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Abstract. In this paper, we introduce
PumaMedNet-CXR, a generative AI designed
for medical image classification, with a specific
emphasis on Chest X-ray (CXR) images. The
model effectively corrects common defects in CXR
images, offers improved explainability, enabling
a deeper understanding of its decision-making
process. By analyzing its latent space, we can
identify and mitigate biases, ensuring a more reliable
and transparent model. Notably, PumaMedNet-CXR
achieves comparable performance to larger pre-trained
models through transfer learning, making it a promising
tool for medical image analysis. The model’s highly
efficient autoencoder-based architecture, along with its
explainability and bias mitigation capabilities, contribute
to its significant potential in advancing medical image
understanding and analysis.

Keywords. Medical image analysis, autoencoder,
explainable artificial intelligence, chest X-Ray.

1 Introduction

Medical image understanding is predominantly
carried out by skilled medical professionals.
However, the limited availability of human experts
and the drawbacks of fatigue and imprecise
estimation associated with manual analysis limit
the effectiveness of medical image interpretation.

Convolutional Neural Networks (CNNs)
have emerged as powerful tools for image
understanding and have demonstrated superior

performance to human experts in various
image-related task [23].

Deep Learning, specifically CNNs, has
shown significant advancements in object
recognition, image analysis, and classification
tasks. In the medical field, CNNs have found
successful applications.

However, training CNNs requires a substantial
amount of data and computational resources, and
gathering medical image data presents significant
challenges, both in terms of cost and time.

Transfer Learning (TL) addresses this challenge
by fine-tuning pre-trained CNNs from large
datasets like ImageNet, reducing the need for
extensive medical data. Nevertheless, TL has its
limitations due to differences between objects in
datasets like ImageNet and medical images, such
as varying shapes and image characteristics.

Furthermore, pre-trained CNNs from ImageNet
come with millions of parameters, posing
computational challenges, whereas a medical
imaging dataset could potentially be classified
more efficiently with a model pre-trained on data
similar to medical images.

Additionally, large CNN models lack
explainability, a crucial feature for reliable
medical image analysis to ensure unbiased
results. Moreover, these large models may not be
practical in resource-limited areas, where financial,
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Fig. 1. Schematic diagram of the PumaMedNet-CXR model

technological, or human resources are scarce but
could benefit from this technology.

For instance, ranking patients who require
urgent attention could be made more accessible
with smaller, more explainable models. Recent
surveys underscore the significance of CNNs in
medical imaging.

Suganyadevi et al. [27] review 120 medical
imaging research papers with the ResNet
architecture standing out for its high performance.
It is also mentioned how challenges remain, such
as the scarcity of properly annotated data, limited
medical imaging datasets compared to general
computer vision datasets, and the considerable
expenses associated with teaching deep learning
models, often requiring high-end GPUs.

The use of black-box models is also a
major obstacle due to legal ramifications, leading
to healthcare professionals’ reluctance to rely
on them.

Sarvamangala and Raghavendra [23] survey
CNNs applications in medical image understanding
of some diseases of the brain, breast, lung,
colon, skin, eyes, heart and other organs,
being classification and segmentation the main
tasks performed.

The authors mention how CNNs are highly
efficient methods of feature extraction, but
black-boxes with the need of research in terms of
analyzing and understanding output at every layer.

In the context of addressing the lack of large,
high-quality labeled datasets, Semi-Supervised
(SSL) or Unsupervised Learning (USL) methods
have been explored. Solatidehkordi and
Zualkernan [26] present a survey of the latest SSL

methods proposed for medical image classification
tasks, where Virtual Adversarial Training (VAT) is
one of the must successful methods, but it keeps
having the explainability problem.

Autoencoders, a type of neural network
architecture, play a crucial role in USL, serving
for dimensionality reduction, feature extraction,
and data compression. Comprising an encoder
and decoder, autoencoders map input data into
a compressed representation (latent space) and
then reconstruct the original or variant data from
the compressed representation.

This architecture finds applications in image
denoising, compression, anomaly detection ( e.g.,
[6]), and can be a base for more complex
models like Variational Autoencoders (VAEs)
to generate new data samples with specific
characteristics. The latent space can also be used
for classification tasks, leading to supervised or
semi-supervised models.

There are multiple autoencoders architectures
and applications (see [5]). Some of these
architectures have proven their effectiveness in
various medical imaging tasks.

