
An Improved Estimation of Distribution Algorithm
for Mixed-Integer Nonlinear Programming Problems: EDAIImv

Daniel Molina-Pérez1, Efrén Mezura-Montes2,
Edgar Alfredo Portilla-Flores3, Eduardo Vega-Alvarado1

1 Instituto Politécnico Nacional,
Centro De Innovación Y Desarrollo

Tecnológico En Cómputo,
México

2 Universidad Veracruzana,
Instituto de Investigaciones en

Inteligencia Artificial,
México

3 Instituto Politécnico Nacional,
Unidad Profesional Interdisciplinaria de

Ingenierı́a Campus Tlaxcala,
Mexico

dmolinap1800@alumno.ipn.mx, emezura@uv.mx,
{aportilla, evega}@ipn.mx

Abstract. In a mixed-integer nonlinear programming
problem, integer restrictions divide the feasible region
into discontinuous feasible parts with different sizes.
Meta-heuristic optimization algorithms quickly lose
diversity in such scenarios and get trapped in local
optima. In this work, we propose an Estimation of
Distribution Algorithm (EDA) with two modifications from
its previous version (EDAmv). The first modification
consists in establishing the exploration and exploitation
components for the histogram of discrete variables,
aimed at improving the performance of the algorithm
during the evolution. The second modification is
a repulsion operator to overcome the population
stagnation in discontinuous parts, so as continuing
the search for possible solutions in other regions.
From a comparative study on 16 test problems, the
individual contribution of each modification was verified.
According to statistical test results, the new proposal
shows a significantly better performance than the other
competitors tested.

Keywords. Estimation of distribution algorithm, integer
restriction handling, mixed integer nonlinear program-
ming.

1 Introduction

Many optimization problems, especially in the field
of engineering, have variables that cannot take
every value in a continuous space. Instead, such
variables can only take integer values, or discrete
values in the general sense. Integer variables are
commonly used to define elements of the same
class, e.g., worker assignment, car control with
gear change, multi-stage mill design, selection of
standardized elements, etc. Nonlinear problems
where continuous, integer, and discrete variables
coexist are known as Mixed-Integer Nonlinear
Programming (MINLPs) problems [10]. In general,
a MINLP problem can be defined by (1) – (6):

minf(x,y), (1)

s.t. gi(x,y) ≤ 0, i = 1, ...,ni, (2)

hj(x,y) = 0, j = 1, ...,nj , (3)

xL
k ≤ xk ≤ xU

k , k = 1, ...,nk, (4)

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

ISSN 2007-9737

Fig. 1. MINLP problem example, where the shaded area represents the feasible region defined by the constraints, and
the red lines are the discontinuous feasible parts that also satisfy the integer restrictions

yLq ≤ yq ≤ yUq : integer, q = 1, ...,nq, (5)

[x,y] ∈ η, (6)

where f(x,y) is the objective function, x is a vector
of continuous decision variables, y is a vector of
integer decision variables, xL

k and xU
k are the lower

and upper bounds of xk, respectively, yLq and yUq
are the lower and upper bounds of yq, respectively,
η is the decision variable space, gi(x,y) is the
ith inequality constraint, and hj(x,y) is the jth
equality constraint.

In a MINLP problem, the integer restrictions
divide the feasible region into discontinuous
feasible parts with different sizes. Fig. 1 shows a
MINLP problem, where x is a continuous variable,
and y is an integer variable.

The shaded area is the feasible region defined
by the constraints, and the red lines are the
discontinuous feasible parts that also satisfy the
integer restrictions.

In recent years, meta-heuristic optimization
algorithm have gained popularity over classical
MINLP techniques.

Different extensions of genetic algorithms [2],
particle swarm optimization [4, 16], differential

evolution [1, 5], ant colony optimization [13],
harmony search [3], estimation of distribution
algorithm [15], aimed at solving MINLP problems
have been proposed.

The most significant advantage of these algo-
rithms is their robustness regarding the function
properties, such as non-convexity or discontinu-
ities [12].

