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Abstract. Bacterial vaginosis is a condition where
there is a large ecosystem of microorganisms and an
unclear pathogenesis, making it a disease complex
in the dynamic of coexistence of bacteria in groups
of patients. The main objective of this study is to
provide a partitioning clustering model that allows further
analysis of coexisting bacteria in a grouped way in
BV-positive patients. K-Means variants (Lloyd, Forgy,
Hartigan & Wong, and MacQueen) with three distance
measures were applied to a BV dataset from an urban
population in southeastern Mexico, which consists of
201 patient records with 15 attributes. In the clustering
results obtained, it is possible to identify different notable
groups of patients. The most prevalent coexisting
bacteria between patients with BV were Atopobium
+ Gardnerella vaginalis with 31.37%, Atopobium +
Megasphaera with 15.68% in the cluster that assigned all
BV-positive patients. Whereas, the model that achieved
to group BV-positive elements into different clusters,
the coexisting bacteria were Atopobium + Gardnerella
vaginalis with 56.25% and Atopobium + Megasphaera
with 68.75% for group C1. The second group bacterial
coexistence was Atopobium + Gardnerella vaginalis with
37.14%. Finally, we provided evidence that, using
the partitioning algorithm, it was possible to create
a clustering model that helps analyze the complex
dynamics among bacteria in groups of patients with BV.

Keywords. Clustering, bacterial vaginosis,
coexisting bacteria.

1 Introduction

Bacterial Vaginosis (BV) is an imbalance of
the vaginal flora characterized by the decrease
in Lactobacillus before excessive anaerobic
bacterial growth [17].

The main affected by BV are women of
reproductive age. BV manifests itself clinically as
symptomatic or asymptomatic. Symptomatic cases
present clinical signs in the genital tract such as
vaginal odor, itching, increased vaginal discharge,
and pH greater than 4.5 [6].

An early diagnosis of symptomatic cases avoids
the development of gynecological complications
such as endometritis, salpingitis, oophoritis,
pelvic inflammatory disease and susceptibility to
acquiring sexually transmitted diseases [4].

BV diagnosis is performed by standardized
methods such as the Amsel criteria, the Nugent
score, and real-time PCR (Polymerase Chain
Reaction). These methods are used especially
in epidemiological, clinical and microbiological
investigations to study, understand and document
the normal and anaerobic flora involved in the
development of this condition.

However, BV is a complex issue due to the
large vaginal microbiological ecosystems, with a
pathogenesis that is still unclear [21]. Especially,
we know that a BV-positive condition is a
dysbiosis between the microorganisms existing in
the vaginal mucosa.

However, the coexisting bacteria may differ from
patient to patient, and individual analysis does
not make it possible to identify contexts between
patients. So it is of our interest to tackle this
problem using a partitional clustering approach.

Our purpose is to provide a clustering model
of patients that allows a detailed analysis of
the coexistence of bacteria in groups with a
common diagnosis.
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Table 1. Attributes corresponding to BV microorganisms used in our study which were introduced in [19]

Attribute Description
CrispatusCq Lactobacillus Crispatus Cq* Growth Value
InersCq Lactobacillus Iners Cq* Growth Value
JenseniiCq Lactobacillus Jensenii Cq* Growth Value
GasseriCq Lactobacillus Gasseri Cq* Groth Value
PathogenCom Pathogen Combination
Megasphaera Phylotipo1 Gram Negative Anaerobic Bacteriam, 16s RNA Sequence
Atopobium Atopobium
Gardnerella V. Gardnerella Vaginallis
CT Chlamydia Trachomatis
NG Neisseria Gonorrhoeae
HSV1&2 Herpes Simplex Type 1 and 2
MH Mycoplasma Hominis
MG Mycoplasma Genitalium
UP Ureaplasma Parvum
UU Ureaplasma Urealyticum

In the current literature, few studies have been
conducted using Machine Learning (ML) to build
computational models that support understanding
a complex condition such as BV.

For example, the study performed by Song
et al. [22] integrated superpixel methods with
Deep Learning methods based on a Convolutional
Neural Network (CNN) for the automatic assisted
diagnosis of BV.

