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Abstract. Image-to-image translation (I2I) is a
specialized technique aimed at converting images from
one domain to another while retaining their intrinsic
content. This process involves learning the relationship
between an input and its corresponding output image
through a dataset of aligned pairs. Our study
utilizes the CycleGAN model to pioneer a method
for transforming images from the domain of Monet’s
paintings to a domain of varied photographs without
the need for paired training examples. We address
challenges such as mode collapse and overfitting, which
can affect the integrity and quality of the translated
images. Our investigation focuses on enhancing the
CycleGAN model’s performance and stability through
data augmentation strategies, such as flipping, mirroring,
and contrast enhancement. We propose that judicious
dataset selection for training can yield superior outcomes
with less data compared to indiscriminate large-volume
training. By online scraping Monet’s artwork and curating
a diverse, representative image subset, we fine-tuned
our model. This targeted approach propelled our results
to 2nd place in the Kaggle challenge ”I am something of
a Painter Myself” as of August 3rd, 2023, demonstrating
the efficacy of our enhanced training protocol.

Keywords. Generative adversarial network,
image-to-image translation, data augmentation,
cycle consistency.

1 Introduction

The image-to-image translation transforms an
input image from one visual domain to another
while preserving its semantic content. In other
words, it involves changing the appearance or style

of an image while retaining its underlying structure
or content. The image-to-image translation aims to
learn a mapping function that can convert images
from a source domain to a target domain.

The source and target domains can represent
different visual characteristics, such as style, color,
texture, or even the presence or absence of
particular objects.

Traditional methods, such as patch-based
algorithms or filter-based approaches, have been
effective but are often tailored for specific
tasks and lack the ability to generalize across
different domains.

Image-to-image translation has been used in
a broad range of real-world applications across
multiple industries and disciplines. Some
relevant examples:

– Modality Translation: Consist of translating
between different imaging modalities (e.g., from
MRI to CT scans) can be useful for medical
diagnostics when only one type of imaging is
available [23, 20].

– Simulated Training: Translating synthetic or
simulated data for improved machine learning
training [13, 15].

– Satellite to Map Translation: Converting
satellite images into more interpretable map
views can aid in various types of terrain analysis
and planning [9, 8].
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Table 1. Dataset description

Dataset Size Description
Monet300 300 Dataset from Kaggle competition consisting of landscapes.

Monet900 900 Dataset hand picked from Monet1969 with a variety of landscapes, portraits and
wide variety of colors.

Monet1172 1172 Dataset generated by flipping, rotating and contrast enhancement of Monet 300.
Monet1337 1337 Dataset generated by randomly selecting i images from Monet 1969.

Monet1969 1969 Dataset obtained by web scrapping1. Includes an almost complete gallery of
Claude Monet 2500 known artworks.

Photos 7038 Dataset from Kaggle competition consisting of wide variety of photos used to
generate the transfer style of our trained model from the Monet images.

– Design Visualization: Converting 2D
blueprints into 3D images for better visualization
and understanding of architectural designs.

These examples only scratch the surface; the
possibilities are continually expanding as the
technology matures. Image-to-image translation
models open up even more possibilities for
innovation and application.

In order to complete this task, various techniques
can be employed, including generative adversarial
networks (GANs) [10], variational autoencoders
(VAEs) [12], conditional GANs (cGANs) [22], and
other deep learning architectures.

These models have shown remarkable
advancements in various computer vision and
image processing applications, including image
synthesis, segmentation [7], and style transfer
[26]. Additionally, these models are trained on
large datasets containing pairs of input and
target images, learning the mapping between the
domains through optimization.

However, a fundamental challenge in
image-to-image translation is the unavailability of
paired training data in many real world applications.

For instance, in medical imaging, obtaining
perfectly aligned images from different modalities
(e.g., MRI to CT scans [14]) is often impractical or
even impossible. This lack of paired data has been
a bottleneck for the effective deployment of GANs
in diverse applications.

1www.claudemonetgallery.org/

Cycle-Consistent Adversarial Networks
(CycleGANs) offer a groundbreaking solution
to this problem by learning to translate images
from one domain to another in the absence of
paired training examples.

The core innovation lies in introducing a
cycle-consistency loss, which ensures that an
image translated from one domain to another
can be reverted back to the original image, thus
preserving the inherent structure and content.
Despite its transformative potential, the CycleGAN
model is not without its limitations.

There are issues related to mode collapse
[6], overfitting to specific styles [24], and the
computational intensity of the training process. In
this context, data augmentation techniques have
been identified as a potential avenue to enrich the
training process, thereby enhancing the robustness
and performance of the model.