The classical MINLP techniques (like branch and
bound, cutting planes, outer approximation) gen-
erally require prior convexification and relaxation
operations, which are not always possible [11].

On the other side, when the population of
meta-heuristic optimization algorithm converges
to a discontinuous feasible part, it quickly loses
diversity, and the exploration is reduced, with no
possibility of jumping out to another discontinuous
feasible part. Compared to larger discontinuous
parts, it is difficult to find feasible solutions in the
smaller parts. If the best solutions are located in
small parts, then the population might converge to
the wrong solutions.

Only a few recent works focused on MINLP
problems consider the drawbacks described
above. In [7], a multiobjective differential evolution
is proposed.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

Daniel Molina-Pérez, Efrén Mezura-Montes, Edgar Alfredo Portilla-Flores, et al.164

ISSN 2007-9737

pi,0 pi,1 pi,2 pi,3 pi,4

Pri

pi,5 pi,0 pi,1 pi,2 pi,3 pi,4

Pri

pi,5

a aa

a aa

pi pi

c c

(a) (b)

Fig. 2. Search progress of the AWH model for W = 3. (a) first generations, (b) later generations

This strategy gives equal priority to integer
conditions and quality of the solution, and the
population converges to good regions regarding
both criteria.

In [6], the authors propose a cutting strategy that
penalizes non-promising solutions, which means
that non-promising parts are progressively dis-
carded.

In addition, they propose a repulsion strategy
that penalizes the discontinuous parts where the
population is trapped, in order to search better
solutions in other regions.

More recently, in [9] the Estimation of Distribution
Algorithm for Mixed-Variable Newsvendor problem
(EDAmvn) [15] is improved and proposed to
MINLP problems.

The new proposal (EDAmv) uses the ε-
constrained method to explore the smaller dis-
continuous feasible parts from infeasible contours.
Also, the hybridization with a mutation operator
is proposed.

In this work, we propose an algorithm,
EDAIImv, with two modifications from the
original EDAmv.

The first modification consists in establishing the
exploration and exploitation components for the
histogram of discrete variables, using the balance
between both terms to improve the performance of
the algorithm during the evolution.

The second modification is a repulsion operator
to overcome the population stagnation in discon-
tinuous parts, and continue the search for possible
solutions in other regions.

Through a comparative analysis, the individual
contribution of each modification to the algorithm

performance was verified. The performance of
EDAIImv is significantly higher than those of the
compared algorithms.

2 Estimation of Distribution Algorithm

EDAmv is an improved version of EDAmvn,
originally proposed in [15]. It uses an Adaptive-
Width Histogram (AWH) model for handling con-
tinuous variables, and an ε-linked Learning-Based
Histogram (LBHε) model for handling discrete
variables.

New variable values are generated from sta-
tistical sampling. In the case of continuous
variables, statistical sampling is hybridized with a
mutation operator.

The replacement mechanism to get the next
population is carried out through parent-offspring
competition using the ε-constrained method.

2.1 Adaptive-width Histogram Model

The AWH model promotes promising regions
by assigning them high probabilities, while in
the other regions very low probabilities are
assigned. One AWH is developed for each
decision variable independently.

The search space [ai, bi] of the ith variable xi is
divided into (W + 2) bins (regions), to define the
probabilities Prci for the AWH model.

Points [pi,0, pi,1, ..., pi,w+1, pi,w+2] define the
width of the bins shown in Fig. 2, where pi,0 = ai
and pi,w+2 = bi (ai and bi are the lower and upper
bounds of xi, respectively).

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

An Improved Estimation of Distribution Algorithm for Mixed-Integer Nonlinear ... 165

ISSN 2007-9737

0

Pr
m

1 2 53 4 0

Pr
m

1 2 53 4v v

d d

(a) (b)

Fig. 3. LBHε model for v = 6. (a) ε > εp equal probability for all available integer values, (b) ε ≤ εp considering
population distribution

The total number of bins is (W + 2) although
the input parameter for EDAmv is W , since the
algorithm creates two more bins: one between
the lower boundary ai and the point pi,1, and
another one between the point pi,w+1 and the
upper boundary bi (unpromising regions).

