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Abstract. Generative Adversarial Networks (GANs)

are a type of generative model widely used in various

applications, but they often suffer from a common

problem called mode collapse. This phenomenon

occurs when the generator learns to produce only a

small group of images instead of diverse ones. Mode

collapse can occur for two reasons: firstly, when the

discriminator becomes so effective that the generator

can no longer learn, and secondly, when the generator

finds a way to deceive the discriminator with a small

number of samples, causing it to lack the motivation

to diversify its outputs. This study evaluates multiple

GAN-based models with various metrics that measure

mode collapse. The behavior of models with similar

parameters is analyzed.

Keywords. Generative Models, Mode Collapse,

Comparative, GAN, Metrics.

1 Introduction

Generative Adversarial Networks [5] (GANs) are

a machine learning model used to generate new

data from an existing dataset. GANs consist of two

competing neural networks, the generator, and the

discriminator, in an iterative training process.

The generator takes a random input, often

referred to as ”noise,” and uses it to create a new

image, sound, text, or another type of data that

resembles the training dataset. The discriminator,

on the other hand, receives both generated images

from the generator and real images from the

training dataset, and its job is to distinguish

between the generated and real images.

During training, the generator tries to generate

data that will fool the discriminator into mistaking

it for real data. In contrast, the discriminator

distinguishes between the generated and real data.

This iterative process continues until the generator

can generate indistinguishable data from real data

for the discriminator.

Generative Adversarial Networks (GANs) have

shown tremendous potential in various tasks

such as generating images from text [15],

super-resolution of images [11], video synthesis

[19], realistic image rendering from a virtual world

[7], image translation from one domain to another

[21], natural protein sequence generation [16],

and a myriad of medical applications including re-

construction, segmentation, and synthetic medical
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image generation, as well as disease classification

and detection [20].

However, despite their outstanding capabilities

and usefulness, GAN architectures suffer from

several problems during training. One of the most

common problems is mode collapse, which hinders

the generator from thoroughly learning the training

data distribution. A mode can be defined as a value

or category that occurs more frequently than others

in a dataset and is used to describe the distribution

of a variable, i.e., how the values of a variable are

distributed across a dataset.

Mode collapse in GAN models is a phenomenon

in which the generator learns to produce only a

few or a single image similar to the training data

instead of generating a diverse range of images.

This can happen for two reasons: the discriminator

becomes too efficient at distinguishing between

real and fake images, which prevents the generator

from learning, or the generator finds a small

number of samples that deceive the discriminator,

causing it to map all its samples to this small

group. When mode collapse occurs, the generator

can become insensitive to the diversity of its

samples, leading it to lack incentives to diversify

its outputs [4]. Various factors, such as poor

choice of the loss function, lack of diverse data for

training, poor network architecture, or imbalance

between the generator and discriminator, can

cause this phenomenon. Solving mode collapse

may require adjusting the model’s architecture,

providing more diverse data for training, or

modifying the loss function.

This study explores the behavior of different

GAN models under various conditions. The

research focuses on evaluating several models

to measure the tendency of mode collapse

using a variety of metrics. Multiple tests

were conducted to analyze models trained under

the same architecture and hyperparameters and

examine their performance when trained with the

initially presented architectures. The objective

is to observe the limitations and capabilities of

each model in terms of generalizing data from

these architectures.

2 Materials & Methods

2.1 GAN Models

2.1.1 DCGAN

Introducing Deep Convolutional GAN (DCGAN)

[14] marked a milestone in generative models.

By combining the power of convolutional networks

with GAN architecture, DCGAN proved its mettle

in generating unsupervised data by training on

various databases.

The essence of DCGAN lies in harnessing the

benefits of convolutional networks to create a

more stable architecture. The first change was

to replace any deterministic spatial function layers

like max-pooling with strided convolutions for the

discriminator and fractional-strided convolutions for

the generator. This eliminated the fully connected

layers and allowed for deeper networks, enabling

the model to learn intricate image features.