Yet, the interplay between CycleGAN
architecture and various data augmentation
strategies remains an underexplored area of
research [5, 16, 21]. In this work, we investigate
using different data augmentation approaches
in the performance of a CycleGAN model for
Monetesque style transfer in images.

We aim to give some insight about the impact of
data augmentation strategies and the CycleGAN
performance by conducting an investigation into
the use of data augmentation techniques in
conjunction with CycleGAN for image-to-image
translation tasks.
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Fig. 1. Architecture of Cycle GAN

While several prior works have focused on the
CycleGAN model in style transfer [16, 2], there
are very few [4] focusing on the importance of the
relationship between the quality of the data input
and the performance of the model metrics.

We focus in the MiFID1 score since it was
the one used in the Kaggle competition for the
assessment of the quality of the model.

This work is divided as follows: Section 2
describes the state of the art and related works.
Section 3 describes the proposed methodology,
Section 4 describes the experiments, Section
5 and 6 summarize our discussion and draw
our conclusions.

1Memorization-informed Frechet Inception Distance

2 Related Work

Most of the work in literature deals with the
transfer style of the different artist using supervised
methods. The most important work using
CycleGAN was done by Zhu et al. [26] being a
pioneering work.

They proposed the CycleGAN model and
exemplified its advantages over supervised GAN
models through an application of image-to-image
translation all in the absence of one-to-one
mapping between source and target pairs.

In another line of research, Yi et al. (2017)
[25] proposed DualGAN, a model similar
to CycleGAN, with a different approach to
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Fig. 2. Sample of dataset : A) Dataset mostly landscapes, B) Dataset handpicked with more varied paintings

the implementation of the generator and
discriminator networks. This work did not
explicitly made use of data augmentation but
it established important foundations for unpaired
image-to-image translation.

More recently, Lee et al. (2021) [11] show the
performance of data augmentation in the Pix2Pix
model, but with paired training data. They explored
several data augmentation techniques, including
flipping, rotation, and scaling.

Their study revealed significant improvements
in model generalization capabilities, prompting
us to explore similar strategies in the context
of CycleGAN.

While data augmentation has been extensively
studied in deep learning, its implementation in
the context of GANs and specifically CycleGAN
is relatively under-explored. Ratner et al. (2017)
[18] used data augmentation in GANs to generate
more diverse images but did not explore unpaired
image-to-image translation tasks.

Their approach, however, does offer interesting
insights into how data augmentation can improve
the quality and diversity of generated images.

Also, Almaihairi et al. (2018) [1] proposed the
Augmented CycleGAN model to deal with some
significant limitations such as the problem of mode
collapse presented in the CycleGAN model.

They do this by extending the original framework
to support multi-domain image translation for
translation between more than two domains,
enabling the generation of images across a
broader range of visual styles or attributes.

Our work aims to explore the impact of data
augmentation in the performance of the CycleGAN
for unpaired image-to-image translation tasks.

We build upon previous studies and our own
knowledge by incorporating data augmentation
techniques into the CycleGAN model and
made use of MiFID metric to evaluate the
model performance.

3 Methodology

For this section we intend to present the main
features of the CycleGAN model through the
description of the architecture used in this work
and the metric applied for the assessment of the
model performance.

3.1 Generative Adversarial Networks

A generative adversarial network (GAN) is a type
of deep learning model consisting of two neural
networks: a generator network and a discriminator
network. The GAN framework was introduced by
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Table 2. Summary of experiment results

Dataset Epochs MiFID

Monet300
100 48.2689
150 43.9139
175 44.9882

Monet900
25 38.7693
50 34.8291
75 40.4339

Monet1172
50 47.4199
75 42.1799

100 47.7829

Monet1337
75 39.0477

125 38.7693
150 40.1230

Monet1969
25 47.8782
50 45.6861
75 46.05

Goodfellow et al. in 2014 [10]. The main objective
of a Generative Adversarial Network (GAN) is to
produce synthetic data that exhibits a high degree
of realism, particularly in the context of generating
images, which closely resemble samples from a
specified target dataset.

The generator network accepts either random
noise or a latent input as its input and endeavors
to produce samples that closely resemble the
distribution of the target data.

Conversely, the discriminator network undergoes
training to differentiate between authentic samples
provided from the target dataset and synthetic
samples produced by the generator.

The training process of a Generative Adversarial
Network (GAN) entails a competitive interplay
between the generator and discriminator neural
networks. The primary objective of the generator
is to generate samples that exhibit a higher degree
of realism in order to deceive the discriminator.