Another study was conducted by Baker et al. [2]
in which a classification model was constructed by
breaking down the microbial groups according to
their correlation. In the research of Pérez-Gómez,
J. F et al. [16] determined the most relevant
predictor attributes of BV in a dataset using five
attribute selection algorithms.

2 Materials and Methods

2.1 Dataset

In this study used a dataset of BV bacteria
from samples collected from women aged 18
to 50 in urban populations in Comalcalco,
Tabasco, Mexico.

The microorganisms comprising the dataset
were obtained by semiquantitative PCR at the
Infectious and Metabolic Diseases Research
Laboratory of the Juárez Autonomous University
of Tabasco as part of BV research in molecular
epidemiology [8].

This dataset is complete without missing values
and was constructed by a biology expert. The
dataset consists of 201 patient records with
15 attributes corresponding to microorganisms
implicated in BV, see Table 1.

2.2 K-Means Algorithm

The K-Means clustering algorithm is an
unsupervised learning partitioning method in
ML widely used in the literature. K-Means aims
to segment datasets into k partitions that share
common characteristics and a high degree of
similarity and dissimilarity between clusters [10].

A fundamental issue in K-Means is the
determination of the optimal number of cluster (k)
in a dataset. However, this process is performed
by evaluating metrics that allow to determine the
optimal k value of the dataset.
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Algorithm 1 K-Means algorithm steps.

1: Select k points as initial centroids
2: repeat
3: Form k clusters by assigning each point

to its closest centroid.
4: Recompute the centroid of each cluster.
5: until converge criterion is met

The K-Means algorithm consists of the following
steps [1], see Table 1. There are variants of
K-Means clustering algorithm, with differences in
the criteria for constructing the underlying clusters.

The following criteria are described in the
scientific literature: Lloyd [14] considers the
distribution of the data to be discrete, Forgy
[7] considers the distribution to be continuous,
MacQueen [15] considers that the centroids are
recalculated every time an observation moves to
another cluster and also after each pass through
all observations and Hartigan-Wong [8] identifies
the data space partition with locally optimal
within-cluster Sum of Squares of Errors (SSE).

2.3 Distance Metrics

The distance metrics used to estimate the distance
matrices required by a clustering algorithm are
described here.

– Euclidean distance. Measures the straight-line
proximity between a pair of objects in a
n-dimensional space [3]. It is written
mathematically as shown in Equation 1:

D(x,y) =

√√√√ n∑
i=1

(xi − xj)
2
, (1)

where D(x, y) is the distance between the vectors
x and y. xi are values of the horizontal axis in the
coordinate plane and yi are values of the vertical
axis in the plane. N is the number of observations.

– Asymmetric binary similarity measure.
Calculates the proximity between objects with
asymmetric binary properties. An asymmetric
attribute is a type of nominal variable that has
two levels (1-Presence, 0-Absence); this means

that one of the two states of the attribute is more
informative than the other.

This property is exemplified when we seek to
identify the presence or absence of a disease
according to its characteristics. Faith, D. P.
(1983) [5] suggests the following measure of
similarity S, as shown in Equation 2:

S = (1×a+0×d−1×U)/N = (a−U)/N). (2)

This measure can be adjusted to be
constrained between 0 and 1, as shown in
Equation 3:

c = ((a− U)/N + 1)/2

= ((a− U/N) + ((a+ U + d)/N))/2

= (2a+ d)/2N

= (a+ d/2)/N , (3)

where U is equal to the number of
disagreements (either ”1”-”0” or ”0”-”1”), a
is equal to the number of shared presences, d
equals the number of shared absences. N is
the number of characters.

– Canberra distance. Estimates the distance (d)
between vectors x and y in a n-dimensional
real vector space. It is also used to
measure similarity in numerical data and to form
symmetric groups, introduced in 1966 [11] and
refined in 1967 [12] by Godfrey N. Lance and
William T. Williams.

This metric calculates the sum of series of a
fraction of the difference between coordinates of
a group of objects. Values with zero numerators
and denominators are omitted in the sum and
are considered non-existent. The formula is
defined as shown in Equation 4:

d(x, y) =
∑ |xi − yi|

|xi|+ |yi|
, (4)

where d(x, y) is the distance between
the vectors x, y.

