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Abstract. Data fusion systems are applied greatly in

the militaries industry, medical equipments and other

multi-sensors systems. Here, the practical approaches

of data fusion like Kalman filter (KF), support vector

machine (SVM) and data fusion are surveyed for

the noisy multi-sensors systems.The angular velocity

quantum is one of the practical parameters in the

different systems in which the data fusion problem

is suggested for the measuring of them. For this

purpose, two gyroscopes with a same structure of

dynamic model and different parameters are utilized

that the Gussian noises with zero-mean and different

variances are applied to both of them to assessment

the gyroscope sensors data fusion problem. The

gyroscope outputs are estimated through the Kalman

filter approach. This suggested structure of the sensors

data fusion is evaluated for the systems’ outputs. The

convergence rate of Kalman filter coefficients and the

covariance error are compared among three suggested

structures of sensors data fusion. The simulation results

survey the effectiveness of gyroscope sensors data

fusion such that the obtained data by using multi-sensors

is more applicable than a single-sensor.

Keywords. Data fusion, Kalman filter (KF),

support vector machine (SVM), angular velocities,

gyroscope sensors.

1 Introduction

Data fusion systems are applied widely in the

sensor networks, robot systems, video-processing,

images-processing and intelligent design

systems. The emergence of new sensors,

advanced processing methods and improved

processing hardware allow researchers to develop

the data fusion.

The data fusion is proposed for the military

purposes, target trajectory tracking and medical

engineering [8]. This data fusion is a process

that the obtained information from various sensors

systems and states observers are combined to

provide the drawing accurate decision precision.

The problem of data fusion for multi-sensor

systems is based on the speed of the samples

with equal sampling rates resulting in relatively

simple data integration with limited application. The

input variables for the data fusion systems include

sensor information, command signals and previous

data. The data fusion problem provides a powerful

tool for information and draws decision [24].

Therefore, a combination of data analysis from

multiple sensors to increase knowledge of the

system is challenging task [16]. The data fusion of

multi-sensor measurements is a challenging task

as providing an estimation of the states vector

over a sensor. Among the many techniques

for multi-sensor data fusion, artificial intelligence,

pattern recognition and statistical estimations are

of the most importance of these attitudes [20].

There exist particular problems in the data

fusion like the presence of non-proportional

sensors, the emission of signals and noise

environments [12].

The most fundamental fusion characteristics

are the transfer functions of the dynamic model

among the observed states and the multi-sensor

parameters and the decision or inference. A

quantitative assessment of the data fusion
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Fig. 1. The suggested block-diagram of data fusion through an extended Kalman Filter for two gyroscopes

systems is obtained usually through Monte Carlo

simulations or analysis techniques of covariance

error [11]. The combination of multiple sensors is a

process of combining information that is gathered

from different sensors and takes place at three

levels of data, features, and decision making.

In the composition of data levels, all

unfeasible data measured by multiple sensors

is combined directly from a factor to generate

useful information. Consequently, the selection

of the described model depends on the function

of the sensor combination and there exist no

predefined model for data fusion.

In this article, Kalman filter is utilized for the

continuous linear models of sensors in categorizing

the state sequence and constitute with two

dynamic models of sensors in the data fusion

problem. This article is organized as follows.

Different methods of data fusion are introduced

in section 2. Examples of data fusion application

in the different systems are surveyed in section

3. Experimental example of data fusion method

with using an extended Kalman filter approach is

utilized in section 4 and the article is concluded in

section 5.

2 Different Methods of Data Fusion

2.1 Data Fusion by Applying Kalman Filter

Kalman filtering is widely applied in applications

like optimization, estimation methods, filtering

ability, measurement uncertainties, and

mathematical models in the modern techniques of

pursuing multi-sensory objectives [5]. The Kalman

filter is a data recursive algorithm that estimates

the uncertain system dynamics.

This algorithm is implemented subject to two

processes of prediction of states based on the

mathematical model and state correction based on

the measured data from the sensors.

In practice, the Kalman filter is implemented

with the assumptions that the systems is linearized

by a linear dynamic model and is usually

incompatible with the modeling error caused by the

linearization. All the system dynamics and noise

processes are specified exactly in the Kalman filter.

The combination of measured values is

preferable to the state-vector combination when

data fusion multi-sensor is based on the Kalman

filter. The state-vector data fusion methods will

be effective when the Kalman filter is stable,

which limits the practical applications of data fusion

methods; consequently, in many algorithms, the

information is optimized through the Kalman filter.