By assuming that x1
i,min and x2

i,min are the
smallest and the second smallest existing values
of variable xi, respectively, and x1

i,max and x2
i,max

are the highest and the second highest existing
values of variable xi, respectively, then points pi,1
and pi,w+1 are defined as in (7) and (8):

pi,1 = max
{
x1
i,min − 0.5(x2

i,min − x1
i,min), pi,0

}
, (7)

pi,w+1 = min
{
x1
i,max+0.5(x1

i,max−x2
i,max), pi,w+2

}
, (8)

The W bins of the promising areas are located
in the range [pi,1, pi,w+1], and have the same width
a, given by (9):

a =
(pi,w+1 − pi,1)

W
. (9)

Let Ai,j be the count of individuals for the ith
variable located in the jth bin. As can be seen
in Fig. 2, the end bins do not contain solutions
(unpromising regions), then Ai,1 = Ai,W+2 = 0.

However, a small value will be assigned through
the parameter eb, to avoid premature convergence.
Ai,j is obtained by (10):

Ai,j =

Ai,j , if 2 ≤ j ≤ (W + 1),

eb, if j = 1, (W + 2), and pi,j > pi,j−1,

0, if j = 1, (W + 2), and pi,j = pi,j−1.

(10)

The first case in (10) is the count of bins of
promising regions [pi,1, pi,w+1]. The second case
corresponds to unpromising regions with eb value.

The third case assigns zero to the end bins with
empty range. The probability of the ith variable in
the jth bin is obtained by (11):

Prci,j =
Ai,j

W+2∑
k=1

Ai,k

. (11)

2.2 Learning-based Histogram Model Linked
with ε-constrained

The LBHε model is used for handling integer
variables. It is a link between the LBH model and
the ε-constrained method.

The aim is to maintain an equal probability
for all available integer values until ε reaches a
predefined value εp, as is shown in Fig. 3 (a).

When ε reaches εp, the LBH model begins the
learning process, i.e., considering the information
of the population distribution to update the
probability, as shown in Fig. 3 (b).

If the ε-constrained method has been effective,
for values of ε sufficiently small, the solutions must
be close to those parts of the feasible region with
promising objective function values.

Therefore, if the histogram begins the learning
process at that point, it has a better chance of
converging to good solutions.

Considering that the variable ym has
v available integer values, with v ∈
{Lm,Lm + 1,Lm + 2, ...,Um}, the probability
of the nth available value of v is defined by (12):

Pr
d
m,v(t) =

1

(Um − Lm) + 1
, if ε > εp,

(1 − γ) · Prdm,v(t − 1) +
γ Countv

N
, if ε ≤ εp,

(12)

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

Daniel Molina-Pérez, Efrén Mezura-Montes, Edgar Alfredo Portilla-Flores, et al.166

ISSN 2007-9737

0

Count (t)v

1 2 53 4 v

γ=1

γ=0.5

γ=0

Fig. 4. LBHε model, γ=0 random exploration, γ=0.5 middle consideration of population distribution, γ=1 total
consideration of population distribution

where N is the population size, t is the current
generation, γ is the population learning rate, and
Countv is the number of individuals with the nth
available value of v.

Let tmax be the maximum number of genera-
tions, and γ a dynamic parameter defined by (13):

γ =
t

tmax
. (13)

Therefore, as the number of generations
advances, γ gradually increases as well, which
implies an accelerated learning process, i.e.,
the model uses more information of the current
population distribution.

2.3 Sampling

After the histograms have been developed, the
offspring is obtained by sampling the models.

In case of a continuous variable xi, a bin j is
firstly selected according to a randomly generated
probability, then xi is uniformly sampled from the
points that limit the bin selected [pi,j−1, pi,j).

For a discrete variable ym, an available value
of v ∈ {Lm,Um} is selected by a randomly
generated probability.