The generator and discriminator were equipped

with batch normalization layers to further stabilize

the network throughout the training. Additionally,

the generator employed ReLU activation in all its

layers except for the output layer, which used Tanh,

while the discriminator had LeakyReLU layers.

The amalgamation of all these changes resulted

in a more robust and less prone-to-mode-collapse

model, thanks to the advantages offered by convo-

lutional networks in adversarial models. DCGAN

has taken a significant leap towards achieving

more realistic and high-quality image generation.

2.1.2 WGAN

Wasserstein Generative Adversarial Network

(WGAN) [1] introduces a novel approach to

generative models, utilizing the Wasserstein

distance function to measure the distance between

the distributions of real and generated data. This

unique approach provides a more stable model

with fewer collapse issues during training.

Beyond its modification of the architecture by

introducing a critic instead of a discriminator, with

the same task but with an unbounded output

ranging from negative to positive infinity instead

of the conventional 0 to 1, WGAN employs a loss

function known as Earth Mover’s Distance (EMD).
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The EMD measures the minimum cost required to

transform the synthetic data distribution into the

real data distribution, considering the necessary

distance and the amount of data that needs to

be moved. Thus, its objective function can be

expressed as follows:

min
G

max
D

V (D,G) =

Ex∼px
D(x)− Ez∼pg

D(G(z)).
(1)

where px represents the distribution of the training

data, while pg corresponds to the synthetic

distribution generated by the generator G, which

takes a latent variable z as input. Additionally,

D denotes the output of the discriminator, which

in this case is referred to as the critic. Unlike

a typical discriminator, the critic is not trained to

discriminate between real and fake data but rather

to provide a critical value of the difference between

the distributions. The objective of the critic is to

minimize the value of the function concerning the

generator. Overall, the critic assesses the quality

of the generated data and guides the generator

towards producing more realistic outputs.

2.1.3 WGAN-GP

WGAN-GP [6], which stands for Wasserstein

Generative Adversarial Network with Gradient

Penalty, is a variant of the WGAN model.

This model also uses the Wasserstein distance

to measure the difference between real and

generated distributions. However, it includes a new

technique called gradient penalty, which limits the

weights’ capacity to prevent them from becoming

too large. This is crucial to stabilize the training

process and avoid mode collapse in the generator.

The gradient penalty technique restricts the

weights’ capacity to be too large by adding a term

to the model’s cost function that penalizes large

weights. This term is calculated by multiplying

a penalty constant, denoted by ∇, with the L2

norm of the gradients of the generator’s weights

concerning a random point between the real

and generated input. The L2 norm is the

squared difference between a prediction and the

actual value.

The cost function of the WGAN-GP model can

be expressed mathematically as follows:

min
G

max
D

V (D,G) =

Ex∼px
D(x)− Ez∼pg

D(G(z))+

λEx̂∼px̂
[(∥∇x̂D(x̂)∥ − 1)2].

(2)

where x̂ is a random point between x and G(z), λ
is a penalty constant, and px̂ is the distribution of

points x̂.

2.1.4 BEGAN

BEGAN [2] (Boundary Equilibrium Generative

Adversarial Networks) is a generative image

model based on adversarial networks. Unlike

other GAN models, BEGAN uses a measure

called the auto-encoder loss to automatically

adjust the balance between image diversity and

quality. This is achieved through a specific cost

function that considers the similarity between the

generated and real images and their distribution to

achieve balance.

In practice, maintaining a balance between

the generator’s and the discriminator’s losses is

crucial. The model is considered in equilibrium

when the discriminator can distinguish between

real and generated images with a certain level of

accuracy. At the same time, the generator can

produce diverse and high-quality images. This

balance is critical for the model’s success in

generating realistic images. It is considered to be

in equilibrium when:

E[L(x)] = E[L(G(z))]. (3)

The distribution of the loss function of the auto-

encoder, with real images x, is denoted by L, while

L(G(z)) is the distribution of the loss function of the

auto-encoder with the synthetic images generated

by G using a random vector input z.

