
Partitioned Trees

Fahd Mustapha Meguellati∗, Djamel Eddine Zegour, Seyfeddine Zouana

Ecole Nationale Supérieure d’Informatique,
Laboratoire de la Communication dans les Systèmes Informatiques,

Algeria

{f meguellati, d zegour, s zouana}@esi.dz

Abstract. We introduce the Partitioned Trees, a
form of Partitioned Binary Search Tree parameterized
to represent both Red-Black trees and a family of
partially balanced Binary Search Trees. Partitioned
Tree is interesting not only because it provides the
same time and space complexity as Balanced Binary
Search trees O(logn), but also because it’s simple to
implement, easily understandable, and highly adaptable
in different fields where rebalancing is costly. We outline
the various maintenance operations and insertion and
deletion algorithms employed by the proposed data
structure. Additionally, we conduct an in-depth analysis
on the worst-case height of Partitioned Trees followed by
a comparison of Partitioned Trees and Red-Black Trees.
Our simulations confirm that Partitioned Trees exhibit
superior performance compared to Red-Black Trees.

Keywords. Binary search trees, AVL-trees, red-black
trees, restructuring, partitioning, departitioning.

1 Introduction

Binary search trees (BSTs) are a very popular and
efficient structure for storing and retrieving data.
However, this is only true if the tree is balanced. An
unbalanced BST is no more efficient than a regular
linked list. To keep a BST in optimal shape, many
balancing algorithms have been proposed over the
years. The first and most important are the AVL
Trees and the Red-Black trees (RB Trees).

The AVL tree is a self-balanced BST that was
invented by Adelson-Velskii and Landis in 1963
[1]. Subsequent to this, Foster and Caxton [12]
conducted additional studies on it. AVL tree
is simple to implement and best appropriate in
lookup operations. However, it contains several
maintenance cases involving single and double

rotations to the left and right making their use
hindered. As a result, much research was
made to relax those constraints. For instance,
Foster and Caxton [13] gives a generalization
of AVL trees which allows unbalances up to a
small integer thereby reducing the number of
restructuring. Another enhancement to AVL trees
was the One-Sided Height-Balanced tree (OSHB),
which restricts the height of the node’s children
such that the right child never has a smaller height
than the left one. The insertion and deletion
algorithms for OSHB trees are in O(log2n) time
[17, 19]. Later, more sophisticated algorithms
were proposed to achieve optimum performance in
O(logn) time for OSHB trees [23].

On the other hand, RB Trees are invented
by Rudolf Bayer in 1972 [5] under the name
Symmetric binary B-trees and presented as a
class of B-trees. B-trees were discovered in
turn by Bayer and McCreight [6, 7]. Symmetric
binary B-trees were named RB Trees thereafter
when Guibas and Sedgewick ([15] proposed a
dichromatic framework for balanced trees. RB
Trees implement the basic dictionary operations
with a worst-case cost of O(logn) per operation,
at the cost of storing one extra bit (the color of
the node) at each node. They are highly effective
in applications with heavy update requirements;
but have been criticized for their complexity in
both understanding and implementation. To
address these issues, various improvements have
been proposed to either simplify implementation
or improve performance, or both. Examples
of simpler RB Trees implementations include
Andersson [2] implementation of Bayer [4] binary
B-trees and Sedgewick [24] related Left-Leaning

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

ISSN 2007-9737



Red-Black trees (LLRB Trees), which simplify
rebalancing through asymmetry and eliminate
symmetric cases. Andersson [2] further made
implementation easier by dividing rebalancing into
two procedures (skew and split) and adding
additional useful features. Ghiasi-Shirazi et al.[14]
introduced the parity-seeking delete algorithm for
RB Trees, which is an intuitive and comprehensible
algorithm that restores balance to the deficient
subtree and its sibling by either fixing the deficient
subtree or elevating the deficiency to a higher
level. To improve performance, [3, 22] attempted
to decrease the maximum height of RB Trees,
which is 2log(N + 2) − 2 in the worst case.
Others [10, 21, 20, 8, 18] sought to decouple
updates from rebalancing, enabling a greater
degree of concurrency and postponed processing.
Additionally, Zegour [26] proposed an improvement
to the delete algorithm of RB Trees that reduces
color changes by roughly 29% and maintenance
operations by about 11%. Combining this algorithm
with insert and delete operations results in a 4%
reduction in running time, while preserving the
search performance of the standard algorithm.