2.4 Hybridization with a Mutation Operator

The mutation operation is added to generate the
real variables. The vector of real variables x
of each offspring is generated by mutation or
by sampling taking into account the predefined
mutation probability rM , i.e. if this probability is
satisfied for a solution vector, its real variables are
computed as shown in (14) and (15):

xg+1
k,i = xg

best,i + β · (xg
best,i − xg

k,i), (14)

β = βmin + randk,i ·(βmax − βmin), (15)

where k, i are the index of the current solution
vector and current variable, respectively, g is the
current generation, xg

best,i is the ith variable of
the best solution vector found so far, randk,i
is a random number between 0 and 1, and
βmin and βmax are the lower and upper bounds
of β predefined by the user, with values
between 0 and 1.

In the new proposal the values of βmin and βmax

will always be set to 0 and 1, respectively.

2.5 Constraint Handling

The replacement mechanism to get the next
population is carried out through parent-offspring
competition using the ε-constrained method.

The ε-constrained method was proposed by
Takahama and Sakai [14] as a constraint-
handling technique.

Given two function values f(x1), f(x2), and two
constraint violations ϕ(x1), ϕ(x2) for two points x1

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

An Improved Estimation of Distribution Algorithm for Mixed-Integer Nonlinear ... 167

ISSN 2007-9737

Table 1. PSOmv, EDAmv, EDAmv(I), and EDAIImv results

Problem Status PSOmv EDAmv EDAmv(I) EDAIImv

F1
FR 100 100 100 100
SR 0 100 0 100

Ave ± Std Desv 17.000±0.000 + 13.000±0.000 ≈ 17.000±0.000 + 13.000±0.000

F2
FR 100 100 100 100
SR 100 100 100 100

Ave ± Std Desv 1.000±0.000 ≈ 1.000±0.000 ≈ 1.000±0.000 ≈ 1.000±0.000

F3
FR 100 100 100 100
SR 24 100 76 100

Ave ± Std Desv -3.879±0.217 + -4.000±0.000 ≈ -3.880±0.218 + -4.000±0.000

F4
FR 100 100 100 100
SR 100 100 100 100

Ave ± Std Desv -6.000±0.000 ≈ -6.000±0.000 ≈ -6.000±0.000 ≈ -6.000±0.000

F5
FR 100 100 100 100
SR 0 100 76 100

Ave ± Std Desv 1.240±0.000 + 0.250±0.000 ≈ 0.488±0.432 + 0.250±0.000

F6
FR 100 100 100 100
SR 100 100 100 100

Ave ± Std Desv -6,783.582±0.000 ≈ -6,783.582±0.000 ≈ -6,783.582±0.000 ≈ -6,783.582±0.000

F7
FR 96 100 100 100
SR 0 24 28 36

Ave ± Std Desv NA + 0.895±0.235 + 0.725±0.361 + 0.642±0.359

F8

FR 100 92 100 100
SR 0 0 0 0

Ave ± Std Desv 7,222.847±94.800 - NA + 7,971.856±518.086 ≈ 7,986.723±906.139

F9
FR 100 88 100 100
SR 16 0 0 0

Ave ± Std Desv 7,284.444±283.224 - NA + 8,305.496±742.746 ≈ 8,391.061±854.267

F10
FR 100 64 96 100
SR 64 0 0 0

Ave ± Std Desv 7,337.332±277.610 - NA + NA + 8,086.671±641.101

F11
FR 100 100 100 100
SR 0 0 0 0

Ave ± Std Desv 46.280±6.601 + 40.785±5.484 + 38.119±5.378 ≈ 37.822±5.334

F12
FR 100 100 100 100
SR 0 0 0 4

Ave ± Std Desv 90.048±17.975 + 74.500±30.941 + 51.976±20.146 ≈ 56.201±23.594

F13
FR 100 100 100 100
SR 0 0 0 4

Ave ± Std Desv 8,956.649±7.448 ≈ 8,943.236±29.864 ≈ 8,955.137±31.467 ≈ 8,949.792±35.701