If the generator can create images that fool

the discriminator approximately half the time, the

error distributions could be identical. This concept

allows for balancing the losses of both agents so

that neither one wins over the other. Therefore, it
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is possible to achieve equilibrium by introducing a

hyperparameter γ ∈ [0, 1], defined as:

γ =
E[L(x)]

E[L(G(z))]
. (4)

In the BEGAN model, the discriminator has

two main objectives: encoding and decoding

real images and discriminating between real and

generated images. The hyperparameter γ helps to

balance these objectives. Lower values of γ result

in lower image diversity because the discriminator

focuses more on encoding and decoding real

images rather than discriminating between real and

generated ones.

The objective function of the BEGAN model can

be expressed as:







LD = L(x)− ktL(G(z)), For D,
LG = L(G(z)), For G,
kt+1 = kt + λk(γ(L(x)− L(G(z))), Each step t.

(5)

This function implements a function kt to control

the emphasis on L(G(z)) during training and

having an initial value k0 = 0. λk is proportional

to the learning rate used during training.

2.1.5 BEGAN-CS

BEGAN-CS [3] (Boundary Equilibrium Generative

Adversarial Networks with Conditional Structure)

is a variation of the BEGAN model aimed at

reducing mode collapse through a restricted

space. By introducing a new term in the cost

function that helps restrict the space produced

by the discriminator’s encoder, a more stable

training process and improved performance can be

achieved, especially when the training dataset is

very small.

The cost function of the BEGAN-CS model is

very similar to that of the BEGAN model, except

that it adds a term Lc to restrict the encoder’s

space. Therefore, the objective function of this

model is defined as:

{

LD = L(x)− ktL(G(z)) + αLc, For D,
LG = L(G(z)), For G.

(6)

Defining Lc and kt as:

{

Lc = ∥z − Enc(G(z))∥, Each step t,
kt+1 = kt + λk(γ(L(x)− L(G(z))), Each step t.

(7)

where Lc is the magnitude in the difference

between the generator input random vector z and

the space generated by the encoder.

2.1.6 BEGANv3

BEGANv3 [13] is a variant of the BEGAN model

that addresses the mode collapse issue by

creating a handy and structured latent space. To

achieve this, a variational autoencoder (VAE) is

introduced, which adds statistical techniques to the

autoencoder and the structured space created by

the discriminator’s encoder.

In the image compression process by the

encoder, it is assumed that the input image

is generated through statistical methods. This

adds randomness to the encoding and decoding

process of the space created by the discriminator.

This model extracts a random image from the

training dataset distribution, using the mean and

variance, which is then encoded and restored as

initially. By adding these statistical techniques, the

resulting latent space becomes more structured

and practical, which leads to a more stable training

process and improved performance, mainly when

the training dataset is small.

2.1.7 MGAN

MGAN [9] (Mixture Generative Adversarial Nets)

is a novel model that combines the strengths of

multiple generators to create images with improved

quality and variety, aiming to cover diverse

modes in the training dataset and overcome

mode collapse.

In addition to multiple generators, MGAN adds

a classifier to the base GAN architecture. The

classifier’s task is to identify which generator

the sample comes from or if it comes from the

training dataset.
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To reduce the computational cost of training,

the generators share the parameters of their

layers, except for the input layer. Meanwhile,

the discriminator and classifier also share their

parameters, except for the last layer.

For this model, the following lost function

was implemented:

min
G1:k,C

max
D

V (D,G1:k,C) =

Ex∼px
logD(x) + Ez∼pg

log(1−D(G(z)))−

β{

k
∑

i=1

πiEx∼pC
logCi(x)}.

(8)

The variable β represents a hyperparameter

that controls the interaction between the generator

and the classifier, while the multiple π =
[π1,π2, . . . ,πk, ] is an index containing the value of

which generator the sample comes from, and k

indicates the number of generators in the model.

2.1.8 MGO-GAN

MGO-GAN [12], or Multi-Generator Orthogonal

GAN, is a variant of the MGAN model that also

uses a mixture of generators. However, instead

of using a classifier or shared parameters, this

model employs a technique that uses orthogonal

vectors to guide the multiple generators to learn

complementary information to avoid overlap.