The area of designing a balanced tree is
abundant and has yet to be fully explored. A recent
framework called Rank-Balanced Trees proposed
by Haeupler and Tarjan in 2015 [16] allowed to
represent AVL trees, RB Trees and its variants, and
a novel balanced binary tree known as the weak
AVL tree. However, the framework’s drawback
was its separate rules for defining commonly
used balanced trees. This was addressed by
Bounif and Zegour [9], which presented a unified
representation for both AVL and RB Trees. In
addition, Zouana and Zegour [28, 29] introduced
the Red Green Black Trees which is an extension to
RB Trees. They also proposed a generalized form
of RB Trees that offers equivalent performance
as RB Trees with a complexity of O(logn),
while requiring fewer maintenance operations and
enhancing update speed.

Our main purpose in this work is to propose
common algorithms for generating RB Trees and
a family of partially balanced BSTs. A Partitioned
Tree generates two kinds of nodes: Simple nodes
and Class nodes. These last nodes form a partition
on the tree with heights of either (n-1) or (n-2),

’n’ being the parameter of the new structure. Two
advantages make Partitioned Tree attractive. First,
when ’n’ is equal to 2 Partitioned Tree generates
a data structure equivalent to RB Trees. When ’n’
is larger than 2, the Partitioned Tree generates a
family of suitable balanced BSTs. One extra byte
of storage is needed to represent both the kind and
the height of a node.

It’s essential to note that our study focuses on a
specific facet within the broader ’Partitioned Binary
Search Trees’(P(h)-BST) project [25], distinct from
previous research examined in references [9, 28,
29, 27], which explored various aspects of this
larger project.

The paper is organized as follows: section
2 describes Partitioned trees and its definition.
Section 3 presents the maintenance operations
while section 4 and section 5 summarize the
insertion and deletion operations. In section 6
we outline some important characteristics of the
tree, including the worst-case height analysis. In
section 7, we compare the classical algorithm of
RB Trees as described by Cormen et al. [11] and
the Partitioned Tree with the parameter of 2 . In
section 8, we discuss some experimental results.
Finally, section 9 concludes and looks forward to
future research.

2 Partitioned Trees

Partitioned Tree, abbreviated as PT-n, represents
a specialized Binary Search Tree organized into
distinct Classes. Each Class functions as a
sub-tree with a height of either (n-1) or (n-2),
depending on the ’n’ parameter. Within these
sub-trees, the root node is classified as a Class
node, while the remaining nodes are designated
as Simple nodes. The PT-n tree maintains perfect
balance solely among its Class nodes. Each node,
besides containing data, includes a byte called
’control’ to indicate its category and height. The
node’s height corresponds to the depth of the
subtree rooted at that node within its respective
Class. Using 3 bits to represent height (n = 7)
allows classes to be constructed with a maximum
height of (n - 1 = 6), accommodating up to 26− 1 =
63 elements. Formally, these trees can be defined
as follows:

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.702

ISSN 2007-9737



30

20

16 27

24

70

35 85

75 90

Class node

Simple node

1

Fig. 1. PT of parameter 3 example

D

B

A C

E

B

A D

C E

h(A)≥h(C)

n

h(A) h(C)

h(E)<(n-2)

(a) Single rotation.

1

D

B

A C

E

C

B

A

D

E

h(A)<h(C)

n

h(A) h(C)

h(E)<(n-2)

(b) Double rotation.
1

Fig. 2. The Restructuring operation. The overflow Class
is represented by a double square

1. Nodes are of two kinds, either Simple or Class.

2. The root node is a Class node with a height
between 0 and (n-1).

3. Each Root-to-leaf path contains an equal
number of Class nodes.

4. Each Class node has a height of either (n-1)
or (n-2).

The particular characteristic mentioned in prop-
erty 4, where Class nodes have a height of
either (n-1) or (n-2), contributes significantly to the
enhanced balance within this structure compared
to the variant discussed by Zouana and Zegour
in [29].