F14
FR 100 100 100 100
SR 0 48 60 76

Ave ± Std Desv 8,977.707±66.813 + 8,963.673±41.007 ≈ 8,954.966±10.181 ≈ 8,958.233±41.392

F15
FR 100 100 100 100
SR 0 0 0 0

Ave ± Std Desv 30.899±1.203- 34.997±3.938 + 30.580±1.827 ≈ 31.639±2.105

F16
FR 100 100 100 100
SR 0 0 0 0

Ave ± Std Desv 31.086±0.001 - 51.652±23.202 + 31.598±1.353 ≈ 31.636±1.365

[+/ = /−] [7/4/5] [8/8/0] [5/11/0] —–

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

Daniel Molina-Pérez, Efrén Mezura-Montes, Edgar Alfredo Portilla-Flores, et al.168

ISSN 2007-9737

and x2, the ε-constrained method uses the ε-level
comparisons described in (16):

(f1,ϕ1) ≤ε (f2,ϕ2) =

f1 ≤ f2, if ϕ1,ϕ2 ≤ ε,

f1 ≤ f2, if ϕ1 = ϕ2,

ϕ1 < ϕ2, otherwise,

(16)

where ε-level comparisons are defined as an
order relation on a pair of objective function and
constraint violation values (f(x),ϕ(x)).

This means that the candidates with a violation
sum lower than ε are considered as feasible
solutions and are ordered according to their
fitness values.

In the case of ε = 0, ϕ(x) always precedes
f(x). Therefore, this method favors the approach
to the feasible region by keeping slightly infeasible
solutions with promising fitness values.

The ε-level decreases at each iteration G until
the predefined iteration number Tc is reached,
after that ε = 0, as indicated by (18):

ε(0) = ϕ(xθ), (17)

ε(G) =

{
ε(0)(1− G

Tc
)cp, if 0 < G < Tc,

0, otherwise,
(18)

where cp is a parameter to control the speed of
constraint relaxation, ε(0) is the initial value of ε,
and xθ is the top θth in an array sorted by total
constraint violation (θ = 0.2N).

3 Proposed Method

Two modifications for EDAmv are proposed.

The first proposed modification focuses on
establishing a new balance between exploration
and exploitation of the LBHε model, in order
to contribute to the algorithm performance dur-
ing evolution.

The second modification is based on the
repulsion of discontinuous parts that stagnate the
population, with the aim of seeking better solutions
in other discontinuous parts.

3.1 LBHε Improvement

As described in (12), γ is the learning rate of
the population. A high value of γ increases
the role of the population distribution Countv /N
in obtaining the Prdm(t), whereas a low value
mainly considers the histogram of the previous
generation, Prdm(t− 1).

However, when certain admissible values begin
to prevail statistically over others, the histograms
and the populations begin to be similar, so
the terms of the equation (12), instead of
combining different information, emphasize the
same search direction and cause accelerated (and
often premature) convergence.

In this work, the following LBHε model
is proposed:

Prdm,v(t)=

Pedm,v , ifε > εp,

(1−γ) · Pedm,v+γ ·
Countv

N
, if ε ≤ εp,

(19)

where Pedm are equal probabilities for all v values
of the mth variable, and are given by (20):

Pedm,v =
1

(Um − Lm) + 1
. (20)

In this model, Pedm contributes to the exploration
of the algorithm, while Countv /N contributes to
the exploitation on the most populated regions
(promising regions).

As can be seen in Fig. 4, now for very low
values of γ, the histogram will be flatter (low
selection pressure).

As the value of γ increases, the histogram and
selection pressure will be more consistent with the
population distribution. As in the previous case, γ
is a dynamic parameter defined by (13).

