
comparable to LSTM.

3.2 Linguistic Characteristics and Complexity

The linguistic characteristics for the analysis of
how complex a text is are explained here. As
a fundamental unit in the collection of texts, a
sentence and its complexity are crucial in this
investigation. Since the complexity of a sentence
is inherent to the difficulty of its understanding,
we analyze the complexity of a sentence from
the perspective of the computational difficulties
involved in its processing. To be more precise,
we analyze the complexity of a sentence from
the perspective of the computational difficulties
involved in the processing of the diverse recurrent
neural architectures.

A review of the literature on linguistic complexity
lead us to the work of Miller and Chomsky who
showed how a embedded structure, that is, a
syntactic structure that contains another syntactic
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structure nested within itself, is particularly difficult
for understanding and parsing processing [17].

In children education, an important area of
assessment is the understanding of complex
sentences [21]. Since a complex sentence is
mainly used for expressing a more elaborate
thought, it is crucial the use and identification of
complex sentences. In this study, the identification
of a complex sentence is based on the definition of
R. Paul [19]: a complex sentence is an embedded
sentence (it contains an independent clause and
a dependent clause) or conjoined sentence (it
contains two or more independent clauses joined
together using a conjunction).

In addition to the analysis of complexity based
on the number of embeddings, we also explore the
use of entropy, as how it is well known, entropy is a
measure of information randomness. We explore
in this work the use of entropy of a text as a
metric of how rich the vocabulary of the text is.
Taking as reference the work of [12] in which he
makes evident a correlation between the entropy
of a sentence and the complexity required for its
comprehension, the consideration of entropy in this
work is based on the assumption that if the text
is more complex, the author uses a more varied
vocabulary. We represent a text as a sequence of
words W = {w1,w2, . . . , wn} to compute the entropy
as follows:

H(w1,w2, . . . ,wn) = −
n∑

i=1

p(wi) log p(wi). (2)

Finally, we also contemplate textual properties
for the analysis of how long a text is. Based
on the assumption that if the text is more
argumentative, the author makes use of more
words and sentences, the number of sentences
and the number of content words in the text
are analyzed to determine the impact on the
performance of a learning model [13].

4 Experimental Evaluation

In order to provide empirical evidence for the rela-
tionship between different linguistic characteristics
of the texts and performance of stacked recurrent

architectures, our experimentation is based on
text classification.

In particular, we focus our attention on the
identification of constructive comments. In this
way, we begin this section with the description of
the corpus, that is, the collection of constructive
and non-constructive comments used in the
experimentation. Then, we describe the framework
of the experimentation and conclude with the
presentation of the obtained results for each
particular linguistic characteristic and each deep
learning model.

4.1 Data

The corpus used in our work, known as
Constructive Comments Corpus (C3), is a
collection of 12,000 online news comments with
metadata information about constructiveness and
toxicity [14].

The distribution of comments to classes repre-
sents an almost balanced dataset: 6,516 construc-
tive comments (54%) and 5,484 non-constructive
comments (46%). The comments to be submitted
to the annotation process were obtained from
the SFU Opinion and Comments Corpus (SOCC)
which contains a collection of opinion articles and
the comments posted by readers in response to the
article [15].

What does constructive mean? To give
answer to this question, a set of characteristics
was defined for the concept of constructive as
well as a set of characteristics for the notion
of non-constructive. The sub-characteristics
corresponding to each concept are shown in
Table 1.

In this way, when the comment exhibits
properties as evidence and dialogue there is
a high probability that annotators classify the
comment as constructive. And the opposite
is also possible: when the comment exhibits
properties as irrelevant and sarcastic there is
a high probability that annotators classify the
comment as non-constructive.
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Fig. 2. Experimentation process

Table 1. Characteristics

sub-characteristic
constructive
dialogue

Constructive solution
specific points
personal story
evidence
non constructive
provocative

Non-Constructive sarcastic
no respect
unsubstantial
non relevant

4.2 Experimental Setup

The Figure 2 illustrates the experimentation
process: from the comments collection we extract
a subset according to a particular linguistic
characteristic, and then, the extracted subset is
provided to the deep learning model corresponding
to each of the stacked recurrent architectures to be
considered in this study.