The multiple generators pass their samples to an

encoder, which obtains a feature vector. These

vectors’ orthogonality is calculated between each

possible pair, reflecting the correlation between the

two vectors. This correlation value can be used

to determine whether each of the generators is

learning different information or, in some cases, is

learning to generate similar images. The lower the

correlation coefficient, the more it indicates that the

generators are learning different information from

each other.

For this model, the following loss function

was implemented:

min
G1:k

max
D

V (D,G1:k) =

Ex∼px
logD(x) +

1

k

k
∑

i=1

{Ez∼pg
log(1−D(Gi(z)))

+
1

2

∑

i̸=j

λO[E(Gi(z)),E(Gj(z))]}.

(9)

In this loss function, k indicates the number of

generators, and λ is a coefficient that gives more or

less weight to the orthogonal value. E is the output

of the encoder used to obtain the feature vectors

for each sample, while O is the result of adding the

orthogonal vectors, which is given by the following

equation:

O(α,β) = |
(α,β)

|α||β|
|, (10)

where α and β are two different non-zero real

number vectors.

2.2 Mode Collapse Metrics

To evaluate the collapse of mode and the correct

distribution of generated data among the different

modes of the training data, various metrics are

used to evaluate the difference between the two

data distributions. A generative model such as

GAN aims to learn to generate images with a

distribution similar to the data used to train the

model. Additionally, the generated data should

cover all modes and have a uniform distribution,

meaning that the generative model should not have

any preference for one or some data over others

when generating images.

It’s important to note that no metric is

perfect, and they should be combined with visual

inspections and other subjective criteria to evaluate

the performance of a GAN model. By introducing

several metrics to evaluate models, a more general

idea of the performance of the models can be

obtained, avoiding measuring high performance

if any of the metrics suffer from overfitting.

Therefore, to evaluate the performance of the

models presented in section 2.1, the following

metrics will be used to measure mode collapse.
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2.2.1 Fréchet Inception Distance (FID)

The FID (Fréchet Inception Distance) metric is

widely used to evaluate the quality of images

generated by deep learning models, particularly

in image generation tasks. It was introduced by

Heusel et al. in 2017 [8] as an improvement over

the Inception Score metric.

The FID metric combines Fréchet distance, a

distance measure between two probability distri-

butions, with features extracted from a pre-trained

neural network called the Inception Network.

A set of images is first generated using the

generative model, which is evaluated to calculate

the FID. The features of these images are then

extracted using the Inception network. The mean

and covariance matrix of the extracted features

from these images are computed.

Finally, this distribution of features is compared

with the feature distribution of a reference set of

images (typically, a set of real images from the

same domain as the generated ones). The Fréchet

distance between these two distributions is used

to measure the quality of the images generated by

the model.

Generally, the lower the FID value, the better the

quality of the images generated by the evaluated

model. The FID has become a commonly used

measure in image generation research and is more

robust than other quality measures, such as the

Inception Score.

2.2.2 Samples Quality (SQ)

In their work, Srivastava et al. [18] proposed

a novel approach for more accurately measuring

mode collapse by introducing a new metric. The

proposed method involves measuring collapse

using synthetic data where both the distribution

and modes are known, such as in a Gaussian

mixture dataset.

First, some points are sampled from the

generator to quantify mode collapse using this

method. A sample is counted as high-quality if

the generated sample is a certain distance away

from the center of the nearest mode. Typically,

a distance of 3 standard deviations is used for a

two-dimensional dataset, while up to 5 standard

deviations may be used for higher dimensions.

After verifying which samples are of high quality

according to this metric, a percentage is obtained

to identify the number of high-quality samples. This

metric ranges from 0 to 100, where 100 is the

desired value.

2.2.3 Captured Modes (CM)

This metric measures how many modes from the

training dataset were correctly learned by the

generative model. To measure this, a mode is

considered learned correctly when there are a

certain number of high-quality generated samples

within the standard deviation defined by the SQ

metric. Typically, to determine whether a mode was

learned, the following equation is used:

Sm =
0.7Sg

Mt

: Sc ≥ Sm, (11)

here, Sm represents the minimum number of

samples required for a mode to be counted as

learned, Sg is the total number of generated

samples, Mt is the total number of modes

contained in the training dataset, and Sc is the

number of high-quality samples in the mode.