3.2 Repulsion

The repulsion strategy proposed in [6] consists
of two steps: (i) judge whether the population
is trapped into a solution, and (ii) apply a
repulsion operator to the discontinuous feasible
part containing the solution, and restart the
population. Eq. (21) is the fail consideration to find
a better solution:

(fbest − f ′
best) ≤ 0 & (gbest − g′best) ≤ 0, (21)

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

An Improved Estimation of Distribution Algorithm for Mixed-Integer Nonlinear ... 169

ISSN 2007-9737

where fbest and gbest are the objective function
value and the degree of constraint violation of
the best solution found so far, respectively, f ′

best

and g′best are the objective function value and the
degree of constraint violation of the best solution in
the current generation, respectively.

If (21) is satisfied, it means that the algorithm
fails to find a better solution, then the counter is
incremented (ctr = ctr+1). If (21) is not satisfied
in any generation, the counter is reset (ctr = 0).

If ctr is greater than a predefined failure
threshold T , the population is considered to be
trapped in a solution, and the discontinuous
feasible part (y) containing that solution has been
explored. Then the population is regenerated, and
the solution is recorded in the store archive. Any
population member that has a vector y contained
in store will be penalized with an arbitrarily large
degree of constraint violation.

ε-constrained method is also restarted but with
a new Tc value with fewer generations, called fast
generation control (T ′

c). At the end of the execution,
the recorded solutions should be considered to
return the best solution.

4 Experimentation and Results

4.1 Benchmark Problems

Sixteen MINLP problems (F1-F16) were used to
evaluate the performance of EDAIImv. Because
of the space limitation, a detailed description of the
problems is not included, but it can be found in [6].

The maximum number of objective function eval-
uations was set at 200,000, and 25 independent
runs were executed for each problem. The
tolerance value for the equality constraints was set
at 1.0E-04.

A run was considered as successful if:
|f(xbest) − f(x∗)| ≤1.0E-4, where x∗ is the
best known solution and xbest is the best solution
provided by the algorithm.

4.2 Algorithms and Parameter Settings

PSOmv [16], EDAmv [9], and EDAIImv were the
competing algorithms in the experiment. PSOmv

also uses the LBH model for handling discrete
variables. However, the γ is an adaptive parameter,
and the LBH probability is updated using only the
best half of the swarm.

To prove the individual contribution of each mod-
ification proposed, the instance with only LBHε
improvement (EDAmv(I)) was also included. The
algorithms were tuned using the iRace parameter
tuning tool [8]. The parameter values were as
follows:

– PSOmv: swarm size N = 300, acceleration
coefficient c = 1.5299, learning rate γ = 0.0125.

– EDAmv: N = 50, numbers of bins W = 4, end
bins parameter eb = 2.3959, control generation
Tc = 3, 000, control speed parameter cp =
8, link parameter εp = 0.2399, and mutation
parameters: rM = 0.6, βmin = 0.3, βmax = 0.9.

– EDAmv(I): N = 50, W = 3, eb = 2, Tc = 2000,
cp = 7, εp = 5, and rM = 0.3.

– EDAIImv: N = 50, W = 3, eb = 2, Tc = 2000,
cp = 7, εp = 5, rM = 0.3, failure threshold T =
400, and fast control generation T ′

c = 200.

4.3 Analysis of Results

Table 1 summarizes the results of PSOmv,
EDAmv, EDAmv(I), and EDAIImv.

These results are assessed considering the
terms Feasible Rate (FR), Successful Rate (SR),
Average (Ave), and Standard Deviation (Std Dev),
over 25 independent runs. “NA” means that an
algorithm cannot achieve 100% FR.
EDAmv(I) beats EDAmv in nine problems

(F7:F12, F14:F16) in at least one of the term
concerned, proving that LBHε has a positive
influence on the algorithm performance.

As mentioned above, the LBH model (used
in EDAmv) has two terms that could contain
redundant information, producing an acceler-
ated convergence.

However, for problems F1, F3, and F5, where
the solutions are in small feasible parts, a slower

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

Daniel Molina-Pérez, Efrén Mezura-Montes, Edgar Alfredo Portilla-Flores, et al.170

ISSN 2007-9737

convergence of LBHε (used in EDAmv(I)) causes
that the ε-level reaches zero value when the
histogram has not yet converged to the small
promising part.