Conversely, the discriminator’s primary goal is to
accurately distinguish between real and counterfeit
samples. The learning process is driven by the
antagonistic connection between the two networks.

Given a discriminator D and a generator G, this
two networks play two-player minimax game with
value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata (x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))],
(1)

where pdata represents the distribution of generator
over the input data x and pz a prior input
noise variables. GANs have inspired numerous
variations and extensions, such as conditional
GANs (cGANs), Wasserstein GANs (WGANs),
progressive GANs, which further improve the
stability and quality of generated samples [17],
and CycleGANs.

3.2 CycleGAN

A CycleGAN (Cycle-Consistent Adversarial
Network) is a type of GAN specifically designed
for unsupervised I2I translation. It was introduced
as a new way to learn mappings between two
different image domains without needing paired
training data.

The key idea behind CycleGAN is to leverage the
concept of cycle consistency. In image translation
tasks, the goal is to learn a mapping between
images from a source domain and images from a
target domain without explicitly paired examples.

The CycleGAN architecture is different from
other GANs in a way that it contains 2 mapping
functions (G and F ) that act as generators and their
corresponding Discriminators (Dx and Dy): The
generator mapping functions are as follows:

G : X → Y ,F : Y → X, (2)

where X is the input image distribution and Y
is the desired output distribution. And the cost
function used is the sum of adversarial loss and
cyclic consistent loss:

L(G,F ,Dx,Dy) = Ladvers(G,Dy,X,Y ) +

Ladvers(F ,Dx,Y ,X) + λLcycl(G,F ,X,Y ).
(3)

With an objective function with the form of:

minG,F maxDx,DyL(G,F ,Dx,Dy). (4)

The training process of a CycleGAN involves two
main components:
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1. Adversarial Loss: The training of the
generators and discriminators is conducted
through the utilization of adversarial learning.
The primary objective of the generators is to
produce images that deceive the discriminators
by causing them to classify the generated
images as authentic.

Conversely, the discriminators strive to
accurately differentiate between real images
and those that have been generated. The
utilization of an adversarial loss function
contributes to the enhancement of both the
quality and realism of the generated images:

Lossadv(G,Dy,X,Y ) =
1

m
Σ(1−Dx(G(xi)))

2,

Lossadv(F ,Dx,Y ,X) =
1

m
Σ(1−Dy(F (yi)))

2.

(5)

2. Cycle-Consistency Loss: This principle
asserts that an image that undergoes
translation from one domain to another and
subsequently back should have a high degree
of similarity to the original input image.

The loss function employed in this process
guarantees the maintenance of consistency
in the mapping between the images in both
directions, so aiding in the preservation of the
original image content:

Losscyc(G,F ,X,Y ) =
1

m
[(F (G(xi))− xi)+

(G(F (yi))− yi)].
(6)

The incorporation of the cycle-consistency loss
incentivizes the generators to acquire knowledge
about cycle-consistent mappings, hence facilitating
the generators’ ability to comprehend and
represent the common information shared across
the two domains.

This limitation serves to mitigate the potential
distortion or loss of significant content that may
occur during the process of translation. A
fundamental weakness of the CycleGAN model is
that it learns deterministic mappings.

In CycleGAN and other similar models [17, 2],
the conditionals between domains correspond to
delta functions: p̂(a | b) = δ (GBA(b)) and
p̂(b | a) = δ (GAB(a)), and cycle consistency forces
the learned mappings to be inverses of each other.

Table 3. Leaderboard of Kaggle event1

Place Team MiFID
1 HUST AIA PRCD 34.48525
2 Gerardo Lug 34.82910
3 CLIPTraVeLGAN 35.01656
4 chenccckkk 35.07934
5 MLCV 35.31007
6 GudrunGertold 36.96598
7 Nandita Bhattacharya 37.06163
8 Coffee L 37.29003
9 Alena Shevtsova 37.48513

10 Datendullis 37.68987
11 Issam Ben Moussa 37.71797
12 Andrey Nesterov 38.26549
13 rabbie 38.64153
14 Eishkaran Singh 39.08037
15 Yuanfei Xu 39.08037

When confronted with intricate inter-domain
connections, CycleGAN tends to acquire an
artificial one-to-one correspondence instead of
accurately reflecting the genuine, organized
conditional distribution.

The presence of deterministic mappings poses a
challenge in achieving optimized cycle consistency,
particularly when the domains exhibit significant
differences in complexity. In such scenarios, the
mapping from one domain to another typically
results in a one-to-many relationship.