2.4 Metrics for Determining the Optimal
Number of Groups

The metrics for determining the optimal number of
groups are described in this subsection.
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– Gap Statistic. Compares the total intragroup
variation for different k values with their expected
values under a null reference distribution of the
data. The result will be the optimal number of
clusters that maximizes the gap statistic in the
graph [23]. It is written mathematically as shown
in Equation 5:

Gapn(K) = E∗
n { log(Wk) } − log(Wk), (5)

where E∗
n denotes expectation under a sample

of size n from the reference distribution. The
notation log (Wk) refers to the logarithm of
the data.

– Silhouette. Calculates the mean of the
observations for different values of k. The
optimal number of clusters is the one that
maximizes the mean of the silhouette over a
number of possible k values [18]. The formula
is defined as shown in Equation 6:

s(i) =
b(i)− a(i)

max {a(i), b(i)}
, (6)

where a(i) is the median distance between i and
all other observations on the same clusters, and
b(i) is the median distance between i and the
observations in the nearest cluster.

– Elbow method. Determines the optimal number
of clusters in a data set. This method
allows us to explain and verify the consistency
of a clustering analysis [13]. It is written
mathematically as shown in Equation 7:

J =

k∑
i=1

∑
x∈Ci

|x− Ci|2 , (7)

where J is the cost function, x is the cluster
element Ci and k are the number of clusters |Ci|.

2.5 Purity Validation Metrics

Purity is a validation metric that evaluates the
quality of a clustering model’s underlying clusters.
The purity of the clusters is measured in relation
to the class labels, with values ranging from 0 to
1. A value close to 0 denotes poor clustering. A
value close to one indicates that the clustering is
good [20]. It is written mathematically as shown in
Equation 8:

purity = (Ω,C)
1

N
Σk max

j
|wk ∩ Cj | , (8)

where N is the number of objects, k = number
of clusters, Ω = {w1,w2...wk} is a set of
clusters and the collection of classes is denoted by
C = {c1c2...cj}. wk is interpreted as the set of
clusters in Ω and cj as the set of class labels.
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Table 2. Grouping table about the evaluation of elements assigned in underlying clusters regarding the real classes.
Results using Lloyd variant and Canberra distance. The purity value is given for each cluster

Distance
Metric

K-Means
Variant

Groups

Vaginosis Dx. C1 C2 C3 C4 C5 C6
Positive 0 0 0 51 0 0
Negative 9 12 45 0 29 39
Indeterminate 1 3 7 0 0 5

Canberra
distance

Lloyd

Purity 0.95 0.92 0.74 1 0.85 0.78

3 Experimental Design

The present study aims to create a clustering
model in which the underlying groups share a
common diagnosis to perform a detailed analysis
of bacterial coexistence contexts. The partition
clustering model was built following the steps, as
shown in Figure 1.

– Evaluation of the metrics to determine the
optimal number of clusters. The exploration
of the different K-Means variants begins with
the evaluation of the methods that allow to
determine the optimal number of groups, which
are the gap statistic, the silhouette and the
elbow method.

For the gap statistic and silhouette, the optimal
value of clusters is determined when the highest
value is reached in the graph.

Whereas for the elbow method, it is
determined by observing the graph a decrease
from a k value to another, followed by a more
gradual decrease in the slope. The last value
of k before the slope of the graph levels off
suggests a ”good” value of k.

– Estimate of the distance matrix of the dataset
for each selected distance metric, which are
Euclidean, Binary, Canberra. To perform the
estimation, the dist function of the stats package
was used.

– Model construction using the distance matrices
calculated in step 2; each matrix was evaluated
using the four K-Means variants.

– Validation of the underlying groups internally
and externally. The internal validation of each

cluster was determined by estimating the purity
percentage described in subsection 2.5. The
external validation process, the class label was
used, which was hidden from the algorithm to let
it do its work.

This process was performed by building a
cluster table is a cross-frequency table between
the real class variables and the group variable
assigned by the algorithm. The column and
row structures show the grouping of elements
according to the group and diagnosis assigned
by the algorithm.

– Comparison of the purity results of each cluster
to identify the best grouping. Subsequently,
the grouping tables obtained in the step 4
were analyzed to identify, which clusters have
been constructed with respect to their actual
diagnostic class.