Before displaying the results for each linguistic
characteristic, we introduce the setup for the
definition of the deep learning models. The
first layer of each deep learning model is
defined by learning a distributed representation
corresponding to the subset of complex comments
previously extracted.

In other words, we define a deep learning model
with a word embedding as input where a word is
represented with an output vector size of 32.

The stack is created by progressively increasing
the recurrent layers from 1 to 5 so we can analyze
the impact of systematically increasing the layers
in the performance of the learning model.

The model is trained by using Adam as
the stochastic gradient descent optimizer for 10
epochs. Additional parameters for training are:
batch size = 64, learning rate = 0.01, and loss
function = ’binary crossentropy’.

In this way, a deep learning model is defined
for each recurrent neural architecture analyzed in
this work: simple recurrent network, LSTM and
GRU. As the number of available comments for
each linguistic characteristic varies, we perform
three-fold cross validation to use all of the pertinent
comments in the subset.
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4.3 Experimental Results

Embedded Clauses: in this case we first extract
the subset of comments which contains embedded
or conjoined sentences (from 0 to 3). The obtained
results for each deep recurrent architecture are
shown in Figure 3 where we can see how the
performance of the SimpleRNN model improves
as the number of layers increases regardless the
number of clauses the text contains. On the other
hand, increasing the layers to the GRU model
doesn’t influence the initial performance except
when the text contains three clauses at least.
However, the best performance is obtained with
the LSTM model when the comments contains two
clauses at least, that is, texts of great linguistic
complexity, and the number of layers is increased.

Entropy: in this case we first extract the subset
of comments for each entropy value (from 1 to 4)
as a useful indicator of how rich the vocabulary
of the text is. The obtained results for each deep
recurrent architecture are shown in Figure 4 where
we can see how the best performance is obtained
with the SimpleRNN model regardless the entropy
value. By increasing the number of layers, the
SimpleRNN model proves to be able to cope with
lexical variation. On the other hand, increasing the
layers to the LSTM and GRU models doesn’t cause
any impact on the initial performance.

Number of sentences and words: in this case
we first extract a subset of comments for each
limit of sentences (from 1 to 4) and for each limit
of words (from 10 to 40) as an indicator of the
computational processing demanded by the use of
more sentences and words. The obtained results
for each deep recurrent architecture are shown in
Figure 5 and 6.

About the impact of the number of sentences,
in Figure 5 we see how the performance of
the SimpleRNN model improves as the number
of layers increases regardless the number of
sentences the comment contains. On the other
hand, increasing the layers to the GRU model
doesn’t influence the single-layer performance
except when the text contains four sentences at
least. However, the best performance is clearly
obtained with the LSTM model when the linguistic
complexity is high, that is, when comments

contains three sentences at least. Said in another
way, when the comment substantiates its claims by
providing more details or reasons, increasing the
number of recurrent layers notoriously improves
the performance of the LSTM model.

Now, considering the number of words, in Figure
6 we see how, by increasing the number of
layers, the best performance is obtained with
the SimpleRNN model except when the comment
contains 40 words at least. However, the best
performance is obtained with the LSTM model
when the comments contains 40 words at least,
that is, by increasing the number of layers, the
LSTM model is able to cope with long and more
complex texts. On the other hand, increasing the
layers to the GRU model doesn’t influence the
initial performance so a shallow model seems to
be a good option.

5 Discussion

The benchmark for a discussion is the obtained re-
sults by the creators of the Constructive Comments
Corpus known as C3 [14]. They implemented
multiple experiments with two different learning
models: a classic model based on predetermined
features and deep learning models. Multiple sets
of features were analyzed with a classic SVM
model in order to figure out what properties cause
high impact in predicting constructiveness. In our
discussion, we make reference to those features
related to the linguistic characteristics analyzed in
this work only.