For example, Huang et al. [13] proposed an
active learning framework called variational deep
embedding-based active learning (VaDEAL) that
uses a VAE with sampling strategies to improve the
accuracy of diagnosing pneumonia and utilizes the
latent space for classification.

Another study by Raghavendra et al. [13]
employed a VAE for data imputation on Chest
X-Ray (CXR) images, treating high opacity regions
as missing data for lung area segmentation using
a U-net (see [21]) type segmentation.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 909–920
doi: 10.13053/CyS-27-4-4777

Carlos Minutti-Martinez, Boris Escalante-Ramírez, Jimena Olveres-Montiel910

ISSN 2007-9737



(a) (b)

Fig. 2. (a) Weighted mask used for the loss function. Higher weights are assigned to the area of the lungs to prioritize
its reconstruction. (b) Samples of original input and reconstruction for the pre-training dataset

Although CXR images are commonly available
in medical datasets, their analysis has gained
significant attention with the onset of COVID-19
(e.g., [3, 28, 16, 15, 19]).

Many CNN-based works for classifying the
disease rely heavily on large CNN models and
TL. Some of these approaches address the
explainability problem by using Grad-CAM (see
[24]) to detect relevant areas in the model’s
decision-making process and lung segmentation to
mitigate biases.

However, Grad-CAM may not provide a
comprehensive understanding of the model’s
internal workings.

The visualization is limited to highlighting areas
but does not provide a explanation of how the
model arrived at a particular decision, and lung
segmentation may not be sufficient on its own
to completely avoid biases, as critical features
for decision-making could exist outside or even
within the segmented lung areas, such as medical
devices like pacemakers, catheters, or tubes
(see [17]).

Moreover, pre-trained Large-CNN models
still face computational burdens for training
and prediction.

In this paper, we present the advancements
of the PumaMedNet project, which aims to
design a CNN architecture for medical image
classification with low computational costs for
transfer learning, achieving comparable accuracy

to current standards while maintaining high
explainability and bias detection and mitigation.

Our initial release focuses on CXR
images, utilizing a denoising β-VAE as the
model’s backbone.

The model is trained and validated on the
ChestX-ray14 medical imaging dataset, comprising
112,120 frontal-view X-ray images of 30,805
unique patients with fourteen common disease
labels, obtained through NLP techniques from
radiological reports.

Further validation involves transfer learning on
a composite dataset of 19,362 CXR images,
including COVID-19 cases not present in the
ChestX-ray14 dataset.

Our results demonstrate comparable
performance with pre-trained Large-CNN models
like ResNet- 18 while enhancing bias mitigation
and explainability by exploring the effects of
variables in the latent space.

2 Methodology

The methodology of the project was divided into
several stages to develop the CNN architecture
based on an Autoencoder for medical image
classification. The following are the key stages:
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Fig. 3. Sample of input (first row) and reconstructed-corrected images (second row) for the ChestX-ray14 dataset

2.1 Model Architecture

2.1.1 Base Architecture Selection

An Autoencoder was chosen as the base structure
to describe the visual characteristics of the images.

The Autoencoder allows generating a vector
of latent variables (latent space) that capture
essential image information, enabling explainability
through the analysis of the latent space, without
requiring supervised learning.

2.1.2 Evaluation of Autoencoder Architectures

Several Autoencoder architectures were explored
and compared (see [22]). The VAE architecture
has a continuous latent space approximation to a
normal distribution.

A β-VAE [7] is an extension of the standard
VAE that incorporates a hyperparameter
called β. The β aims to disentangle
and control the learned representations in
the latent space by a penalization of the
KL-divergence between the latent space and
a independent normal distribution, resulting in the
following characteristics:

– Disentangled Representations: β-VAEs
encourage individual latent variables to capture
specific features, facilitating precise control and
manipulation of the generated data.

– Explainability: The disentangled representations
foster more interpretable latent spaces,
simplifying the comprehension and analysis
of learned features.

– Bias Mitigation: Through explicit
disentanglement of variation factors, β-VAEs
offer potential for mitigating biases in generated
data and the decision-making process of models
by adjusting or deactivating factors contributing
to bias.

However, the β hyperparameter introduces a
trade-off between reconstruction accuracy and
disentanglement, necessitating careful selection of
this value.