In (Fig. 1), we present a visual representation
of PT-3 (Partitioned Tree of parameter 3), with
nodes organized into Classes as follows: {30}
{20, 16, 27} and {70, 35, 85, 75, 90}. In PT-3,
Class-30 acts as the root node, having a height
of 0, in alignment with Property 2 of PT-n. This
property allows the root node to possess a height
between 0 and (n - 1). Both Class-20 and Class-70
exhibit heights of 2, signifying (n-1), where n=3,
in accordance with Property 4. In illustrations of
this paper, we depict Class nodes by square and
Simple nodes by circle.

3 Maintenance Algorithms

PT-n aims to represent a large family of trees by
tolerating some imbalance in the Classes. The
balance of the structure is ensured by the third
property: each direct path from the root to the
leaf contains the same number of Class nodes.
Thus, the maintenance of the structure is based
on a set of rotations to distribute Simple nodes
within the Class and eventually Partitioning or
Departitioning the Class. As a result of reflection,
we use three simple operations to maintain the
structure’s balanced.

3.1 Restructuring

Restructuring operations within PT-n involve single
(Fig. 2a) or double rotations (Fig. 2b) centered on
the Class node. These operations are specifically
employed to reorganize Simple nodes within the
Class when the height of the Class node reaches
the defined parameter ’n’, which is referred to
as (Class overflow), thereby indicating a violation
of the fourth property, which stipulates that each
Class node must have a height equal to (n-1)
or (n-2).

Restructuring becomes necessary when one
of the child nodes within the Class node has a
height less than (n - 2). (Fig. 2) provides visual

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 703

ISSN 2007-9737



B

A C

B

A C

n

h(A)≥(n-2) h(C)≥(n-2) h(A)≥(n-2) h(C)≥(n-2)

1

Fig. 3. The Partitioning operation

B

A C

B

A C

h ≥ (n − 2) h < (n − 2)

1

Fig. 4. The Departitioning operation. The underflow
Class is represented by a dashed square

representations of the two primary restructuring
operations, with analogous cases determined
through symmetry.

– Single rotation (Fig. 2a) is used if the height
of node A is greater or equal to the height of
node C. By applying a right rotation on node D,
the height of the Class shall be less than ’n’.

– Double rotation (Fig. 2b) is used when the
height of node A is less than the height of
node C. By applying a left rotation on node
B followed by a right rotation on node D (a
double rotation on node D), the height of the
Class shall be less than ’n’.

3.2 Partitioning

Partitioning transforms the overflow Class into two
Classes. By changing the kind of three nodes, the
overflow Class is partitioned into two Classes (Fig.
3). Partitioning is used when both subtrees of the

overflow Class are of height larger than or equal to
(n-2), where Restructuring can’t satisfy the fourth
property. Partitioning does not require rotations
and is done in O(1).

3.3 Departitioning

Departitioning is the opposite operation of Parti-
tioning, where two Classes are combined into one
by switching the kind of three nodes (Fig. 4). It
specifically targets Classes with heights lower than
(n-2), which is referred to as ’Class underflow’ and
also constitutes a violation of Property 4.

This operation is typically performed during
deletion operations, facilitating the merging of the
underflow Class with its adjacent sister Class.

4 Insertion in PT-n

Insertion in PT-n is as simple as any BST insertion
except that we do some maintenance operations in
order to respect the structure properties. We can
summarize the insertion in two steps.

Step 1: Perform a Binary Search to find the
key location in the tree. Naturally, this location
must be a leaf node within a leaf Class. we
make the node of Simple kind. If the height of
this leaf Class exceeds the specified parameter ’n’
(Class overflow), which also constitutes a violation
of Property 4, we proceed to Step 2.