– Biological validation involves verifying the
biological significance of the underlying groups
in the clustering models. For this purpose, the
clusters were made available to an expert in
the field.

The expert examined each element of the
underlying clusters and confirmed that they were
all placed in the correct cluster based on the real
class of the elements.

– Use of a data visualization tool to explore the
coexistence of bacteria in the groups underlying
the best model.

4 Results

To the best of our knowledge, at the time of this
study, no other research has been found in the
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Table 3. Grouping table about the evaluation of elements assigned in underlying clusters regarding the real classes.
Results using Forgy variant and Canberra distance. The purity value is given for each cluster

Distance
Metric

K-Means
Variant

Groups

Vaginosis Dx. C1 C2 C3 C4 C5 C6
Positive 0 0 0 0 51 0
Negative 27 33 44 11 0 19
Indeterminate 2 3 5 3 0 3

Canberra
distance

Forgy

Purity 0.85 0.82 0.75 0.93 1 0.89

literature that addresses the problem of BV to
identifying coexisting bacteria in groups of patients,
using machine learning algorithms specifically with
a partitional clustering approach.

In this section, we showed the results obtained
by applying K-Means variants. The results of
the evaluation of the metrics for determining
the optimal number of clusters in the dataset
were as follows: the gap statistic method, the
silhouette method, and the elbow method delivered
a value of k = 6.

Based on the results, it was determined that
the k-value or optimal number of groups to
initialize the different variants of K-Means is k=6.
The estimation was performed with the default
parameters in the function of each method.

The purity and clustering tables of the models
that obtain a positive clustering of patients either in
a single group or in different groups are detailed.
Each table shows the combination of K-Means
variants and a distance measure.

The results allow to evaluate the clustering
quality using the purity percentage and the
cross-frequency tables. To determine that an
underlying cluster has a good object clustering
quality, it was considered that the purity percentage
was greater than or equal to 0.90.

Furthermore, it is of interest for the study to
identify clusters consisting only of BV-positive
elements, i.e. all resultant clusters will hold
BV-positive patients, the differences between
clusters would be the combination of existing
bacteria detoning the BV-positive of patients in
each cluster.

From the evaluation of the K-Means variants
with the asymmetric binary measure, the following
description is given:

– The results of the evaluation of the four K-Means
variants with the binary asymmetric measure;
the highest number of underlying clusters shows
a purity greater than 0.90 even though in the
clustering tables the clusters are composed of
elements from all three diagnostic classes.

Nevertheless, note that the evaluation of the
Macqueen and Hartigan and Wong variants
shows clusters with positive elements, but
following the aim of the study to identify
groups where positive patients are grouped
into one group or where there are dissimilar
groups but belonging to BV-positive diagnoses
is not achieved.

From the evaluation of the K-Means variants with
the Euclidean distance, the following description
is given:

– The results of the evaluation of the four K-Means
variants with the Euclidean distance. The two
variants that reach a purity value higher than
0.90 are the Lloyd and MacQueen variants,
although when creating their clustering table,
the clusters are shown to be composed of
the different classes. On the other hand, the
Forgy and Hartigan & Wong variants produce
clusters with a purity value higher than 0.90 to
be considered good groupings however they are
composed of elements from the different classes
therefore the research objective is not achieved.

Computación y Sistemas, Vol. 27, No. 2, 2023, pp. 415–424
doi: 10.13053/CyS-27-2-4621

Henry Jesús Hernández Gómez, Juana Canul-Reich420

ISSN 2007-9737



Table 4. Grouping table about the evaluation of elements assigned in underlying clusters regarding the real classes.
Results using MacQueen variant and Canberra distance. The purity value is given for each cluster

Distance
Metric

K-Means
Variant

Groups

Vaginosis Dx. C1 C2 C3 C4 C5 C6
Positive 16 0 0 0 35 0
Negative 0 61 16 45 0 12
Indeterminate 0 5 1 7 0 3

Canberra
distance

MacQueen

Purity 0.92 0.67 0.93 0.74 0.93 0.92

Table 5. Grouping table about the evaluation of elements assigned in underlying clusters regarding the real classes.
Results using Hartigan & Wong variant and Canberra distance. The purity value is given for each cluster

Distance
Metric

K-Means
Variant

Groups

Vaginosis Dx. C1 C2 C3 C4 C5 C6
Positive 0 0 0 51 0 0
Negative 12 44 11 0 38 29
Indeterminate 3 5 3 0 5 0

Canberra
distance

Hartigan
& Wong

Purity 0.92 0.75 0.93 1 0.78 0.85

From the evaluation of the K-Means variants with
the Canberra distance, the following description
is given:

– The results show that the K-Means variants
work well along with the Canberra distance,
correctly clustering 100% of the elements of the
positive classes.

