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Abstract. The focus of this work is to analyze the

implications of pre-training tasks in the development of

language models for learning linguistic representations.

In particular, we study three pre-trained BERT models

and their corresponding unsupervised training tasks

(e.g., MLM, Distillation, etc.). To consider similarities and

differences, we fine-tune these language representation

models on the classification task of four different

categories of short answer responses. This fine-tuning

process is implemented with two different neural

architectures: with just one additional output layer

and with a multilayer perceptron. In this way, we

enrich the comparison of the pre-trained BERT models

from three perspectives: the pre-training tasks in

the development of language models, the fine-tuning

process with different neural architectures, and the

computational cost demanded on the classification of

short answer responses.

Keywords. Language models, pre-training tasks, BERT,

fine-tuning.

1 Introduction

Currently, the development and deployment of

Large Language Models (LLMs) is a common

scenario in the sphere of NLP due to the

development paradigm known as Self-Supervised

Learning (SSL). This learning paradigm, also

known as a process of two steps: pre-training

and fine-tuning, outlines a generic framework for

transferring knowledge [18, 2].

While pre-training a LLM produces semantic

representations by processing unlabeled data,

fine-tuning makes use of such representations for

a particular downstream learning task.

In this way, the performance of this new task

depends significantly on the quality of the semantic

representations, which in turn depend on the

quality of the training methods for the development

of a LLM. Thus, how to produce good quality

representations? We focus our attention on the

analysis of the training methods for producing

semantic representations to be transferred to make

the definition of a learning model, for a particular

downstream language task, a non-complex issue.

As a result of research on representation

learning, a semantic vector known as embedding

is nowadays the building block for a wide range of

NLP tasks.

Since this semantic vector denotes a point

in high-dimensional space, modeling similarity

between words is straightforward. Two main types

of word embeddings have been developed: static

and contextual embeddings. Static embeddings

are also known as context independent

embeddings, as such representations are unique

for each word and ignore the word’s context.

Glove [15] and word2vec [14] are classic

examples of this kind of embeddings. On the other

hand, contextual embeddings are also known as

context-dependent embeddings, as each word is

represented by a different vector for each context

in which it is used.

In other words, contextual embeddings allow

us to represent multiple senses of a particular

word. ELMo [16] and BERT [4] are examples

of contextual embeddings. The mechanism

for acquiring these embeddings is known as

pre-training, a process defined as the computation
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of large document collections in order to learn

the semantic vectors corresponding to words

or sentences. Actually, pre-trained language

models denote the mechanism for acquiring

these semantic representations that have

been developed by using two deep learning

architectures: recurrent neural networks (RNNs)

and transformer networks.

ELMo is an example of a pre-trained language

model based on RNNs, whereas BERT is a

classic example of a pre-trained language model

based on transformer networks. In this work,

we examine BERT, a pre-trained language model

based on a bidirectional transformer encoder which

is characterized by a bidirectional self-attention

mechanism to produce contextual embeddings.

There are many BERT models, all variants

on the original BERT, available to perform some

downstream task like classification or tagging.

From the model collection available at TensorFlow

Hub [22], we analyze three BERT models:

the original, the universal, and the compact

BERT model.

In terms of representation learning, what makes

one BERT model better than another? Is there

any significant difference in the quality of the

contextual embeddings between these three BERT

models? To answer these questions, we first

analyze the pre-training process of a bidirectional

language model as BERT, and then the fine-tuning

process to transfer the embedded knowledge to a

downstream language task.

2 Motivation Behind the Work

The guide to conducting our study is clearly

defined with the following research question: what

is the impact of the training methods for each

BERT model on the quality of the linguistic

representations produced by these models?

Thus, the motivation behind the training

methods for each BERT model is to perceive

the similarities and differences between the

various training techniques to produce semantic

knowledge to be embedded via fine-tuning.

Since BERT is a bidirectional encoder, and

thus it is able to attend to the whole context of a

particular input element (left and right of the current

input), the training method is based on a cloze

task [21]. Masked Language Model (MLM) is the

original unsupervised training method where the

model learns to predict the missing words of a text.

By learning to predict the masked words, the model

produces suitable word-level representations.

Another unsupervised task for the training of

BERT is to deal with the relationship between pairs

of sentences. Next Sentence Prediction (NSP) is

an unsupervised training method where the model

learns to predict such connection between pairs

of sentences. Now, the pre-training method for the

universal BERT model is a bit different.