2.2.4 Distribution of Samples by Class (SD)

In their study on mode collapse in natural data

sets, Santurkar et. al. [17] proposed a method

to identify if any of the modes in the data

set are preferred or avoided by the generator

during sample generation. By doing this, they

aimed to uncover any biases or patterns in the

generation process.

Their method involves training a generative

model on a well-balanced data set (one that

contains an equal number of samples per class or

mode) and testing the generator to try and create a

balanced data set for each class. The test involves

the following three steps:

1. Train the unconditional generative model (with-

out class labels) on the balanced data set.

2. Train a multiclass classifier on the same data

set, this time with the class labels.
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3. Generate samples with the generative model

trained in step 1, then use the classifier trained

in step 2 to determine which class each

sample belongs to.

The metric evaluates whether all classes have

the same number of generated samples. The goal

is to have the same number of samples for each

class among the generated samples. The range

of this metric is from [0, 200 − 200
C

], where C is the

number of distinct classes, and the desired value

is 0, which indicates that the generated samples

are well balanced. To give a numerical value, the

percentage of samples for each class is calculated

using the following equation:

SD =

C
∑

i=1

|
100

C
− pi|. (12)

where, C is the number of classes, and pi is the

percentage of samples that each class has.

2.3 Datasets

2.3.1 MNIST

The MNIST database is a collection of handwritten

digit images widely used as a benchmark dataset

for digit recognition. Created by Yann LeCun [10],

it has become one of the most commonly used

datasets in machine learning.

The MNIST dataset consists of a training set of

60,000 2828 pixel images and a test set of 10,000

images of the same dimension. Each image

represents a digit between 0 and 9, handwritten

and labeled accordingly.

The images in the MNIST database are

grayscale, meaning each pixel is represented by a

single intensity value ranging from 0 to 255, where

0 represents a black pixel and 255 represents a

white pixel. Additionally, the images are normalized

such that the average intensity of all pixels is

zero, and the standard deviation of pixel intensities

is one.

The MNIST dataset has been widely used as

a benchmark for evaluating image classification

algorithms. Furthermore, many researchers

have used this database to train deep learning

models, which has led to significant advances in

digit recognition and the field of deep learning

in general.

2.3.2 Sintetic Data

The synthetic training dataset consists of 500,000

two-dimensional points. These points are

distributed in a circular pattern around 8 Gaussian.

Each Gaussian has a standard deviation of 0.5 and

is uniformly distributed along the range of -1 to 1 for

both dimensions.

This dataset can be helpful for training models

that need to learn to recognize patterns in

data distributed in non-linear and complex ways.

Being two-dimensional, this dataset can also

be easily visualized and helpful in exploring

data visualization techniques in machine learning.

Additionally, the large number of points in

the dataset makes it ideal for training models

that require large amounts of data to achieve

good performance.

3 Results

Three comparative studies were conducted on

various GAN models, which were evaluated using

different metrics to observe their behavior in the

face of mode collapse under varying conditions.

The models were trained on the MNIST dataset

in the first experiment and evaluated using the

FID and SD metrics. They shared a similar

architecture, with the generator consisting of

three blocks, each beginning with a transposed

convolutional layer with a square kernel of size

4, followed by a Batch-normalization layer and

finally a ReLU layer. The blocks were then

followed by a last transposed convolutional layer

with a kernel similar to the previous ones but

followed by a Tanh layer. The discriminator

also had three blocks similar to the generator.

Still, it uses a convolutional layer instead of the

transposed convolutional one and a LeakyReLU

layer in place of the ReLU. A convolutional layer

followed these blocks and, finally, a Sigmoid layer.