3.3 Architecture of the Proposed CycleGAN

The CycleGAN generator is composed of three
distinct components, namely the Encoder,
Transformer, and Decoder. The UNET architecture
will be employed for the generator. In order
to construct the generator, we establish our
downsample and upsample techniques.

The process of downsampling involves reducing
the two-dimensional dimensions, specifically the
width and height of an image, by a factor known as
the stride. The stride refers to the measurement
of the distance covered by each step taken by
the filter.
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Fig. 3. Results obtained from our CycleGAN model: A) Original Image, B)Monet300 with 150 epochs, C) Monet900 with
50 epochs, D) Monet1172 with 75 epochs, E) Monet1337 with 100 epochs, F)Monet1969 with 50 epochs

Given a stride value of 2, the filter is applied to
alternate pixels, resulting in a reduction of both the
width and height dimensions by a factor of 2. In this
study, instance normalization was employed as an
alternative to batch normalizing.

The process of upsampling involves increasing
the dimensions of an image, which is in contrast to
downsampling where the dimensions are reduced.
The Conv2DTranspose layer performs the inverse
operation of the Conv2D layer.

The initial step of the generator involves
downsampling the input image, followed by
upsampling while simultaneously establishing
lengthy skip connections.

Skip connections are employed to mitigate the
issue of vanishing gradient by integrating the
output of a layer with numerous layers through
concatenation, rather than solely connecting it to
a single layer.
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Fig. 4. Loss function (Top: Generators, Bottom: Discriminators): A) Monet300, B) Monet900, C) Monet1172, D)
Monet1337, E) Monet1969
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In this process, the output of the downsample
layer is symmetrically concatenated with the output
of the upsample layer. The architecture of the
discriminator employs the PatchGAN discriminator.

The distinction between a PatchGAN and
a conventional GAN discriminator lies in their
respective mapping functions. In the case of a
standard GAN, the mapping is performed from a
256 × 256 picture to a singular scalar output,
which serves as an indicator of authenticity (“real”
or “fake”).

On the other hand, the PatchGAN operates by
mapping from a 256×256 image to a different
output, which encompasses many patches inside
the image to an N × N (here 64×64) array of
outputs X, where each Xij represents whether the
patch i, j in the image is real or fake—first, a
4×4 convolution-InstanceNorm-LeakyReLU layer
with 128, 256 and 512 filters and stride of size 2.

InstanceNorm on the first layer of 64 filters is not
applied. After the last layer, we apply convolution
operation to produce a 1×1 output. The general
design of the implemented architecture for this
work is shown in Fig. 1.

3.4 Datasets and Pre-Processing

All the images for the model were of size 256 x
256 pixels and processed into TFRecord files with
a batch size of 25. Additionally, the images were
scaled to a [-1, 1] scale.

Because we were building a generative model,
we do not need the labels, so we will only return the
image from the TFRecord. The description of the
used datasets are shown in Table 1 and a sample
of the dataset contents are shown in Fig. 2.

3.5 Performance Metric

Memorization-informed Frechet Inception
Distance (MiFID): Bai et al. (2021) [3] conduct
the first generative model competition. The
researchers made adaptations to the Frechet
Inception Distance (FID) metric in order to impose
penalties on models that generate images that
closely resemble the training dataset:

MiFID (Sg,St) = mτ (Sg,St) · FID (Sg,St) , (7)

where Sg is the generated set and St is the original
training set. mτ is the memorization penalty
which is based on thresholding the memorization
distance s of generated and true distribution
defined as:

s (Sg,St) =
1

|Sg|
∑

xg∈Sg

min
xt∈St

(
1− |⟨xg,xt⟩|

|xg| · |xt|

)
, (8)

mτ (Sg ,St) =


1

s(Sg ,St) + ϵ
(ϵ ≪ 1), if s < τ ,

1 otherwise.

(9)

Lower memorization distance is associated with
more severe training sample memorization.

4 Experiments and Results

We train our CycleGAN model with the different
datasets shown in Table 1 and evaluate their
performance using the MiFID metric.

Training of the model was stopped when
performance of the MiFID score lowered, giving
us an indication of mode collapse and overfitting
affecting the performance of the model [26].

The best results of the various performed
experiments are shown in Table 2 and compared
with Kaggle competition leaderboard shown in
Table 31. The results from Table 2 synthesize
the most relevant experiments where we show the
progression of the model’s performance, reporting
the best result and intermediate results between it.

For example, for Monet300 the best result
obtained was with 150 training epochs with a
MiFID metric of 43.9139 and the values of epochs
100 and 175 with a MiFID score of and epochs
48.2689 and 44.9882 respectively show that the
performance of the model will not provide us with
more training improvement due to overfitting and
mode collapse.