Step 2: To address the imbalance resulting from
the height overflow identified in Step 1, we address
the issue by considering two cases based on the
affected Class:

Case 1: If the overflowed Class has a son with
a height less than (n-2). A Restructuring (Fig. 2)
is performed.

Case 2: If the sons of the overflowed
Class have a height equal to or greater than
(n-2). A Partitioning (Fig. 3) is performed.
After Partitioning, the mother Class acquires
a new simple node and its height increases.
This may trigger additional Restructuring and/or
Partitioning with the mother Classes further up
the tree, creating a cascade effect. To address
this, we repeat Step 2 until Partitioning is no
longer required.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.704

ISSN 2007-9737



5 Deletion in PT-n

The delete algorithm in PT-n is easy to implement
due to the possibility of merging two Classes in a
new one using the ’Departitioning’ operation (Fig.
4) and redistributing the keys inside the new Class
through a restructuring operation (Fig. 2). Deletion
in PT-n can be summarized as follows.

Step 1: Perform a Binary Search to find the key’s
position in the tree. If it is an internal node, we
permutate the key with its substitute leaf. Then,
we delete the leaf. If the height of the Class,
from which the key was deleted, is less than
(n-2), indicating an underflow situation, which also
constitutes a violation of Property 4, we proceed
with Step 2.

Step 2: To preserve balance among the different
portions of the tree following a Class underflow, it
is necessary to perform a Departitioning operation
(Fig. 4). This process involves three distinct cases:

Case 1: If the Class that underflows has a
direct sister Class with a height of (n - 2), we
conduct a Departitioning (Fig. 4), followed by an
examination of the mother Class to determine if it
is underflowing.

Case 2: If the Class that underflows has a direct
sister with a height of (n - 1). We perform a
Departitioning (Fig. 4) which leads to a Class with
a height equal to ’n’. Therefore we must restructure
(Fig. 2). If the height of the new Class is less
than ’n’, we proceed with the deletion process
since a node has been removed from the mother
Class. If the height of the new Class equals to
parameter ’n’, we perform Partitioning (Fig. 3) on
the resulting Class.

Case 3: If the Class that underflows hasn’t a
direct sister Class (Fig. 5). The property of partial
balance ensures that there is a corresponding
sister Class. We need to transform the tree to
find the direct sister Class. If the Class underflows
on the right (or left) side of the parent, we can
identify the sister Class by moving left (or right)
from the parent and then selecting the rightmost (or
leftmost) Class node. We change the kind of parent
node and Simple direct sister node. The process
of transformation may be perceived as a single
rotation in which only two pointers are modified.

P

A

B

U

Y

X

A

B

U

P

Y X

h< (n-2)

h< (n-2)

(a) Parent node is of kind Class

1

P

A

B

U

Y

X

A

B

U

P

Y X

h< (n-2)

h< (n-2)

(b) Parent node is of kind Simple.

1

Fig. 5. Transforming operation

6 Analysis on Height

Defining the balance of BST can be challenging,
but it is possible to determine the degree of
balance/imbalance by establishing precise height
intervals. A practical method to achieve this is by
identifying the best and worst possible heights that
a structure can have for a given set of elements
(keys). This establishes a height interval and
margin for the distribution of its items. It is
well-known that a perfectly balanced tree has a
logarithmic height in relation to its number of items.
Therefore, it is crucial to analyze the worst-case
scenario of the height that the structure can attain
to ensure optimal performance.

6.1 Worst Tree Height

In the literature, the tree performance is often given
as the worst case height. This height offers a
proportional image to the possible tree operations:

Theorem 1. In a PT-n, the worst case height is of
n

log2 (n) log2 (
n−1
n N + 1) where N is the number of

keys on the tree.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 705

ISSN 2007-9737



PTmin(h-n)

PTn-2((h/n-1)(n-1))