Embedded clauses: to have a better analysis
of the impact of the linguistic complexity denoted
by the number of embedded clauses in the texts,
Figure 7 shows how each stacked recurrent archi-
tecture behaves in different levels of complexity.
We see how all recurrent architectures struggle
when the complexity increases. Thus, this is an
empirical evidence of how the complexity of a text
is related to the number of embeddings, that is, the
number of nested clauses within the sentence [19].

Now, which has been the impact of a stacked
architecture? We see how by increasing the
number of recurrent layers the best performance
is obtained with a SimpleRNN model when the
level of complexity is low (stack size = 2). On the
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Fig. 3. Comment’s clauses and stacked recurrent architectures

Fig. 4. Comment’s entropy and stacked recurrent architectures
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Fig. 5. Comment’s sentences and stacked recurrent architectures

Fig. 6. Comment’s words and stacked recurrent architectures
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other hand, when the level of complexity is high,
the best performance is obtained with a LSTM by
increasing the number of layers (stack size = 3).
Thus, stacked recurrent architectures prove to be
useful to cope with high and low values of this
particular linguistic complexity.

We now compare the performance of our models
with the results obtained by Kolhatkar et al. [14].
They implemented a classic SVM model with
multiple sets of features where argumentation is
the set of features comparable to the complex
sentences analyzed in our case. The set of
argumentation features is:

— presence of discourse connectives (therefore,
due to),

— reasoning verbs (cause, lead),

— abstract nouns (problem, issue, decision,
reason),

— stance adverbials (undoubtedly, paradoxi-
cally).

These features were selected based on the
assumption that an argumentative text is one that
exhibits reasons and explanations. The result
obtained by the SVM model was a 0.76 F1
score whereas ours results for different levels of
complexity are shown in Figure 7. As we can
see in Table 2 (the values are obtained from
Figure 7), when the comments contains one or two
complex sentences at least, the results obtained
by the recurrent architectures are higher than the
SVM model.

Table 2. Two embedded clauses and stacked recurrent
architectures

model stack size acc
SimpleRNN 3 0.82

LSTM 2 0.86
GRU 1 0.80

However, when the comments contains three or
more complex sentences, the result obtained by
SimpleRNN is identical to the SVM model whereas
the result obtained by GRU is lower.

Table 3. Three or more embedded clauses and stacked
recurrent architectures

model stack size acc
SimpleRNN 2 0.76

LSTM 3 0.86
GRU 2 0.64

Table 3 shows a stacked LSTM model clearly
able to cope with the classification of argumenta-
tive comments, that is, the highest level of linguistic
complexity.

Entropy: Figure 8 shows the impact of the
linguistic complexity denoted by the entropy of the
texts where different levels of entropy for each
stacked recurrent architecture is displayed. In
this case we also see how the performance of all
recurrent architectures drops when the complexity
increases. For this reason the consideration
of textual entropy as linguistic complexity makes
evident the correlation between the entropy of
a sentence and the complexity required for its
comprehension suggested by Keller [12].

About the impact of a stacked architecture
we see in Figure 2 how by increasing the best
performance is obtained with a SimpleRNN model
for any level of complexity. For example, when the
level of complexity is low (entropy = 2), a stack
of four recurrent layers obtains good performance;
and when the level of complexity is high (entropy
= 4), a stack of four recurrent layers outperform
the LSTM and GRU architectures. On the other
hand, a deep model based on LSTM and GRU
architectures had no positive effect so a shallow
model was the best option in these cases.