The extended Kalman filter combines the

measured data from multiple sensors to provide

optimal results in the accumulated error terms,

functionality, and frequency response. If this model

is fully adjusted, the residue tends to be zero

between the predicted and actual bode and

converge within a bounded range. The extended

Kalman filter equations are presented as follows:

xk+1 = f(xk, k) + wk, (1)

Pk = (I −Kk H)P̄k +Qk, (2)

where Kk is obtained as follows:

Kk = Pk HT

k [Hk Pk HT

k +Rk]
−1, (3)

x̂k = ˆ̄xk +Kk[zk −Hk
ˆ̄xk], (4)

where, Pk is the error covariance matrix, Kk is

an extended Kalman filter coefficient, Qk is the

discrete noise matrix, Hk is the attitude matrix

and Rk is the attitude noise matrix. There exist

two approaches for the combining multivariate data

fusion based on the Kalman filter: in the first,

the data taken from multiple sensors are simply

merged with the Kalman filter estimator vector and

in the second, the provided data by the sensors are
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Fig. 2. The suggested block-diagram for the data

fusion between two gyroscope sensors in the measuring

angular velocities

Fig. 3. The step response of data fusion between the

two gyroscope sensors

combined according to the LSE criterion [10]. To

estimate the online parameters, an extended

Kalman filter provides the best estimations for the

linear transfer function model.

The general block-diagram of the data fusion

is proposed through an extended Kalman filter

method as Figure 1. In this article, the values

of angular velocities are calculated through an

extended Kalman filter for two gyroscope sensors

with different transfer function models.

2.2 Data Fusion Using the Support Vector
Machine (SVM)

The divergence of the modeling errors is very

important in the Kalman filter transfer functions.

All the system state variables or estimation

errors matrices are unrealistically dimmed and

the Kalman filter loses its efficiency when

the measured values do not provide enough

information to be estimated. Moreover, the

estimates can be applied to solve the modeling

errors due to the divergence.

This issue increases the complexity of the

Kalman filter, and can not guarantee that all the

unstable states of the transfer function are the real

models. The data fusion problem is addressed by

the SVM algorithm that formulates the decisions

to separate the different regions [25]. The

support vector machine (SVM)-based multi-sensor

data-processing system extracts features from the

measured data [1].

A non-linear SVM provided through the kernel

function when the obtaining data from the sensors

does not change linearly becomes necessary

[4]. A sensory combination method for assessing

the physical activity of human beings based on

SVM, which is an effective in the reducing system

changes and, in particular, when the obtained data

is augmented from the sensors to the combination

transfer function model is proposed.

A hybrid method for categorizing the error

signal based on the combination of sensor data

through a SVM is proposed and a short-term

Fourier transform transformation (STFT) technique

is utilized. One of the advantages of SVM is the low

number of parameters necessary for computation

by the user where most of the parameters are

determined by the internal algorithm. Therefore,

the computational complexity of the SVM is subject

to the number of data points relative to the

system dimension.

2.3 Data Fusion for the Noise Systems

The data fusion problem is a challenging issue due

to the existence of inaccurate and misleading data,

contradictory data, data correlation, operation time,

data dimensions and noise data [26].
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Fig. 4. The estimated transfer function coefficients

through the extended Kalman filter

Fig. 5. The variation of the estimated transfer

function for obtaining angular velocities between two

gyroscope sensors

The combination of inaccurate dates like noise

can have an adverse effects on the parameters

estimation of transfer function. The common

filtering techniques, based on the Kalman filters,

rely on Gaussian noise and linear models that

are not appropriate for the noise environments,

accordingly, decisions are made on the basis of the

hypotheses given where a decision test is made to

ignore unreliable sensors [9].

3 Examples of Data Fusion Application
in the Distinctive Systems

Data fusion is usually run in the form of a

matrix method that separates the data sets from

the higher-order matrices [27]. To assess the

efficiency of the data combination in a random

manner, some coefficients are changed to

determine the effectiveness of the proposed

method in the determining measurement

parameters from inaccurate data. A new method

for thecoefficients estimation is presented by

applying a combination of two primary acceleration

and pressure sensors in [23].

A high-level sensor combination is applied

to get information from an unreachable sensors

[7]. An interpolation data combination operator

weighed by a sample of specific coefficients

is suggested such that this method is not

limited to clustering, classification, pattern

identification, group decision methods, and

data combinations [2].

An integrated algorithm is devised to combine

the data fusion to produce parameters estimates

some of the qualitative parameters in [6]. For

many applications, information is provided by

special sensors that are incomplete, inaccurate,

and invalid [3].

The problem of data combinations for system

instability, multi-speed, and multi-sensor linear

systems are assessed in [22], where, the transfer

function model is only specified for the best

sampling rate, and is developed to combine

the data from multi-sensor systems through

the Kalman filter. A multi-sensor combination

algorithm is proposed for the surgical surveillance

with a human body that combines devices and

explanatory data at a single moment [21].

4 An Experimental Example of the Data
Fusion Method Using an Extended
Kalman Filter Method

In this article, the data fusion is applied on some

multiple gyroscope sensors to estimate the state

variables. One of the most common factors in the

experimental systems is the control and evaluation

of angular velocities, which is measured by the

gyroscope sensors [17]. To measure the angular

velocities, the gyroscope sensors are modeled with

a suggested second order transfer function, that is

expressed as follows [18, 14]:

Ggyro(s) =
ω2
n

s2 + 2 η ωn s+ ω2
n

, (5)
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Fig. 6. The consecutive pulse response of gyroscope

sensors through extended Kalman filter in spite of the

applied noise

Fig. 7. The calculated coefficients by an

extended Kalman filter approach for the obtaining

angular velocities

where, parameters η and ωn denote the damping

rate and nature frequency, respectively. The

parameters of gyroscope transfer function model

Ggyro1 and Ggyro2 are specified with respect to

the times and are converted into a discrete form

through mapping z = eST with a sampling time of

t = 0.01 [15].