The purpose is to improve the semantic

representations at sentence level by implementing

a dual encoder based on the combination of the

BERT original training methods: the integration

of NSP with MLM training is denominated by

its authors as the Conditional Masked Language

Model (CMLM) [28].

The third language model studied in this

work is the compact BERT model. As LLMs

have a high computational cost, this small

model was created with the purpose of not only

reducing the computational cost but also using

the same self-supervised learning paradigm in its

development [24].

We then conduct an empirical evaluation via

fine-tuning to transfer the embedded knowledge to

a downstream language task as classification. The

representations obtained from the BERT models

are transferred to a classifier model, commonly

represented as a simple multiperceptron, to be

fine-tuned to the peculiarities of a downstream task

as short answer responses classification.

The collection of short answer responses

was created with the intention of automated

assessment of written responses [3]. Each

instance in the collection denotes a short answer

corresponding to a particular story of a specific

domain where the grade is defined in terms of

levels of quality.

In other words, the fine-tuning process performs

a downstream task as multi-class classification

where a short answer is assigned into one of the

multiple rubrics of the responses. Thus, we have

described the perspective from which a learning

paradigm known as Self-Supervised Learning is
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analyzed. The primary contributions of our work

are summarised as follows:

– To provide insights about the impact of training

methods in the development of pre-trained

models. The pre-training process for each BERT

model is described to consider similarities and

differences between them.

– To conduct an empirical evaluation on semantic

linguistic representations. The fine tuning

process is implemented on a downstream

classification task with a learning model defined

in terms of the semantic representations

produced by each BERT model.

– To offer additional insight into the computational

resources demanded by the language models.

The experimentation carried out allows us to

detail the computational cost incurred by each

BERT model.

3 BERT Pre-training and
Language Models

We describe in this section the language models

with which BERT has been trained for learning

meaning representations for words and sentences:

MLM [4], NSP [4], CMLM [28] and Distillation [24].

But we first briefly take a look at BERT and its

self-attention mechanism that has impacted the

world of NLP.

3.1 BERT: Bidirectional Encoder
Representations from Transformers

In its broadest sense, the transformer consists

of an encoder-decoder architecture. However,

BERT is a transformer model that includes only the

encoder component.

Unlike other popular embedding models

(e.g., word2vec) that produce static embeddings

irrespective of the context, BERT generates

dynamic embeddings based on the context so

multiple embeddings are produced for the multiple

contexts in which a particular word can be used [4].

In order to generate context-based embeddings,

the attention mechanism of the transformer plays

a crucial role in the encoding process.

Fig. 1. Bidirectional self-attention model. This figure

corresponds to [10]

Self-attention, a special type of attention,

emerged as a more efficient alternative to

overcome the limitations of the RNNs: capturing

long-term dependencies is one of the major

challenges with RNNs [25].

Self-attention takes a holistic approach to the

analysis of the linguistic elements: instead of

considering only the previous elements in the input,

self-attention compares each element with all the

sequence elements in order to understand how

words relate to each other over long distances.

Given a sequence of input elements

(x1, . . . , xn), Figure 1 shows how the output of a

particular element yi depends on the comparisons

between the input xi and the preceding and

following elements xj .

In other words, the self-attention mechanism

is responsible for considering each element of

the entire input sequence and mapping them to

contextualized output vectors. A formal description

of the output values (vector y) is based on

three concepts:

– Query: The current focus of attention.

– Key: Preceding and following input to be

compared with the current focus of attention.

– Value: Computation of the output for the current

focus of attention.

In this way, each element of the input vector x
is represented in terms of these concepts and the

corresponding weights:

qi = WQxi,

ki = WKxi,

vi = WV xi.

(1)
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Then, the output yi corresponding to each input

element xi is:

yi =

n∑

j=i

αijvj , (2)

where the alpha weights represent the proportional

relevance of each input to the current focus

of attention:

αij =
exp(scoreij)

n∑

k=1

exp(scoreik)

, (3)

scoreij = qi kj . (4)

Thus the comparison of each element with

the rest of the sequence elements take place in

parallel. This means simultaneous access to all

sequence elements and therefore simultaneous

computation of the relevance of each sequence

element. In this way, the step-by-step processing of

intermediate recurrent connections is eliminated.

3.2 BERT Training Techniques

We describe in this section the language models

with which BERT has been trained for learning

meaning representations for words and sentences:

MLM [4], NSP [4], CMLM [28] and Distillation [24].