In order to compare the performance of our
models with the results obtained by Kolhatkar
et al. [14], Text quality is the set of features
comparable to the use of entropy as an indicator
of a more varied vocabulary. The set of Text quality
features is:

— Readability score,

— Personal experience score.
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Fig. 7. Stacked recurrent architectures and Embedded clauses

Fig. 8. Stacked recurrent architectures and Entropy values
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These features were selected as an attempt to
quantify how hard a text is to read. The result
obtained by the SVM model was a 0.90 F1 score
whereas ours results for different entropy values
are shown in Figure 8. As we can see in Table 4
(the values are obtained from Figure 8), when the
comments contains a low entropy value (entropy ≥
2), the results obtained by the deep recurrent
architectures are higher than the SVM model.

However, when the comments contains a high
entropy value (entropy ≥ 4), the result obtained by
SimpleRNN is identical to the SVM model whereas
the results obtained by LSTM and GRU are
lower. Table 5 shows a stacked SimpleRNN model
achieving similar performance to the SVM model
when the readability of the comments demands a
rich vocabulary, that is, when the comments exhibit
the highest level of linguistic complexity.

As we previously said, Table 4 and Table 5 also
show how a deep model based on LSTM and GRU
architectures had no positive effect so a shallow
model was the best option in both cases.
Number of sentences and words: in this case,
from the results obtained by the analysis of number
of sentences and words, we can see in Figure
9 and Figure 10 how precision decreases as the
number of sentences and words in the comments
increases. This decline in the performance of the
recurrent architectures is a clear-cut evidence that
the complexity of constructive comments is related
to the number of sentences and words.

Figure 9 and Figure 10 also illustrates the impact
of a stacked SimpleRNN architecture. In fact, we
see how by increasing the number of recurrent
layers the best performance is obtained with a
SimpleRNN model when the level of complexity
is low (stack size = 2 for sentences and words).
Now, when the level of complexity is high, the
best performance is obtained with a stacked LSTM
architecture: stack size = 2 for sentences and stack
size = 3 for words. On the other hand, a deep
model based on GRU architecture had minimum
impact on the classification task.

In order to compare the performance of our
models with the results obtained by Kolhatkar et
al. [14], Length is the set of features comparable
to the use of number of sentences and words as

an indicator of a constructive comment. The set of
Length features is:

— Number of tokens in the comment,

— Number of sentences,

— Average word length,

— Average number of words per sentence

These features were selected to verify the
premise that the length of the text is a good
predictor of constructiveness. The result obtained
by the SVM model was a 0.93 F1 score whereas
ours results for various number of sentences and
words are shown in Figure 9 and Figure 10. As
we can see in Table 6 (the values are obtained
from Figures 9 and 10), when the comment is short
(number of sentences = 2), the results obtained
by a deep SimpleRNN architectures and GRU are
identical to the SVM model. The performance of
a single layer LSTM network is a bit higher on this
level of complexity.

Table 4. Low entropy (entropy ≥ 2) and stacked
recurrent architectures

model stack size acc
SimpleRNN 4 0.92

LSTM 1 0.92
GRU 1 0.90

Table 5. High entropy (entropy ≥ 4) and stacked
recurrent architectures

model stack size acc
SimpleRNN 4 0.90

LSTM 1 0.88
GRU 1 0.88

Table 6. Low number of Sentences and Words

Sentences = 2 Words ≥ 20
model stack size acc stack size acc

SimpleRNN 2 0.93 2 0.90
LSTM 1 0.94 1 0.89
GRU 1 0.93 1 0.88
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Fig. 9. Stacked recurrent architectures and Sentences values

Fig. 10. Stacked recurrent architectures and Words values
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Now, when the linguistic complexity of the text is
high, that is, when long comments contain at least
4 sentences or at least 40 words, a stacked model
implemented with a LSTM architecture obtains the
best performance. Table 7 shows how a stacked
LSTM model outperforms the SimpleRNN and
GRU architectures.