The repulsion strategy is very useful for this
situation, since restarts the exploration in the
remaining unexplored parts.

As can be seen, the implementation of repulsion
strategy in EDAIImv improves the performance for
problems F1, F3, and F5 without compromising the
rest of the problems.

A Wilcoxon’s rank-sum test at a 0.05 significance
level was carried out between EDAIImv and each
competitor, in order to evaluate the significant
differences in the results.

In Table 1, [+], [≈] and [−] denote that EDAIImv

is better than, worse than, and similar to its current
competitor, respectively.

As shown in the final part of Table 1, the results
of EDAIImv are significantly better than EDAmv

in eight problems (F7:F12, F15,F16), similar in
another eight problems (F1:F6, F13, F14), and
in no case EDAmv surpasses the result of the
new proposal.

EDAmv(I) results are outperformed on five
problems (F1, F3, F5, F7, F10), matched on eleven
problems (F2, F4, F6, F8, F9, F11:F16), and in no
case is EDAIImv outperformed by EDAmv(I).

It is clear that EDAIImv has significantly better
results than previous variants. Analyzing the
results of this sequenced implementation, it can
be concluded that each proposed modification
contributes to a better performance.

Regarding PSOmv, the new proposal is sig-
nificantly better in seven test problems (F1, F3,
F5, F7, F11, F12, F14) and no difference in
four problems (F2, F4, F6, F13), while PSOmv

outperformed EDAIImv in five problems (F8, F9,
F10, F15, F16).

Although in general EDAIImv has a better
performance than PSOmv, the advantage of
PSOmv in the last mentioned problems is due to
a superior diversity in the exploration.

Therefore, it is recommended in future works to
focus on promoting greater diversity in EDAIImv.

5 Conclusion and Future Work

EDAIImv was proposed with two modifications
regarding its previous version EDAmv.

The first modification establishes a better
balance between the exploration and exploitation
terms in LBHε, aimed at improving the perfor-
mance of the algorithm during the evolution.

The second modification is a repulsion operator
to overcome the population stagnation in discon-
tinuous parts, and continue the search for good
solutions in other regions.

Through a comparative analysis on sixteen
test problems, the individual contribution of
each modification to the algorithm performance
was verified.

According to the Wilcoxon’s rank-sum,
EDAIImv showed significantly better performance
than its previous version.

The benchmark was also used to compare the
performance of the improved proposal against
PSOmv. Overall, EDAIImv has a better
performance than PSOmv.

However, PSOmv presents an advantage in
some problems due to a superior diversity in the
exploration. Therefore, it is recommended in future
works to focus on promoting higher diversity in
the EDAIImv.

Acknowledgments

The first author acknowledges support from
the Mexican National Council of Science and
Technology (CONACyT) through a scholarship to
pursue graduate studies at the CIDETEC-IPN.

First and third authors acknowledge support
from SIP-IPN through project No. 20221928.

Fourth author acknowledges support from SIP-
IPN through project No. 20221960.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

An Improved Estimation of Distribution Algorithm for Mixed-Integer Nonlinear ... 171

ISSN 2007-9737

References

1. Datta, D., Figueira, J. R. (2013). A real–integer–
discrete-coded differential evolution. Applied Soft
Computing, Vol. 13, No. 9, pp. 3884–3893. DOI:
10.1016/j.asoc.2013.05.001.

2. Deep, K., Singh, K. P., Kansal, M. L., Mohan, C.
(2009). A real coded genetic algorithm for solving
integer and mixed integer optimization problems.
Applied Mathematics and Computation, Vol. 212,
No. 2, pp. 505–518. DOI: 10.1016/j.amc.2009.02.
044.

3. Lee, K. S., Geem, Z. W., Lee, S.-h., Bae, K.-w.
(2005). The harmony search heuristic algorithm
for discrete structural optimization. Engineering
Optimization, Vol. 37, No. 7, pp. 663–684. DOI:
10.1080/03052150500211895.