Three of the four variants achieve full
clustering of the positive elements in a unique
cluster, which are Lloyd, Forgy, and Hartigan &
Wong with a purity value of 1, see Tables 2, 3,
and 5.

On the other hand, the MacQueen variant
managed to create two dissimilar clusters
belonging to the BV-positive diagnosis. These
clusters achieved a purity value higher than the
0.90 required to be considered good quality
clusters, see Table 4.

These clustering results clearly enable the
ability to perform further analysis to look
at coexisting bacteria in patients sharing a
common diagnosis.

Likewise, the goal of identifying a cluster
composed of only positive patients is achieved.
It is also possible to identify dissimilar clusters
but belonging to the BV-positive diagnosis, see
Table 4.

5 Bacterial Coexistence Contexts

A Data Visualization (DV) tool was used for the
analysis of bacterial coexistence, which is available
online through [9]. DV highlights the features
existing within each element to the cluster it
belongs, as shown in Figure 2.

An exploration of each element in the cluster is
performed, which consists of identifying patients
with the same combination of pathogens. For
example, in Figure 2, two pairs of patients sharing
the same bacterial coexistence profile are shown.

Furthermore, each similar profile is quantified to
estimate the percentage of existence with respect
to the total number of elements in the group.

Findings on the coexistence of bacteria in
clusters containing all positive patients and
identified through the Lloyd, Forgy, and Hartigan
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Fig. 2. Data Visualization (DV) tool used for the analysis of bacterial coexistence

and Wong variants with Canberra distance show a
prevalence of BV pathogens of 94.12%, 66.62%,
58.82%, and 37.5% for Autopodium, Gardnerella
vaginalis, Megasphaera, and Mycoplasma
hominis, respectively.

The combinations of pathogens present in
the clusters with the total number of patients
BV-positive are as follows: Atopobium +
Gardnerella vaginalis = 31.37% (16/51),
Atopobium + Megasphaera = 15.68% (8/51),
Atopobium + Gardnerella vaginalis + Mycoplasma
hominis = 9.80% (5/51), Atopobium + Gardnerella
vaginalis + Megasphaera = 9.80% (5/51), and
Atopobium + Gardnerella vaginalis + Megasphaera
+ Mycoplasma hominis = 9.80% (5/51).

On the other hand, in the dissimilar groups
with a common diagnosis of BV-positive that
were created by MacQueen variant and Canberra
distance, their combination of identified pathogens
are as follows: Grouping C1 with 16 elements:
Atopobium + Gardnerella vaginalis = 56.25%
(9/16), Atopobium + Megasphaera = 68.75%
(11/16), Atopobium + Gardnerella vaginalis +

Mycoplasma hominis = 18.75% (3/16), Atopobium
+ Gardnerella vaginalis + Megasphaera =
12.5% (2/16), and Atopobium + Gardnerella
vaginalis + Megasphaera+ Mycoplasma hominis =
12.5% (2/16).

Grouping C5 with 35 elements: Atopobium
+ Gardnerella vaginalis = 37.14% (13/35),
Atopobium + Megasphaera = 5.71% (12/35),
Atopobium + Gardnerella vaginalis + Mycoplasma
hominis = 5.71% (2/35), Atopobium +
Gardnerella vaginalis + Megasphaera = 8.57%
(3/35), Atopobium + Gardnerella vaginalis +
Megasphaera+ Mycoplasma hominis = 8.57%
(3/35), and Gardnerella vaginalis+ Megasphaera =
8.57% (3/35).