In order to evaluate the problem as best as

possible, two different variances are determined

based on the gyroscope sensors. As a result, the

equations of the proposed model are presented

for the gyroscope simulation with different systems

damping coefficients as follows:

Ggyro1 =
1

s2 + 1.8s+ 1
, (6)

Ggyro2 =
1

s2 + 0.8s+ 1
. (7)

The Gaussian noise with zero mean and

different variances 0.1 and 0.2 are augmented to

evaluate the effects of the proposed gyroscope

transfer function model, the measured values and

the applied noise [13, 19].

The suggested block-diagram of data fusion

between the two gyroscope sensors in the

measuring angular velocities is drawn as Figure 2.

In this section, three different data fusion structures

are proposed for the measuring angular velocities

between the two gyroscope sensors and their

results are compared:

f(x) =















































DF1 =
ω1 + ω2

2
,

DF2 =
2ω1 + ω2

3
,

DF3 =
ω1 + 2ω2

3
.

(8)

The suggested extended Kalman filter

algorithm is applied to combine the obtained

data from two gyroscope sensors according to the

proposed data fusion structures.

The step response of the gyroscope sensors

and the estimated transfer function coefficients

through an extended Kalman filter are shown in

Figures 3 and 4, respectively.

The covariances in a steady state of the

data-fusion methods are evaluated by the

changing process covariance to provide the

estimated coefficients for drawing accurate

decision precision.

The estimated transfer functions are calculated

from an extended filter Kalman for the measuring

angular velocities between the two gyroscope

sensors as follows:

Ĝgyro1 =
0.6

1− 1.3z−1 + 0.9z−2
, (9)

Ĝgyro2 =
1

1− 0.6z−1 + 0.9z−2
. (10)

The results of the data combination for the

measured values in the various transfer function

models are tabulated in Table 1, where, the terms
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Table 1. The comparison scenario between different

modes of the gyroscope sensors data fusion

States C1 Kk

S1 0.071 0.65

S2 0.056 0.51

DF1 0.073 0.25

DF2 0.022 0.38

DF3 0.021 0.29

Table 2. The comparison between Kalman filter

coefficients and errors variance for the different

noise covariance

Q var Kk

e−5 0.07 0.01580

e−4 0.23 0.04370

e−3 0.65 0.01317

e−2 0.17 0.35820

e−1 0.03 0.73220

S1 and S2 are the estimated data through an

extended Kalman filter approach for the data fusion

of two gyroscope sensors 1 and 2, Kk is an

extended Kalman filter coefficient and C1 is the

covariance error.

The error variance (var) for the different noise

covariance (Q) is tabulated in Table 2. The

variation of the estimated transfer function for

obtaining angular velocities of data fusion between

two gyroscope sensors is illustrated in Figure 5.

The numerical results indicate that the errors

variance and extended Kalman filter coefficients

increase for the convergence rate with increasing

in the noise covariance of different states.

By increasing the number of gyroscope sensors

in the multi-sensor transfer function models,

algorithms based on ordinary Kalman filters will

lead to more calculations and low resistance.

The consecutive pulse response of gyroscope

sensors and the calculated coefficients by an

extended Kalman filter approach are illustrated

for the obtaining angular velocities in spite of the

applied noise in Figures 6-7, respectively.

The evaluation of the tables 1 and 2, show

that the combination of data between the two

gyroscope sensors will have more flexibility in

relation to the proposed structures than a sensor.

The comparison scenario between extended

Kalman filtering coefficients (Kk). By increasing

the covariance of noise in the algorithm,

the error variance and the Kalman interest

coefficient increase.

From the obtained data fusion of the gyroscope

multi sensors for different responses in tables 1 and

2, the selection of the described transfer functions

of the dynamic models is correctly selected.

Consequently, the combined data is more

accurate and reliable than the received data from a

single sensor and all these features are combined

for the logical decisions.

The combination of decision-making is the

highest level of composition that incorporates the

combination of different sensors and implies the

importance of classifying the composition for the

best result.

5 Conclusion and Future Work

The results of the various experiments indicate that

the modeling and analyzing based on the data

fusion and multi-sensors are of a higher degree

than modeling based on a sensor system.

The data analysis is subjected to the applied

technique, the numbers of sensors and the working

conditions. Despite all the proper Kalman filtering

capabilities for data fusion, the great numbers of

modes are necessary for accurate estimation with

no ability to determine the parameters changes.

To measure the angular velocities, the

gyroscope sensors are modeled with a suggested

second order transfer function and the parameters

of these suggested models are calculated through

an extended Kalman filter. These obtained models

are investigated in the three structures of data

fusion to provide the drawing accurate decision.

Consequently, the collection and analysis of

data by obtaining multi-sensor sources can be

applied to each system that is more accurate and

in-depth than the obtained data results from a

single sensor.
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