3.2.1 Masked Language Modeling (MLM)

Masked Language Modeling is the approach to

training a deep bidirectional transformer as BERT

to learn contextual word-level representations [4].

MLM is basically a cloze task [21]: some

percentage of the input tokens are masked in

a random way, in order to figure out those

masked tokens. More precisely, each token of the

sequence can be:

– masked

– replaced with another token from the vocabulary

– left unchanged

Fig. 2. Masked Language Model training

Figure 2 shows this training task. In this

example, three of the input tokens are selected,

two of which are masked ( long and thanks) and

the third ( the) is replaced with a tangential token

from the vocabulary.

The purpose is to predict the original words for

each of the masked tokens as well as the tangential

token and in this way to reproduce the original

input sequence. MLM is an unsupervised learning

method as a large corpus of unannotated input

sequences is used for training.

The output vector for each of the masked tokens

(hi) is multiplied by a learned set of classification

weights Wv in order to take a softmax to produce a

probability distribution over the vocabulary:

yi = softmax(Wv hi). (5)

3.2.2 Next Sentence Prediction (NSP)

Next Sentence Prediction (NSP) is another

unsupervised task for the training of BERT on

how to deal with the relationship between pairs

of sentences [4].

As many applications such as paraphrase

detection or entailment demand determining how

close or distant two sentences are, NSP is an

unsupervised training method where the model

learns to predict such connection between pairs

of sentences.

In the particular case of BERT, 50% of the

training pairs denote adjacent sentences whereas

the other 50% of the pairs denote unrelated

sentences as the second sentence is randomly

selected. In addition to the input elements of the

sentences, two new tokens are added to conduct

a proper training: the token [CLS] is prepended

to the input sentence pair, and the token [SEP] is
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Fig. 3. Next Sentence Prediction training

Fig. 4. Conditional MLM training

placed between the sentences and after the final

token of the second sentence. Figure 3 shows

this training task. While the role of the token

[SEP] is obvious, the token [CLS] represents the

output vector associated with the final layer of

the transformer.

And it is precisely this output vector that

denotes the next sentence prediction. The output

vector for each training pair (hi) is multiplied by a

learned set of classification weights WNSP in order

to take a softmax to produce a two-class prediction:

yi = softmax(WNSP hi). (6)

This NSP task was inspired by the framework

developed by Logeswaran and Lee for learning

sentence representations from unlabeled data

[13]. The key point of their work was the

replacement of a generation objective, that is,

the generation of a context sentence given an

input sentence.

Instead, they replace the decoder with a

classifier to predict the target sentence from a set

of candidate sentences. In this way, the NSP

training task takes advantage of this antecedent

work to allow BERT to be able to produce

sentence-level representations.

3.2.3 Conditional Masked Language
Modeling (CMLM)

Conditional Masked Language Modeling is

an alternative approach to training a deep

bidirectional transformer as BERT to learn effective

sentence-level representations [28]. Basically,

CMLM is a training method that combines two

training tasks: Next Sentence Prediction (NSP)

and MLM.

The main idea of CMLM is learning sentence

representations by optimizing the performance on

the MLM task. The architecture of CMLM is based

on the use of two transformer encoders and the

processing of pair of sentences such as the NSP

method does. From each pair of sentences, the

first sentence becomes the input into an encoder

that produces a sentence vector.

This sentence representation is then provided

to the second encoder to perform the MLM task on

the second sentence by making use of the learning

weights generated by the first encoder to produce

the sentence representation. Since the sentence

vector is projected into N spaces, the MLM of the

second sentence can result from observing more

than one representation.

In this way, the optimization of the MLM task

depends on the sentence vector representation of

the adjacent sentence. Last but not least, this

dependency of the MLM task on the sentence

vector representation of the adjacent sentence is

the reason to include the word “conditional” in the

name of this language model: Conditional Masked

Language Model. Figure 4 shows the architecture

of this training task.

This CMLM training task was inspired by the

Skip-Thought work developed by Kiros et al. for

learning generic sentence representations from a

large training corpus of contiguous text [11]. The

key point of their work was the replacement

of composition operators based on the mapping
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of word embedding to sentence representations.

Instead, they replace the composition operator

with a sentence encoder to encode a sentence to

predict the sentences around it: the previous and

the next sentence. In this way, the CMLM training

task takes advantage of this antecedent work

to allow BERT to be able to improve sentence-

level representations.

3.2.4 Knowledge Distillation

Building a compact model revolves around

knowledge distillation: the standard technique for

model compression [8].