The WGAN and WGAN-GP models were trained

using RMSProp optimizers, while the others were

trained using Adam. All models were trained

for 200 epochs, with a learning rate of 0.001
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Fig. 1. Distribution of the samples of the different GAN models, trained with a similar architecture and MNIST database

for the discriminator and 0.005 for the generator.

The BEGAN, BEGAN-CS, and BEGANv3 models

used the same structure as the discriminator for

their encoders, while the decoder had the same

structure as the generator. The MGAN and

MGO-GAN models had 10 generators.

As observed in Table 1, the MGAN model

obtained the highest FID score with 4.7102,

indicating that the model suffered from collapse

during training. In contrast, the WGAN-GP model

performed best in this metric, scoring 0.1788.

Considering the SD metric, models with high FID

scores also had high SD scores. Once again,

the MGAN model was the worst performer in this

metric, with a score of 173.56, confirming its

collapse during training. On the other hand, the

WGAN-GP model had the best evaluation in the

SD metric, with a score of 24.74.

In Fig 1, we can observe the amount of data

generated for each class by each evaluated model.

The model with the worst performance (MGAN)

in FID and SD metrics generated only class 2

and 8 images. Another collapsed model was

DCGAN, with FID and SD scores of 2.91 and

150.32, respectively, showing that 84.91% of its

output data belonged to class 8. An interesting

fact was the MGO-GAN model, with FID and SD

scores of 2.2249 and 53.88, respectively. Together

with the DCGAN and MGAN models, it was one

of the only models with an FID score higher than

0.4, indicating that this model also suffered from

collapse. However, it performed well in the SD

metric, ranking as the fourth-best performer.
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Fig. 2. Samples generated by the different models with the MNIST database

This was confirmed in Fig 1, where it could

generate samples from all classes, even in a

somewhat balanced way.

This may be due to the model’s architecture,

where having several generators allowed each one

to learn to generate different information, aided by

their orthogonal vectors cost function.

In Fig 2, several samples created by each of

the compared generators in the experiment can be

observed. It is evident that when the models are
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Fig. 3. Samples created by the generator of each model, training with the synthetic database of 8-ring Gaussians.

The red circle has a diameter of 3 standard deviations of the modes and is in the center of the modes in the training

database. Since the generated output is a vector of size two, the x axis is the value of the first value, while the y axis is

the value of the second value

Table 1. Evaluation of the models with FID and SD

metrics with the MNIST database as training. Taking into

account that the models have the same architecture and

the same hyperparameters

Model FID SD

DCGAN 2.9100 150.32

WGAN 0.3987 35.42

WGAN-GP 0.1788 24.74

BEGAN 0.1829 40.42

BEGAN-CS 0.2655 62.04

BEGANv3 0.2933 66.02

MGAN 4.7102 173.56

MGO-GAN 2.2249 53.88

collapsed, they create gray images or form figures

that do not belong to the MNIST dataset.

In the second experiment, the behavior of

GAN models was observed using a much simpler

synthetic two-dimensional database. The models’

architectures were similar, where the generator

consisted of two blocks with a fully connected layer,

a batch-normalization layer, and a ReLU layer. The

first block takes a vector of size 100 as input and

outputs a vector of size 64, while the second block

takes the 64-sized vector as input and outputs a

vector of size 32. After these two blocks, the

last fully connected layer takes the 32-sized vector

and outputs a vector of size 2. The discriminator

also consists of two blocks, with the first block

taking a vector of size 2 as input and outputting
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Table 2. Evaluation of the models with FID, Sample

Quality, and Captured Modes with the synthetic

database (8 ring Gaussians) as training

Model FID SQ (%) CM

DCGAN 0.0668 1.92 0

WGAN 0.1376 6.46 0

WGAN-GP 2.4715 8.56 1

BEGAN 0.0060 27.84 2

BEGAN-CS 0.0803 1.04 0

BEGANv3 0.0032 46.24 3

MGAN 0.0552 18.10 2

MGO-GAN 2.4075 0.62 0

a vector of size 32, while the second block takes

that vector and outputs a vector of size 64. Lastly,

a fully connected layer takes the 64-sized vector

and outputs a single-feature output. The training

parameters for this experiment were the same as

the previous one, with the only difference being that

the models were trained for only 100 epochs.