Fig. 6. Worst case tree for PT-3

Proof. Consider an PT-n PTmin(h) of minimum
number of nodes (Fig. 6) and height h (where
h is the maximum number of nodes on any path
from root to leaf). Notice that h = n.k where k
represents the number of Class nodes along the
root-to-leaf path. The tree is produced through
two main constraints: every small tree rooted by
a Class node on the longest path is a small tree
of maximum height and minimum number of nodes
defined as a vine of n nodes (Class node included);
and each small tree rooted by a Class node on any
other path is a vine of n − 1 nodes (Class node
included). The tree is presented as each node of
the longest path of the root small tree is linked to
the root of a subtree Tn−2 of height (hn − 1)(n− 1),
where every Class represents a vine of n−1 nodes,
except for the last one, which is linked to a subtree
PTmin(h − n). Let Nb(T ) be the number of nodes
in the tree T . Then:

Nb(PTmin(h)) = n ·Nb(Tn−2((
h

n
− 1)(n− 1))

+ n+Nb(PTmin(h− n)), (1)

Since:

Nb(Tn−2(l)) = n.Nb(Tn−2(l−(n−1))+(n−1), (2)

Nb(Tn−2(l)) = n2 ·Nb(Tn−2(l − 2(n− 1))

+ n(n− 1) + (n− 1), (3)

Nb(Tn−2(l)) = n
l

n−1−1(n− 1) + n
l

n−1−2(n− 1)

+ . . .+ n2(n− 1) + n(n− 1) + (n− 1), (4)

Nb(Tn−2(l)) = (n− 1)

l
n−1−1∑
i=0

ni = n
l

n−1 − 1, (5)

We obtain:

Nb(PTmin(h)) = n·(n h
n−1−1)+n+Nb(PTmin(h−n))

= n
h
n +Nb(Tmin(h− n)), (6)

Nb(PTmin(h)) = n
h
n + n

h
n−1 + n

h
n−2 + . . .+ n

= n ·
h
n−1∑
i=0

ni =
n

h
n − 1

n− 1
. (7)

So the number of nodes of the tree N is bound
by:

n
n

h
n − 1

n− 1
≤ Nb(PTmin(h)) ≤ N ≤ Nb(Tbal(h))

= 2h − 1. (8)

And for a tree of N keys, the worst height of a
Partitioned Tree can be found through the following
in-equation:

n
n

h
n − 1

n− 1
≤ N , (9)

n
h
n − 1 ≤ n− 1

n
N , (10)

n
h
n ≤ n− 1

n
N + 1, (11)

h

n
≤ logn(

n− 1

n
N + 1), (12)

h ≤ nlogn(
n− 1

n
N + 1), (13)

h ≤ n
ln(n−1

n N + 1)

ln(n)
, (14)

h ≤ n
ln(n−1

n N + 1)

ln(n)

ln(2)

ln(2)
, (15)

h ≤ nln(2)

ln(n)

ln(n−1
n N + 1)

ln(2)
, (16)

h ≤ n

log2(n)
log2(

n− 1

n
N + 1), (17)

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.706

ISSN 2007-9737



which implies the in-equations:

log2 (N + 1) ≤ h ≤ n

log2 (n)
log2 (

n− 1

n
N + 1).

(18)

The height of the PT-n is at most
n

log2 (n) log2 (
n−1
n N + 1) which is a little worse

than RB Trees height 2 log2 (N + 2) − 2. Notice
that for n = 2 the worst height is that of RB Trees.
This is easily provable as follows:

2

log2 (2)
log2 (

2− 1

2
N + 1) = 2 log2 (

N + 2

2
)

= 2 log2 (N + 2)− 2 log2 (2)

= 2 log2 (N + 2)− 2.

(19)

This further proves that PT-2 is equivalent to
classic RB Trees.

6.2 Tree Distribution

Tree performance is commonly depicted by the
height of the tree as it is seemingly difficult to
know the actual distribution of the tree items. We
must return to each tree definition to understand
and construct an image on its behavior. PT-n are
defined, similarly to RB Trees, through the use
of two kinds of nodes, where one kind imposes
a perfect balance and the other introduces some
imbalance. These two properties permit the
definition of a growth scheme and can describe
the tree performance level. As imbalance is due
to the existence of Simple nodes, this comes back
to know the number and distribution of this type
of nodes and compare them to the total number
of nodes and tree height. By summing up these
properties, we can give a precise indication on the
tree presentation and its performance.