The β-VAE model was expanded by
incorporating a classification layer that employs
the latent space for classification tasks.

Additionally, a denoising/corrective component
was integrated by training the β-VAE with defective
images as input, and measuring the error between
the output and the image without added defects.

Figure 1 presents the schematic diagram of
the β-VAE model, where an input image which
is rotated and flipped horizontally is provided as
input, and a corrected image is produced in
the output.

2.1.3 Hyperparameter Optimization

We conducted a series of trial-and-error
experiments to optimize the model’s
hyperparameters, encompassing factors like
latent space size, layer count, units per layer, and
activation functions. The following details highlight
the final architectural characteristics:
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Table 1. AUC values for different studies on the ChestX-ray14 dataset

Baltruschat et al.
Pathology Wang et al. Yao et al. Guendel et al. ResNet-38 ResNet-50 ResNet-101 PumaMedNet
Atelectasis 0.700 0.733 0.767 0.763 0.755 0.747 0.770
Cardiomegaly 0.810 0.856 0.883 0.875 0.877 0.865 0.863
Consolidation 0.703 0.711 0.745 0.749 0.742 0.734 0.787
Edema 0.805 0.806 0.835 0.846 0.842 0.828 0.874
Effusion 0.759 0.806 0.828 0.822 0.818 0.818 0.862
Emphysema 0.833 0.842 0.895 0.895 0.875 0.868 0.856
Fibrosis 0.786 0.743 0.818 0.816 0.800 0.778 0.771
Hernia 0.872 0.775 0.896 0.937 0.916 0.855 0.834
Infiltration 0.661 0.673 0.709 0.694 0.694 0.686 0.710
Mass 0.693 0.777 0.821 0.820 0.810 0.796 0.770
Nodule 0.669 0.718 0.758 0.747 0.736 0.738 0.674
Pleural Thicken. 0.684 0.724 0.761 0.763 0.742 0.739 0.783
Pneumonia 0.658 0.684 0.731 0.714 0.703 0.694 0.702
Pneumothorax 0.799 0.805 0.846 0.840 0.819 0.839 0.861

Average 0.745 0.761 0.807 0.806 0.795 0.785 0.794

No Findings — — — 0.727 0.725 0.720 0.754

– Latent Space Size: The latent space comprises
one hundred variables. Although the
experiments indicated a feasible size of fifty
variables, it was considered beneficial to opt for
a larger latent space, useful for when transfer
learning is performed across numerous classes.

– Layers: Our architecture employs six layers
for the encoding algorithm and another six
for decoding, utilizing ConvTranspose2d for
deconvolution. Extending the number of layers
for the encoder and decoder did not demonstrate
enhancements in classification or reconstruction
tasks. Excessively deep layers were intentionally
avoided to preserve efficiency.

– Activation Functions: A range of activation
functions, including ReLU, GeLU, ELU,
LeakyReLU, SiLU, and the novel Smish [31],
were evaluated. LeakyReLU(0.15) emerged as
the most effective choice.

– Batch Normalization: Incorporating batch
normalization into each encoder and decoder
layer did not yield improvements due to the

architecture’s limited layer count. Hence, the
final model omits batch normalization.

– Dropout: The dropout function introduces
redundancy in the latent variables, which is
an undesirable feature in the proposed model,
potentially compromising explainability, so it
was excluded.

– Skip-Connections: While skip-connections were
explored to enhance image reconstruction, their
introduction consistently affected latent space
sensitivity. This reduction in explainability
contradicted the model’s objectives, leading to
their exclusion.

– Classification Layer: This layer comprises
two fully connected layers from the latent
space to the classes, utilizing ReLU activation.
Increasing the layer count resulted in higher
classification errors.

This architecture results in a total of 1,405,753
trainable parameters, which is less than
lightweight, state-of-the-art architectures tailored
for mobile devices, such as MobileNetV3 Small
[12], with 2,542,856 parameters.
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Fig. 4. ROC curves for the 15 classes of the ChestX-ray14 dataset and CXR type (AP or PA), Sex (M or F), Age (above
or below the median), and predicted vs True age, reported for the patients in the test dataset

2.1.4 Loss Function Investigation

Structural Similarity Index [32] (SSIM) is an image
quality assessment metric that measures the
similarity between two images. It quantifies the
structural information, luminance, and contrast
similarities, making it a useful alternative to Mean
Squared Error (MSE) as a loss function in the
autoencoder architecture, which only measures
pixel-wise differences.