6 Conclusions

This research shows that K-Means variants
and similarity measures contribute significantly
to identifying the best partitioning clustering
model that allows for further analysis of bacteria
coexisting between patient groups.
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The results obtained allow us to conclude that
by using the partitioning algorithm it is possible
to create groups with dissimilarity and at the
same time, be groups with elements showing the
same diagnosis.

On the other hand, it is essential to mention that
up to the time of the development of this study,
there is no evidence of another similar approach
to compare the results.

However, to support the results, they were
subjected to biological validation by an expert
using data visualizations that allowed highlighting
the bacterial coexistence contexts shared by the
elements of each BV cluster.

Due to the lack of literature on BV clustering,
further experimentation with other methods is
suggested to consolidate our findings. In future
work, we will address other clustering methods and
distance measures.

We are also interested in obtaining the solutions
of the different clustering methods most frequently
reported in the literature and from there to perform
comparative studies with clustering approaches.

Finally, it is envisaged that the models
generated with all clustering methods can
be integrated into expert systems to help
specialists in decision-making for prescribing
specific treatments.

References

1. Aggarwal, C. C., Reddy, C. K. (2013).
Data clustering: Algorithms and applications
(1st ed.). chapman and Hall/CRC. DOI:
10.1201/9781315373515.

2. Beck, D., Foster, J. A. (2014). Machine
learning techniques accurately classify microbial
communities by bacterial vaginosis characteristics.
Public Library of Science One, Vol. 9, No. 2,
pp. e87830. DOI: 10.1371/journal.pone.0087830.

3. Burczynski, M. E. (2003). An introduction to
toxicogenomics. (1st ed.). CRC Press. , pp. 348DOI:
10.1201/9780203504819.

4. Ellington, K., Saccomano, S. J. (2020).
Recurrent bacterial vaginosis. The Nurse
Practitioner, Vol. 45, No. 10, pp. 27–32. DOI:
10.1097/01.npr.0000696904.36628.0a.

5. Faith, D. P. (1983). Asymmetric binary similarity
measures. Oecologia, Vol. 57, No. 3, pp. 287–290.
DOI: 10.1007/bf00377169.

6. Faught, B. M., Reyes, S. (2019). Characterization
and treatment of recurrent bacterial vaginosis.
Journal of Women’s Health, Vol. 28, No. 9,
pp. 1218–1226. DOI: 10.1089/jwh.2018.7383.

7. Forgy, E. W. (1965). Cluster analysis of
multivariate data: Efficiency versus interpretability
of classifications. Biometrics, Vol. 21, pp. 768–769.

8. Hartigan, J. A., Wong, M. A. (1979). Algorithm as
136: A k-means clustering algorithm. Journal of the
royal statistical society. series c (applied statistics),
Vol. 28, No. 1, pp. 100–108. DOI: 10.2307/2346830.

9. Hernandez, G. H. J. (2022). Data
visualization-partitions.

10. Kumar, P., Kanavalli, A. (2021). A similarity based
k-means clustering technique for categorical data
in data mining application. International Journal of
Intelligent Engineering and Systems, Vol. 14, No. 2,
pp. 43–51. DOI: 10.22266/ijies2021.0430.05.

11. Lance, G. N., Williams, W. T. (1966). Computer
programs for hierarchical polythetic classification
(“similarity analyses”). The Computer Journal,
Vol. 9, No. 1, pp. 60–64. DOI: 10.1093/comjnl/9.1.
60.

12. Lance, G. N., Williams, W. T. (1967). Mixed-data
classificatory programs I - Agglomerative systems.
Australian Computer Journal, Vol. 1, No. 1,
pp. 15–20.

13. Liu, F., Deng, Y. (2020). Determine the number
of unknown targets in open world based on elbow
method. IEEE Transactions on Fuzzy Systems,
Vol. 29, No. 5, pp. 986–995. DOI: 10.1109/tfuzz.
2020.2966182.

14. Lloyd, S. (1982). Least squares quantization in
PCM. IEEE Transactions on Information Theory,
Vol. 28, No. 2, pp. 129–137. DOI: 10.1109/tit.1982.
1056489.

15. MacQueen, J. (1967). Some methods for
classification and analysis of multivariate
observations. Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and
Probability, Vol. 1, pp. 281–297.
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