As discussed previously for a PT-n
of N items, the worst height (Fig.7) is
given by h = n

log2 (n) log2 (
n−1
n N + 1) with

j = 1
log2 (n) log2 (

n−1
n N + 1) Classes on each

path. Thus, we know that the number of Class
nodes is 2j − 1 and consequently, the number

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

40

50

number of items

tr
ee

h
ei
gh

t

n = 2
n = 3
n = 4
n = 5
n = 6

1
Fig. 7. Maximum PT-n height

Table 1. Comparison between PT-2 and PT-3
distributions

(a) PT-2

Height
Minimum

items
number N

Class nodes
on the longest

path j

Class nodes
number on each

2j − 1

Simple nodes
on the longest

path h− j

Simple nodes
number

N − 2j + 1

6 14 3 7 3 7
9 35 5 31 4 4
12 126 6 63 6 63
15 262 8 255 7 7
18 1022 9 511 9 511
21 2057 11 2047 10 10

(b) PT-3

Height
Minimum

items
number N

Class nodes
on the longest

path j

Class nodes
number on each

2j − 1

Simple nodes
on the longest

path h− j

Simple nodes
number

N − 2j + 1

6 12 2 3 4 9
9 39 3 7 6 32
12 120 4 15 8 105
15 363 5 31 10 332
18 1092 6 63 12 1029
21 3279 7 127 14 3152

of Simple nodes is N − 2j + 1 with a maximum
height of h − j Simple nodes. These parameters
help in defining the tree presentation. Table 1
summarize and compare the presentation of PT
of parameter n = 2, 3 with different heights. The
tree height evolution is compared between the
different parameters in (Fig.7). Notice that the
different parameters tend to offer the same access
performance with higher number of items as the
height difference converges to a fixed amount.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 707

ISSN 2007-9737



The number of Class nodes on each path de-
creases with each tree parameter and decreasing
the number of needed restructuring and mainte-
nance. These two properties insure that PT-n have
better performance with update operations.

Furthermore, (Fig.7) illustrates that when pa-
rameter n = 3, the tree produced by the PT-n
structure exhibits a maximum tree height less then
the maximum tree height of the RB Trees. This
serves as an additional benefit of the PT-n structure
over the RB Trees.

7 Comparing RB Trees and PT-2

This section aims to draw a comparison between
RB Trees as described by Cormen et al. [11]
and PT-2, emphasizing their similarities and
differences. The key areas of comparison include
the structures’ definitions, as well as the fixing-up
rules that follow insertion and deletion algorithms.

7.1 Comparing Definitions

An RB Tree is a BST that has the following proper-
ties:

1. Each node is either Black or Red.

2. The root node is Black.

3. Each Root-to-leaf path contains an equal
number of Black nodes.

4. Each Red node must have Black children.

The definition of PT-2 is just an interpretation of
RB Trees definition by replacing Class nodes by
Black nodes and Simple nodes by Red nodes.

PT-2 is defined by:

a) Each node is either a Simple or a Class.

b) The root node is a Class.

c) Each Root-to-leaf path contains an equal
number of Class nodes.

d) Each Class has a height of either 0 or 1.

The three properties (1,a), (2,b), and (3,c) are
identical in both definitions. The only property
that is not clear is the fourth property. It’s worth
mentioning that a Class with a height of either 0
or 1 is a Class containing at most, one level of
Simple nodes. These Simple nodes have either
Class nodes or external nodes (nil pointers) as
their children. Under the assumption that Black
nodes are present, these Simple nodes will only
have Black nodes as children. Also, based on
the requirement that Red nodes must have Black
children, we can deduce that the maximum level
difference between consecutive Black nodes in an
RB Tree is 1. As a result, the two definitions are
equivalent, making the RB Tree a special case of
PT-n when n = 2.