Since LLMs have a high computational cost,

research on the development of a small model was

guided by not only reducing the computational cost

but also by using the same self-supervised learning

paradigm in its development.

Indeed, building a compact model proved to

be possible by applying the standard pre-training

and fine-tuning process but a different training

strategy, based on a compression technique known

as knowledge distillation, was implemented.

Basically, this distillation technique consists of a

student-teacher training method where the teacher,

a robust LM, transfers knowledge to the student, a

small LM to be developed, through its predictions

for unlabeled training examples.

Figure 5 shows the knowledge distillation

process incorporated in the development and

implementation of a compact BERT model [24].

The training resources demanded by the process

are the following:

– Teacher: The teacher is a LLM which can be

either a BERT-base or a BERT-large pre-trained

language model.

– Student: The student is the compact

model to be built. Whereas the total

number of parameters is 110 million in

BERT-base, the initial size for a tiny model

is 4 million parameters.

– Label data (DL): A set of N training examples

(x1, y1), . . . , (xN , yN ), where xi is an input and

yi is a label.

Fig. 5. Knowledge Distillation process. This figure

corresponds to [24]

– Unlabeled training data (DT ): A set of M input

examples x
′

1, . . . ,x
′

M obtained from a distribution

not necessarily identical to the distribution of the

labeled set.

This dataset is used by the teacher for the

transfer of knowledge to the student by making

available its predictions for instances x
′

m.

– Unlabeled language model data (DLM ): it is

an unannotated text collection for unsupervised

learning of text representation by using MLM

as training method. And a procedure for a

sequence of three training operations executed

by the algorithm (Figure 1).

– Pre-training on DLM : pre-training of the

compact model with MLM as training method

(Line 1).

– Distillation on DT : transfer knowledge to the

student. Once the student is prepared, the

teacher transfer its knowledge to the student via

its predictions to strengthen the compact model.

Line 3 shows the estimation of the

cross-entropy loss between teacher and student

predictions, this loss is then used to update the

student model. (Line 4).
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Table 1. BERT models and unsupervised

training methods

BERT
Model

MLM NSP CMLM Distillation

Original × ×

Universal × × ×

Compact × ×

Algorithm 1 Knowledge Distillation algorithm. This

figure corresponds to [24]

Require: student θ, teacher Ω, unlabeled LM, data

DLM , unlabeled transfer data DT , labeled data DL

1: Initialize θ by pre-training and MLM+ on DLM

2: for each x ∈ DT do

3: Get loss L← −
∑

y
PΩ(y|x) logPθ(y|x)

4: Update student θ ← BACKPROP(L, θ)
5: end for

6: Fine-tune θ on DL ▷ Optional step.

7: return θ

– Fine-tuning on DL: Line 6 shows this optional

step. The compact model is fine-tuned on

end-task labeled data. In other words, the

similarity between the distribution of the transfer

and labeled datasets is perceived in this step.

This compact model is compared with two

contemporary works that also use distillation for

transfer knowledge. Both works initialize the

student with a BERT model truncated, that is, the

bottom layers of a 12-layer BERT model are used

for the initialization of the student.

However, the distillation process is different.

Whereas Patient Knowledge Distillation performs

task-specific distillation [20], DistillBert makes use

of a more expensive LM teacher as distillation is

performed on general-domain data [19].

3.3 BERT Models

As we previously said, the motivation behind

this work is to study three pre-trained BERT

models and their corresponding unsupervised

training tasks.

The previous section describes each

unsupervised training task and Table 1 shows

similarities and differences between the BERT

models in terms of the training methods used in

their development.

As we see in Table 1, MLM and NSP are

unsupervised training tasks that characterize the

development of the Original BERT model [5]. This

model1 consists of L = 12 encoder layers, a hidden

size of H = 768, and A = 12 attention heads

representing a total of 110M parameters.

On the other hand, the development of the

Universal BERT model is based on CMLM, an

unsupervised training task that integrates MLM

and NSP in order to optimize the semantic

representations at sentence-level [27].

This model2, that extends the BERT

transformer architecture, maps text into high

dimensional vectors to capture sentence-level

semantics. Last but no least, we have a very

different trained model:

The Compact BERT model based on an initial

model trained on MLM (the student) to eventually

improve its performance by knowledge distillation

from the teacher [23].

This model3 consists of L = 4 encoder layers, a

hidden size of H = 512, and A = 8 attention heads

representing a total of 28M parameters.