SSIM is designed to mimic human perception of
image similarity, making it more aligned with the
human visual system’s sensitivity to changes in
structure and textures.

And its use in Medical Image Analysis as also
been studied (see [18]). In addition, Bergmann et
al. [6] found that it is more useful for Unsupervised
Defect Segmentation, where an autoencoder is
trained to reconstruct images, and defected on
images can be found by differences between
reconstruction and the input image.

These characteristic can be useful for the model,
for a zero-shot training, where classification is
possible, even for classes which are not part of the
training dateset.

In addition, MSE loss can suffer from gradient
saturation, especially when the autoencoder
produces images that are far from the ground truth.
SSIM mitigates this problem by providing a more
informative loss signal during training.

2.1.5 Emphasis on Regions of Interest During
Training

To enhance sensitivity towards crucial regions in
CXR images, like the lungs, we incorporated a
weighted mask during the autoencoder training
(Figure 2). This strategy enabled the model to
concentrate on clinically significant areas, thereby
refining its performance.

2.1.6 Pre-Training

Building upon the methodology proposed by Singh
et al. [25], who utilized weakly supervised
pre-training to enhance image recognition
performance, we adopted a similar approach.
In our case, the model was pre-trained on three
distinct datasets.
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Fig. 5. Decoded images for the modification of the latent space to change the age, health, and sex of the original image.
From younger to older (first row), from sicker to healthier (second row), and from female to male (third row)

These include the Describable Textures Dataset
[8] comprising 5,640 images across 47 classes,
the Textures Classification dataset [1] containing
8,674 images categorized into 64 classes, and
the Medical MNIST dataset [20] comprising a
substantial collection of 58,954 medical images
grouped into 6 classes.

For a visual representation of this
pre-training process, refer to Figure 2,
which showcases example images and their
corresponding reconstructions.

2.1.7 Evaluation and Result Comparison

The ChestX-ray14 dataset comprises 112,120
CXR images, an expansion of the ChestX-ray8
dataset [30], encompassing fourteen common
thoracic pathologies: Atelectasis, Consolidation,
Infiltration, Pneumothorax, Edema, Emphysema,
Fibrosis, Effusion, Pneumonia, Pleural thickening,
Cardiomegaly, Nodule, Mass and Hernia.

An additional category labeled “No finding”
is also included. This dataset serves as the
foundation for training and validating the model.

Furthermore, to provide additional validation, TL
is conducted on a composite dataset of three
categories: Pneumonia, COVID-19, and Normal.
These categories were sourced from various
publicly accessible datasets [2, 9, 14, 29].

Duplicate images were identified using the
Geeqie software [10], detecting images with a
visual similarity exceeding 97% and treating them
as identical. This validation dataset comprises a
total of 19,362 CXR images, with 1,831 images
designated for testing.

Half of these images correspond to the
lung segmentation of the dataset, to introduce
visual variability similar to that of the original
ChestX-ray14 dataset. Comparative results
were obtained against a fine-tuned pre-trained
ResNet-18 model, with 11,689,512 parameters,
making it 8.3 times larger than our model.

3 Results

A sample of defective inputs and the corresponding
autoencoder outputs, correcting rotation and
flipped images, is presented in Figure 3.
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Additionally, denoising characteristics were
included in the model through Gaussian Blur,
Random Equalize, and Random Autocontrast
applied to the input images, to be corrected at
the output.

Table 1 displays a comparative analysis of
various studies involving classification using
the ChestX-ray14 dataset. Wang et al. [30]
examined different CNN architectures (AlexNet,
GoogLeNet, VGGNet-16, ResNet-50), with
ResNet-50 achieving the best results. Yao el
al. [33] employed a custom architecture, while
Gundel et .al. [11] utilized an approach based on
DenseNet121. Baltruschat et .al. [4] experimented
with different ResNet architectures and achieved
results similar to each other.

From the results, it is evident that the
smallest architecture with similar performance
to PumaMedNet is Baltruschat’s ResNet-38 et .al.,
which has at least 16 times as many parameters
as PumaMedNet, resulting in PumaMedNet
achieving better performance when considering
the computational burden.