This can be seen more clearly in Figure
4 where the loss functions of the generators
and discriminators of our CycleGAN model are
shown with the different datasets over several
training epochs.

1103 teams Kaggle competition leaderboard ”I’m Something
of a Painter Myself.Use GANs to create art - will you be the next
Monet?”. Date: August 3rd,2023.
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It can be observed that despite being the same
model architecture, its performance is significantly
affected by the training dataset, where the best
result was obtained with the Monet900 dataset with
a MiFID score of 34.82910.

This is quite a good performance positioning
us in the 2nd place in the Kaggle1 competition
when we submit our results. An adequate and
representative selection of the transfer domain,
in this case, Monet images, can generate better
results despite having fewer images for training.

In the same way, we notice that the use of
data augmentation strategies in Monet1197 and
Monet1969 showed a similar performance or below
the Monet300 dataset.

The performance of a model may depend not
only on its architecture but also on the quality of
the training dataset. It is essential to carefully
consider and prepare the dataset to generate a
representative sample that effectively represents
the desired distribution.

This insight has been highlighted by recent
studies [16]. The dataset Monet1969 comprised
the most extensive collection of Monet
paintings from the evaluated datasets with the
worst performance.

This is counterintuitive since one would expect
that, as in the CNN models, having a more
extensive dataset would imply a better model
performance [19]. However, a handpicked sample
performs better for the same model CycleGAN
architecture in the case of our experiments.

The behavior of the loss function of the
generators and discriminators, Monet to Photo and
Photo to Monet, is shown in Fig. 4.

It is interesting to notice that although the loss
functions are not very useful in evaluating the
performance of the CycleGAN models, they can
provide the necessary information, such as if there
is overfitting in the generators and poor training of
the discriminants.

In the same way, since the convergence in the
CycleGAN models does not usually occur as in the
CNN models, we have that the best performance of
the model usually occurs at the intersection of the
loss functions of the two discriminators and of the
two generators [26].

Fig. 3 shows some comparative results of
the best outputs with the experiments of each
dataset. Visually it can be seen that overall all
results are pretty good in high-contrast images but
have less convincing transformations when faced
with complex cross-domain relationships such as
medium and low-contrast images.

5 Discussion

In our work, we explored the impact of different
data augmentation strategies on the effectiveness
of the CycleGAN model.

As CycleGAN relies on unpaired image-to-image
translation, it presents unique challenges in
handling data diversity and robustness. Data
augmentation has been acknowledged as an
effective technique in traditional supervised
learning for increasing the robustness of models
by creating more diverse training samples.

Our experiments revealed that implementing
these data augmentation strategies
significantly improved the model’s robustness
against overfitting.

We observed an enhanced ability of the model
to generalize across diverse transformations and
variations in the source and target images. We
compared the performance of the CycleGAN
model with four different data augmentation
approaches and showed that not all augmentation
strategies were equally beneficial.

For instance, the data augmentation strategy
of flipping, mirroring, cropping, and contrast
enhancement in Monet1172 did not contribute
significantly to model performance. In contrast, the
augmentation approach in Monet900, by carefully
selecting the training data, obtained a better
performance with a MiFID performance of 34.8291
that managed to position itself in second place in
the Kaggle competition 1.

Limitations of the CycleGAN model were
observed, such as the overfitting problem and
mode collapse of the generator, which limits our
ability to obtain better results since the CycleGAN
model learns deterministic mappings.

1103 teams Kaggle competition leaderboard ”I’m Something
of a Painter Myself.Use GANs to create art - will you be the next
Monet?”. Date: August 3rd,2023
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6 Conclusion and Future Work

In this work, we performed a comparison with
different data augmentation strategies in the
performance of a CycleGAN model for generating
Monetesque-style images. We managed to show
that the importance of the dataset is not related
to its size but to the quality of data representation
concerning the distribution of interest to be
generated, in this case, Monetesque images.

For future works, to address these issues
and improve results, the use of multimodal
and multi-domain models such as Augmented
CycleGAN, Mode Seeking Generative Adversarial
Networks (MSGAN), and Domain-supervised GAN
(DosGAN) have been proposed.

Also, reinforcement learning has been
considered to make the CycleGAN model more
robust to mode collapse and correct the overfitting
of the generators.

Dataset and Code

The code used in this paper and the dataset
is available2, with also some other transfer style
experimnets run on the artworks of Cezanne, Van
Gogh, Diego Rivera, Ukiyo style and Hokusai.
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