4 Experimental Evaluation

Once we have described the training methods

for each BERT model, we want to know its

behavior on a particular text-processing task. So,

the experimentation conducted is detailed in

this section.

First, we explain the fine-tuning process of the

pre-trained language models previously mentioned

to perform a downstream task as sequence

classification. Then, the dataset characteristics

are exposed and the results of each BERT model

are exhibited.

1bert en uncased L-12 H-768 A-12
2universal-sentence-encoder-cmlm/multilingual-base
3small bert/bert en uncased L-4 H-512 A-8
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Fig. 6. Sequence classification with a bidirectional

transformer encoder

4.1 Fine-Tuning

The process to make use of the representations

produced by the pre-trained language models

is known as fine-tuning. These semantic

representations are helpful to build a sort of

pipeline application to cope with NLP tasks such as

named entity tagging or sequence classification.

In the case of sequence classification, the

key point is the representation of the entire input

sequence. Whereas in RNNs the hidden layer

corresponding to the last input element denotes

the entire sequence, an additional vector in the

transformer encoder captures the entire sequence.

This is the reason why this additional vector is

called the sentence embedding. The additional

vector is symbolized by the [CLS] token which is

prepended to the input sequences.

Figure 6 shows the architecture of a transformer

encoder for sequence classification where the

output of the encoder represented by [CLS] is

provided to a neural network classifier that makes

the category decision.

By using a labeled dataset, the sequence

classification task entails to learn a set of weights

(WC) in order to map the output vector (YCLS) to a

set of categories:

y = softmax(WC YCLS). (7)

4.2 Data

The dataset used in this experimentation is part

of an ambitious research project denominated

the Automated Student Assessment Prize (ASAP)

[7] for automated grading of student-written

responses sponsored by The William and Flora

Hewlett Foundation.

The purpose is to explore new forms of

testing and grading methods and to reduce

the cost of human graders by automating the

student assessment. Three stages set up the

ASAP project:

– Phase 1: Analysis of essays: Long

form response.

– Phase 2: Analysis of short answers: Short

form response.

– Phase 3: Analysis of charts/graphs: Symbolic

mathematical/logical reasoning.

The focus of our attention is the collection of

short-answers corresponding to the phase 2 [3].

Each instance in the collection denotes a short

answer corresponding to a reading passage from a

broad range of disciplines: from English Language

Arts to Science.

More specifically, the dataset is divided into

10 collections, where each one is described by

a particular reading passage corresponding to a

particular discipline and where the grade is defined

in terms of levels of quality or categories.

For instance, the following text is an example

of a short answer response where the range of

the score is three: 0 (not proficient), 1 (partially

proficient), or 2 (proficient).

“Paul is shocked that Mr. Leonard didn’t tell

him that he broke all the records he did, and that

he won the 400 meter hurdles at nationals when

he was only a freshman. Paul also realizes that

Mr. Leonard had been trying to help him because

he too, was good at something, but couldn’t do

it because he didn’t get good enough grades,

because he couldn’t read.”

The average length of each answer is

approximately 50 words and most training sets

contain around 1,800 responses that have been
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Fig. 7. Data distribution of the short-answers collections 3, 7, 8, 9

randomly selected from a sample of approximately

3,000. From the 10 training collections available

in the dataset, we select four training sets

where three levels of quality define the grade of

each answer.

In other words, the fine-tuning process

implemented in our experimentation performs

a downstream task as multi-class classification

where a short answer is assigned into one of the

multiple rubrics of the responses.

The distribution of responses to rubrics

corresponding to each training collection is shown

in Figure 7.

4.3 Results

In our experiments, we adopt two strategies

to the downstream task: the simple use of

the embeddings obtained from the pre-trained

model, and a more refined optimization of such

embeddings via an added classic neural network.
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Table 2. Results corresponding to each BERT model for each network architecture and each dataset

BERT model Architecture Dataset 3 Dataset 7 Dataset 8 Dataset 9

Compact Simple 0,64 0,60 0,62 0,65

Compact Layers 0,71 0,66 0,64 0,72

Original Simple 0,60 0,55 0,56 0,62

Original Layers 0,61 0,53 0,54 0,63

Universal Simple 0,69 0,68 0,66 0,72

Universal Layers 0,74 0,74 0,72 0,79

Although there are more sophisticated neural

network models such as CNN and RNN, we

consider these two simple and basic options

as our purpose is to perceive the quality of

the embeddings produced by different training

methods rather than to obtain a high precision

on the downstream task. Thus, the downstream

network architectures implemented are:

– Simple: a simple dense layer is used to

adjust the pre-trained embeddings obtained

from pooled output. For example, since the

number of hidden units of the original BERT

model is 768, and our experimentation performs

a downstream three-class classification, the

number of parameters to be adjusted is 2,307.