The comparison between the models can be

seen in Table 2, where we can observe that the

BEGANv3 model obtained the best evaluation in

all three metrics when trained on the synthetic

dataset, with an FID metric of 0.0032, a CM

of 46.24, and an MC of 3. These results

are consistent with expectations, as BEGANv3 is

the only model to capture 3 out of the 8 total

modes, giving it a higher probability of generating

higher quality samples than the other models.

Additionally, as the model with the highest number

of captured modes, its samples are more diverse,

which would also result in a better FID metric

evaluation. On the other hand, when a higher

FID metric is obtained, models are usually poorly

evaluated in the CM and MC metrics. In this

case, the MGO-GAN and WGAN-GP models are

the worst evaluated, with 2.4075 and 2.4715,

respectively, in the FID metric. However, while

MGO-GAN has the worst evaluation in the CM

metric with 0.62, the WGAN-GP model is the fourth

best evaluated with 8.56. This last case may be

because, at its collapse, the generator attempted

to focus on only one of the modes and, in some

way, learned to generate high-quality samples from

that single mode.

When we use the generators of each trained

model to create new data, we can observe

that each model has its difficulties, as shown

in Fig 3. The True Data figure displays the

synthetic database used to train the models, while

the other figures show the data generated by

each model. We can see that the MGO-GAN

model is trained to have each of its generators

learn different information. Still, each generator

attempted to replicate the shape of the training

data with different values. On the other

hand, models with an auto-encoder had difficulty

generating a well-structured space, resulting in the

generated data being disorganized and dissimilar

to the training data. As mentioned before,

during the training of the WGAN-GP model, a

collapse occurred where the generator focused

on generating information from a single mode.

Although it attempted to create a structure similar

to the training data, it only generated data from

one mode.

The third experiment involved training the

top-performing models according to their original

papers while also observing and comparing

them with their original architectures and optimal

hyperparameters found in their respective works.

In this case, models were selected based on

their overall performance and having the same

loss function or architecture, which led to the

selection of WGAN-GP, BEGANv3, and MGO-GAN

models. This comparison of models under their

original specifications provides valuable insights

into the robustness and reliability of these models

in real-world applications.

The results of the third experiment are shown

in Table 3. All models performed better

when trained with their optimal architectures and

hyperparameters than when all models were

trained with the same architecture. Interestingly,

the WGAN-GP model had the best performance,

with an FID of 0.0445 and an SD of 9.26. On the

other hand, models with an auto-encoder structure

struggled to form a structured space, resulting in

the worst SD score of 24.33. The MGO-GAN

model, with its multiple generators, achieved a

higher diversity in its samples and obtained an SD

of 11.5. However, it struggled to create high-quality

samples compared to BEGANv3, which achieved
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Table 3. Evaluation of the models with FID and

SD metrics with the MNIST database as training.

Trained with original architecture and hyperparameters

for each model

Model FID SD

WGAN-GP 0.0445 9.26

BEGANv3 0.0496 24.33

MGO-GAN 0.0868 11.5

FID scores of 0.0868 and 0.0496, respectively. In

conclusion, the WGAN-GP model performed the

best overall with these metrics and when trained

on the MNIST dataset.

4 Conclusions

This study presents a comparative analysis of

various GAN models to observe their performance

when measured with different metrics that evaluate

mode collapse. The models were subjected to

three different tests, two of them involving training

with the MNIST dataset. One test involved models

with similar architecture, while the other evaluated

them with their original architecture. The third

test trained the models with a synthetic dataset

with known modes and low complexity to visually

observe when the models collapsed.

The study reveals the different limitations

of the models, as varying the architecture,

hyperparameters, and loss function resulted in

poorer performance. With the metrics used,

it was observed that most of the models

experienced mode collapse, generating poorly

distributed or low-quality samples. However, when

evaluated with their original architectures, the

results improved. This study underscores that

GAN models are highly prone to mode collapse

and emphasizes the need for ongoing research to

address this issue
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