Figure 4 shows the ROC curves and AUC
values for the 15 classes (14 diseases and a “No
finding” category) of the ChestX-ray14 dataset.
Additionally, ROC-AUC is displayed for CXR type
(AP, PA), SEX (M, F), and AGE (above or below
the median), which are metadata included in the
dataset. The results demonstrate that the model
effectively separates CXR type and sex classes
and accurately predicts age.

3.1 Latent Space Interpolation

The latent space generated by the model can
be used to simulate and explore how the
model “understands” specific characteristics. For
example, By studying the average values of the
latent space for the “No finding” class versus other
health conditions, it is possible to modify any image
to increase or decrease its health value.

The modification is achieved through latent
space manipulation, by doing z∗i = zi + α(z1 − z0),
where z∗i is the modified latent space of the image
zi, z1 is the average value for the latent space for
the class “No finding”, and z1 the average value for
any other class.

Table 2. Classification results using PumaMedNet-CXR
and ResNet-18

PumaMedNet-CXR
precision recall f1-score support

COVID19 0.993 0.994 0.994 1224
NORMAL 0.919 0.951 0.935 634
PNEUMONIA 0.981 0.969 0.975 1804
ResNet-18

precision recall f1-score support
COVID19 0.999 0.998 0.999 1224
NORMAL 0.911 0.951 0.931 634
PNEUMONIA 0.983 0.968 0.976 1804

Larger positive α values increase health,
whereas larger negative values decrease health.

Figure 5 presents examples of health, age,
and sex modifications for some images. Younger
versions of the image display a more rounded
thorax and better contrast compared to the
versions of older patients.

Health modification mainly affects lung opacity,
being higher for versions of a sicker patient.
Changing from female to male results in increased
thorax and heart size, as well as shoulders, while
the basic structure of the lungs remains the same.

3.2 Transfer Learning

Fine-tuning the PumaMedNet-CXR model and a
ResNet-18 model (which has 8.3 times more
parameters), yielded very similar performance
metrics, as shown in Table 2.

3.3 Explainability

Although ResNet-18 performed similar in the
classification task than PumaMedNet-CXR, our
model allows for a better understanding of the
decision-making process done by the model.

Although ResNet-18 performed similarly to
PumaMedNet-CXR in the classification task,
our model provides better explainability of the
decision-making process.

Figure 6 illustrates the effect of varying a
latent variable that has been found to be crucial
for classification.
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Fig. 6. Model explainability: By varying one of the latent variables most relevant for classification, it can be seen how it
changes the size of the heart, resulting in different classifications

By varying its values, it changes the size of the
heart, likely related to detecting whether the CXR
image is AP or PA, as the AP view results in a heart
magnification on the X-ray film, because in the AP
view the beam enters from front to back.

Latent variable related to any bias can be
ignored in the classification task, or randomly
changed. resulting in a model which does not have
this bias. Understanding these latent variables
allows the avoidance of biases in the classification
task without the need for complete model retraining
or dataset modification.

4 Summary and Conclusions

In this study, we presented the PumaMedNet-CXR,
an autoencoder-based CNN architecture designed
for medical image classification, particularly
focusing on Chest X-ray (CXR) images.

We demonstrated the effectiveness of the
PumaMedNet-CXR in correcting common defects
found in CXR images, such as rotation, flipping,
and denoising.

The model achieved comparable performance
with a ResNet-18 model, despite having
significantly fewer parameters, highlighting its
efficiency. Furthermore, the explainability offered
by the PumaMedNet-CXR allowed us to gain
insights into the decision-making process of
the model and detect important latent variables
relevant for classification.

Through the manipulation of the latent space, we
showed how the model can simulate and explore
specific characteristics, such as age, health status,
and sex.

Additionally, we explored the use of
transfer learning to fine-tune the model
on a smaller dataset, demonstrating that
the PumaMedNet-CXR can achieve similar
performance to larger pre-trained models like
ResNet-18 while retaining better explainability.

The explainability offered by the model
is of great importance in medical image
analysis, as it provides transparency in the
decision-making process, helps detect potential
biases, and enhances the trustworthiness of the
model’s predictions.
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Avoiding biases is crucial in ensuring equitable
healthcare outcomes for all patients. Future
work will focus on extending this approach to
other medical imaging modalities and exploring
the model’s performance on a broader range of
medical conditions, while continuing to prioritize
explainability and bias mitigation.

Data Availability Statement

The PumaMedNet-CXR model and weights are
openly available1.
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