– Layers: three dense layers are used to adjust

the pre-trained embeddings obtained from

pooled output. The first and second layers

contain 64 and 32 hidden units respectively,

and since the number of hidden units of

the original BERT model is 768, and our

experimentation performs a downstream

three-class classification, the number of

parameters to be adjusted is 51,395.

As the size of the short-answers collections

is small, the performance evaluation of the

pre-trained models was conducted by the

cross-validation method to use all the responses

corresponding to a particular domain.

We train our downstream learning models with

an Adam optimizer with a learning rate of 0.001,

three-fold cross-validation and 25 epochs.

We also apply dropout with ρ = 0.2 across

layers of the downstream networks to prevent

overfitting. Table 2 shows the results obtained

in the fine-tuning process where classification of

the collection of short-answers is the downstream

task implemented for the analysis of the semantic

representations obtained from the pre-trained

BERT models.

The results are expressed in terms of the F1

score corresponding to each BERT model for each

network architecture and each training set. For

example, the first row shows a F1 score of 0.64

obtained with the Compact model and a simple

network architecture for dataset 3. A deep analysis

of the results is carried out in the next section.

5 Discussion

A starting point for our discussion section is the

definition of the baseline as a reference point for

the obtained results. As it has been described

in the data section 4.2, the data collection used

in our experimentation is part of a competition for

automated grading of student-written responses

(ASAP) [7].

Unfortunately, the information available on the

competition portal only mentions the winners of the

competition but no methodology implemented or

obtained results are provided.

But taking into account that our purpose is to

perceive the quality of the embeddings produced

by different training methods rather than obtain

high precision on the downstream task, we define

the original BERT model as the baseline model.
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Fig. 8. Results corresponding to each BERT model for each network architecture and each dataset

For the sake of clarity, Figure 8 shows a graphic

perspective on the obtained results from Table 2.

5.1 Pre-Trained BERT Models: Unsupervised
Training Methods

The research question that guides our work

is: what is the impact of the unsupervised

training methods on the quality of the semantic

representations produced by the pre-trained BERT

models? Based on the experimental results, Figure

8 shows how the baseline performance differs from

the Compact and Universal models: we can see

how the performance of these extended models

exceeds that of the original model.

In other words, the obtained results exhibit how

the unsupervised training variants contribute to a

positive effect on the performance. For example,

the highest F1 score obtained for all datasets by

the Universal model underpins its argument about

the optimization of sentence-level representations.

In fact, the integration of the NSP and

MLM training methods, where the MLM task

depends on the sentence level representation

produced by the NSP task, entails a sort of

tradeoff: to perform good MLM, good sentence

representations are required.

As we described in section 3.2.3, the CMLM

training method of the Universal model makes use

of adjacent sentences where the concatenation of

the token embeddings of s2 with the embeddings
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of the first sentence s1, are provided to the

transformer encoder for the prediction of the

masked tokens in s2. In this way, this training

method proves to be the best option to learn and

produce sentence level representations.

As for the results obtained by the Compact

model, the use of knowledge distillation as training

method proves to be a plausible option for transfer

learned knowledge to particular tasks.

The F1 score obtained by this Compact model

for all datasets have surpassed the corresponding

scores obtained by the baseline model. Thus,

these results underpins its argument about the

successful development of compact models under

the self-supervised pre-training paradigm.

In section 3.2.4, we describe how the

pre-trained distillation method of the Compact

model defines three training operations: initialize

a small model (i.e. the student) by pre-training

under the MLM task, transfer learned knowledge

(i.e. distillation of the teacher knowledge) and the

optional fine-tuning on a particular linguistic task

such as classification.

In this way, compared to the use of compression

techniques on large language models [20, 19],

this distillation training method proves to be

a well-performing model developed under the

self-supervised pre-training paradigm.

5.2 Pre-Trained BERT Models: Fine-Tuning
Model Architectures

As suggested by Goodfellow et al. [6], a good

representation is one that makes a subsequent

learning task easier.

This is the reason why, in order to know

about the strengths and weaknesses of the

semantic representations extracted from the

pre-trained BERT models studied in this work,

we implement the fine-tuning process on a

downstream classification task.