Table 7. High number of Sentences and Words

Sentences = 4 Words ≥ 40
model stack size acc stack size acc

SimpleRNN 3 0.77 3 0.73
LSTM 2 0.89 3 0.81
GRU 2 0.73 1 0.67

Computational cost: although increasing the
representational power of the network, stacking
recurrent layers entails a tradeoff to be considered.
In fact, stacking recurrent layers generates a
tradeoff between increasing network capacity
and demanding higher computational resources.
Since determining the runtime and memory
requirement of the recurrent architectures is highly
platform-dependent, we do not describe in this
work the computational cost in absolute terms. We
describe rather the computational cost as a degree
of runtime.

In this way, we show evidence of the computa-
tional cost of a stack recurrent architecture from
two perspectives:

— Processing time required for multiple number
of recurrent layers,

— Processing time required for each recurrent
architecture.

Figures 11 and 12 display the percent of
processing time required for each number of
recurrent layers considered in this investigation:
from 1 to 5 layers. Figure 11 shows the
computational resources demanded by a LSTM
model processing texts that contain one embedded
clause at least whereas Figure 12 shows the
same LSTM model processing texts that contain
two sentences. A linear correlation between
depth and time is observed in both figures: the

computational processing increases as the depth
of the model increases.

Now, Figures 13 and 14 display the percent
of processing time required for each recurrent
architecture considered in this investigation: Sim-
pleRNN, LSTM and GRU.

Figures13 and 14, corresponding to the pro-
cessing of texts that contain one embedded
clause at least and texts that contain two
sentences respectively, show how a stacked
learning model based on the GRU architecture
proves to be the most demanding model. On
the other hand, a deep model based on
the primitive SimpleRNN architecture does not
demand substantial computational resources.

Fig. 11. LSTM model processing texts that contain one
embedded clause

6 Conclusion and Future Work

We have analysed in this paper the implications
of linguistic complexity characteristics in the
performance of a deep learning model defined in
terms of a stacked recurrent architecture. To be
more specific, we explore linguistic characteristics
for the analysis of how complex a text is and, in
this way, to investigate the relationship between the
linguistic complexity of the texts and the depth of
the learning model.

By using qualitative (embedded clauses and
entropy) and quantitative (number of sentences
and words) methods, our experimentation based

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 921–938
doi: 10.13053/CyS-26-2-4260

How Much Deep is Deep Enough? 935

ISSN 2007-9737



Fig. 12. LSTM model processing texts of two sentences

Fig. 13. LSTM model processing texts that contain one
embedded clause

on the classification of constructive comments
provides empirical evidence of how the linguistic
complexity characteristics of the comments impact
the stacked recurrent architecture for the identifica-
tion of constructive comments.

For example, when the number of complex sen-
tences in the comments increases, a single-layer
recurrent architecture struggle on the identification
of constructiveness. Something similar occurs
when the entropy in the comments increase. We
show how by increasing the number of recurrent
layers, that is, by implementing a stacked recurrent
architecture, a better performance is achieved.

In fact, by applying stacked recurrent architec-
tures based on deep learning algorithms such as

Fig. 14. LSTM model processing texts of two sentences

SimpleRNN, LSTM and GRU, it was posible to
observe both the depth of the model improving the
results and the number of layers for a model to be
lost or stuck (i.e. overfitting) during the optimization
process. Finally, we also show how increasing
the representational power of the network by
stacking recurrent layers entails a tradeoff between
increasing network capacity and demanding higher
computational resources.

About future work, we are interested in exploring
different datasets. The experimentation conducted
exhibited how the number of comments available
for identification of constructiveness decreases
when the linguistic complexity increases. In order
to extend our conclusions, it is necessary the use
of a different corpus that allows to put aside this
limitation.

We are also interested in exploring the
intuition that adding a custom attention layer
to recurrent neural networks can improve their
performance when the linguistic complexity of
the texts increases. Since adding attention
component to the network has shown significant
improvement in tasks such as text summarization
and machine translation [7], we want to investigate
how an attention component contribuyes to a
better representation of complex texts (which
contain embedded clauses and long sentences) for
classification tasks.
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