4. Li, L., Huang, Z., Liu, F. (2009). A heuristic particle
swarm optimization method for truss structures with
discrete variables. Computers & structures, Vol. 87,
No. 7-8, pp. 435–443. DOI: 10.1016/j.compstruc.
2009.01.004.

5. Lin, Y., Liu, Y., Chen, W. N., Zhang, J.
(2018). A hybrid differential evolution algorithm for
mixed-variable optimization problems. Information
Sciences, Vol. 466, pp. 170–188. DOI: 10.1016/j.ins.
2018.07.035.

6. Liu, J., Wang, Y., Huang, P. Q., Jiang, S.
(2021). Car: A cutting and repulsion-based evo-
lutionary framework for mixed-integer programming
problems. IEEE Transactions on Cybernetics. DOI:
10.1109/TCYB.2021.3103778.

7. Liu, J., Wang, Y., Xin, B., Wang, L. (2021). A biob-
jective perspective for mixed-integer programming.
IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems, Vol. 52, No. 4, pp. 2374–2385. DOI:
10.1109/TSMC.2020.3043642.

8. López-Ibáñez, M., Cáceres, L. P., Dubois-
Lacoste, J., Stützle, T. G., Birattari, M.
(2016). The irace package: User guide. IRIDIA,
Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle, Univer-
sité Libre de Bruxelles.

9. Molina-Pérez, D., Portilla-Flores, E. A., Mezura-
Montes, E., Vega-Alvarado, E. (2022). An
improved estimation of distribution algorithm for
solving constrained mixed-integer nonlinear pro-
gramming problems. IEEE World Congress on
Computational Intelligence, IEEE, pp. 1–8. DOI: 10.
1109/CEC55065.2022.9870338.

10. Ponsich, A., Azzaro-Pantel, C., Domenech,
S., Pibouleau, L. (2007). Mixed-integer nonlinear
programming optimization strategies for batch plant
design problems. Industrial & engineering chemistry
research, Vol. 46, No. 3, pp. 854–863. DOI: 10.1021/
ie060733d.

11. Sahinidis, N. V. (2019). Mixed-integer nonlinear
programming 2018. Optimization and Engineering,
Vol. 20, No. 2, pp. 301–306. DOI: 10.1007/
s11081-019-09438-1.

12. Schlueter, M. (2012). Nonlinear mixed integer
based optimization technique for space applications.
Ph.D. thesis, University of Birmingham.

13. Schlüter, M., Egea, J. A., Banga, J. R.
(2009). Extended ant colony optimization for
non-convex mixed integer nonlinear programming.
Computers & Operations Research, Vol. 36, No. 7,
pp. 2217–2229. DOI: 10.1016/j.cor.2008.08.015.

14. Takahama, T., Sakai, S. (2006). Constrained
optimization by the ε constrained differential
evolution with gradient-based mutation and feasible
elites. IEEE international conference on evolutionary
computation, IEEE, pp. 1–8. DOI: 10.1109/CEC.
2006.1688283.

15. Wang, F., Li, Y., Zhou, A., Tang, K. (2019).
An estimation of distribution algorithm for mixed-
variable newsvendor problems. IEEE Transactions
on Evolutionary Computation, Vol. 24, No. 3,
pp. 479–493. DOI: 10.1109/TEVC.2019.2932624.

16. Wang, F., Zhang, H., Zhou, A. (2021). A particle
swarm optimization algorithm for mixed-variable
optimization problems. Swarm and Evolutionary
Computation, Vol. 60, pp. 100808. DOI: 10.1016/j.
swevo.2020.100808.

Article received on 06/07/2022; accepted on 19/09/2022.
Corresponding author is Efrén Mezura-Montes.

Computación y Sistemas, Vol. 27, No. 1, 2023, pp. 163–172
doi: 10.13053/CyS-27-1-4532

Daniel Molina-Pérez, Efrén Mezura-Montes, Edgar Alfredo Portilla-Flores, et al.172

ISSN 2007-9737