In other words, we transfer the acquired

knowledge obtained from the pre-trained BERT

models to solve automated grading of student

written responses. Then, we need to figure out

which of these representations demand further

training to cope with this classification task.

This is the reason why we implement two

fine-tuning model architectures: a simple and a

forward neural network named in this work as

layers. As we described in previous section 4.3, a

simple architecture is just a softmax layer whereas

our layers architecture is defined in terms of a

small forward neural network to determine whether

tuning is worth implementing.

Figure 8 highlights important points to be

noticed. First, we see how the tuning of

the embeddings produced by the Universal and

Compact models has been worth of implementing.

For all the observed datasets, the F1 score

obtained by the use of the layers architecture

is higher than the score obtained by the simple

architecture. An average increase of 6 points in

the F1 score is observed.

On the other hand, we see how the tuning of the

embeddings produced by the Original BERT model

has not been worth of implementing. For datasets

3 and 9, the F1 score obtained by the use of the

layers architecture is a bit higher than the score

obtained by the simple architecture (just one point

is the difference).

However, for datasets 7 and 8, the F1 score

obtained by the use of the layers architecture

is lower than the score obtained by the simple

architecture. Thus, two points stand out with the

use of the semantic representations produced by

the Original BERT model: for all the observed

datasets, the lowest F1 score has been obtained,

and the tuning of the embeddings has not been

worth of implementing.

In summary, the embeddings produced by the

extended BERT models, Universal and Compact

models, have optimized the downstream task.

On the other hand, regardless of the fine-tuning

learning model implemented, simple or layers

architectures, the F1 score obtained with the

Original BERT model was lower than the one

obtained with the pre-trained BERT variants.

The use of complex downstream network

architectures such as CNN or Bi-LSTM could

possibly improve the performance of the Original

BERT model, but two previous works do not

consider this option as a plausible alternative.

Zhao et al., in their work about the use of

pre-trained LLMs for toxic comment classification,
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prove that using a basic linear downstream

architecture outperforms complex ones such as

CNN or Bi-LSTM [29]. Also, in their work about

the analysis of multiple embeddings methods for

text classification, Wang et al. implement CNN and

Bi-LSTM as downstream network architectures

and the difference in performance was not

significant [26]. For the authors, the difference

in performance lies in the characteristics of the

data rather than the network architectures of the

learning model.

5.3 Pre-Trained BERT Models:
Computational Resources

What is the computational cost demanded

by the pre-trained BERT models? Since

determining the runtime and memory requirement

of the pre-trained BERT models is highly

platform-dependent, we do not describe the

computational cost in absolute terms.

We describe rather the computational cost as

a degree of runtime. In order to make a viable

explanation for the computational cost incurred by

each BERT model, we define a baseline as a

reference point for the running time demanded by

each model in the fine-tuning process.

So, taking into account the longest running

time demanded, we define the Universal BERT

model as the baseline model. Since the different

downstream network architectures (simple or

layers architectures) do not show any discrepancy

in terms of the time consumed, we attribute the

difference in time to the structure and training of

each particular BERT model.

For example, the use of the Universal model

gives rise to a tradeoff between classification

performance and time: the Universal model

demands more time but obtains the best F1 score

for all datasets.

As we describe in section 3.3, this Large

Language Model is based on the BERT

transformer architecture that consists of L=12

encoder layers, a hidden size of H = 768, and

A = 12 attention heads representing a total

of 110M parameters. By contrast, the running

time demanded by the Compact model is really

amazing: this model requires only a third of the

time required by the Universal model. And the

classification performance is also good: this model

achieves better F1 score than the Original model.

As we describe in section 3.3, this Small

Language Model is based on a knowledge

distillation architecture that consists of L = 4
encoder layers, a hidden size of H = 512, and

A = 8 attention heads representing a total of

28M parameters.

In summary, and based on the evidence

provided by our experimentation, we conclude

this discussion section by considering the

Compact model as a plausible alternative

when the classification task can tolerate slight

faults. Otherwise, and despite the running time

demanded, the Universal model is the best option.

6 Related Work

Based on the taxonomy proposed by Qiu et al.

for a deep examination of pre-trained language

models for NLP [17], we focus our attention in this

section on the type of pre-training tasks. More

specifically, and given that in this work we address

the analysis of three pre-trained BERT models

and their corresponding pre-training tasks such as

MLM, NSP and Distillation, in this section we make

a brief description of pre-training tasks related to

those previously mentioned. For example, we

start with Dynamic MLM as it is a pre-training task

closely related to MLM.

6.1 Dynamic MLM

This pre-training task is implemented in the

development of a variant of BERT known as

RoBERTa [30]. The purpose of this pre-training

method is the optimization of the static masking

implemented by MLM in which unique and different

maskings are generated for each sequence, so

each sequence with the same masking is observed

more than once.

Instead, Dynamic MLM generates a unique

masking every time a sequences is transferred to

BERT training. In this way, a wide diversity of

masking patterns is available for the training of

BERT. Besides this training method optimization,

the training of RoBERTa was implemented with
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bigger batches, longer sentences and the use

of NSP was omitted. In this way, RoBERTa

performance achieves state-of-the-art results on a

benchmark such as GLUE.

6.2 SOP: Sentence Order Prediction

This pre-training task is implemented in the

development of a variant of BERT known as

ALBERT [12]. As a sequel to BERT breakthrough,

some studies on BERT development suggest the

use of next sentence prediction (NSP) as an

ineffective training method. In the development of

ALBERT, SOP is then introduced to replace NSP. In

order to take care of inter-sentence modeling, SOP

focuses on coherence between pairs of sentences

in a different way to NSP.

Instead of using sentence pairs from different

documents as negative examples, SOP makes use

of the same two consecutive sentences, used as

positive examples in BERT, but with their order

swapped. In addition to this new training method,

ALBERT implements two parameter reduction

techniques to cope with the huge computational

resources demanded by BERT.

First, the separation of the hidden layers from

the vocabulary embedding to increase the hidden

layers without increasing the size of the vocabulary

embedding. Second, to share all parameters

across layers as a way to improve parameter

efficiency. In this way, ALBERT performance

achieves state-of-the-art results on a benchmark

such as GLUE.

6.3 Transformer Distillation

This pre-training method implements a

distillation knowledge technique to reduce the

computational overhead of BERT while retaining

its performance. A variant of BERT known

as TinyBERT is the language model obtained

by implementing this transformer distillation

technique [9]. Transformer distillation performs

layer-to-layer distillation with embedding outputs,

hidden states and self-attention distributions.

Basically, layer-to-layer distillation consists in

choosing M out of N layers from the teacher model

where a mapping function is defined for transfer

learning from a particular layer of student model

to a particular layer of a teacher model. The

development of TinyBERT consists of two learning

stages: general distillation and task-specific

distillation. General distillation makes use of the

pre-trained BERT as the teacher to train a smaller

student called general TinyBERT with only 4

hidden layers instead of the standard 12.

Because of this significant reduction in the

number of hidden layers, general TinyBERT

performance is lower than BERT. Now, the

purpose of the task-specific distillation is to

strengthen the power of TinyBERT by applying

again transformer distillation but now having as

teacher the knowledge of fine-tuned BERT.

This process makes use of a data augmentation

method on a task dataset in order to expand

the task-specific training dataset. In this way,

TinyBERT performance achieves state-of-the-art

results on a benchmark such as GLUE.

7 Conclusion and Future Work

In this paper, we analyze the influence

of unsupervised training methods on the

development of pre-trained language models

for learning linguistic representations. In particular,

we study three pre-trained BERT models and their

corresponding unsupervised training tasks such

as MLM, NSP, CMLM and Distillation.

A broad outline of the pre-training process for

each BERT variant allows to consider similarity and

differences between them. We conduct fine-tuning

as an empirical evaluation on a downstream

classification task with a learning model defined in

terms of the semantic representations produced by

each BERT model. In this way, our experimentation

provides empirical evidence of the quality of

the embeddings produced by these pre-trained

language models.

For example, the results show how the tuning

of the embeddings produced by the Universal and

Compact models has been worth of implementing

as the F1 score obtained by the use of the layers

architecture is higher than the score obtained by

the simple architecture whereas the tuning of the

embeddings produced by the Original BERT model

has not been worth of implementing.
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Finally, we obtain insight into the computational

resources demanded by the BERT models

analyzed in this work. The efficiency of the

Compact model was rather astonishing. Based

on the work about the identification of linguistic

properties of data for which contextual embeddings

contribute with a significant improvement on

performance [1], our future work will explore the

linguistic properties of data for which pre-trained

models improve performance during downstream

task. Said in another way, we will identify linguistic

properties of data for which pre-trained models

will exhibit the strengths and weaknesses of their

corresponding unsupervised training methods.
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