7.2 Fixing Rules After Insertion

The insert algorithm in RB Trees has two steps:
inserting a new Red node using the rules of
BSTs, then fixing any property violations with fixup
operations. Only the 4th property of RB Trees can
be violated by a new Red node insertion. If the tree
is empty, the 2nd property is violated and fixed by
changing the root node color to Black.

If a child and parent node are both Red and the
parent is a left child, the tree is fixed as follows:

a) if the parent’s sibling is Red, turn the parent
and sibling Black and grandparent Red.
Checking for two consecutive Red nodes is
continued from the grandparent node (Fig.
8(a)) and (Fig. 8(b)).

b) if the parent’s sibling is Black and the current
node is its right child, a left rotation is carried
out on the parent node as illustrated in (Fig.
8(c)). This prepares the situation for the
implementation of the following rule.

c) if the parent’s sibling is Black, and the current
node is its left child, a rotation to the right
is performed on the grandparent node, as
illustrated in (Fig. 8(d)).

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.708

ISSN 2007-9737



The rules for the scenario where the parent node
is a right child can be derived by interchanging the
terms left and right in the above statements.

Regarding RB Trees, the PT-2 insertion algo-
rithm operates in two stages. First, the new data
is added according to the rules of BST’s in a new
Simple node. Then, if any property of PT-2 is
violated, the tree is fixed with appropriate fixup
operations. The 3rd property could not be violated
as the newly inserted node is of kind Simple. If
the insertion is applied to an empty tree, then the
2nd property is violated, which is simply fixed by
changing the kind of the root node to Class. The
only potential problem is the violation of the 4th
property, i.e. the Class node overflows (it has
height equal to parameter 2).

Assuming that the Class node overflows and that
its left child has a height equal to 1, the tree is fixed
using the following rules:

a) If the right son of the overflowed Class is
of kind Simple, a Partitioning is applied (Fig.
9(a)) and (Fig. 9(b)). Checking for overflowed
Class is continued from the mother Class.

b) If the right son of the overflowed Class is of
kind Class, and its left son has a right child
then a left rotation is performed on the left
son of the overflowed Class (Fig. 9(c)). The
situation is now prepared for the application of
the next rule.

c) If the right son of the overflowed Class is of
kind Class, and its left son has a left child then
a right rotation is performed on the overflowed
Class (Fig. 9(d)).

The rules for the case that the Class node
overflows, and that its right child has a height equal
to 1, are obtained by exchanging “left” and “right” in
the above statements.

As demonstrated in both (Fig. 8) and (Fig. 9), it
is evident that both the RB Tree and PT-2 use the
same rules for fixing-up the tree after inserting a
new node.

(a)

C

DB

A

C

DB

A

(b)

C

DB

C

DB

A Ax

x x

x

(d)

B

CA

D

C

DB

Ax

(c)

C

DA

B x

C

DB

Ax

Fig. 8. Procedures for fixing-up RB Trees after inserting
a new node. the Procedures are performed recursively.
Only half of the procedures, specifically for when the
parent node is the left child, are presented here.
The remaining four procedures can be derived through
symmetry. Subtrees are represented by a triangle
symbol, while the node under examination is designated
by the letter ’x’ and a double square. Note that the
implementation of RB trees considers only three cases,
and rules (a) and (b) are simultaneously handled

(a) (b)

(c) (d)

C

A

B DB

A

C

D

C

A

B DDB

A

C

CB

D

A

x

B

A

C

D

x

x

x

x

A

B

C

D

x

B

A

C

D
x

Fig. 9. Rules for fixing-up PT-2 following insertion of
a new node. The rules are applied recursively. Each
rule has a dual, obtained through symmetry, that is not
shown. Subtrees are represented by a triangle. The
node responsible for the overflows Class is denoted by
the letter ’x’

7.3 Fixing rules after deletion

The delete operation in a RB Tree can take place
at any node, including the root node, an internal
node, or a leaf node. Initially, if the node to be
deleted has two children, its value is replaced by
either the maximum value in the left subtree or the
minimum value in the right subtree, leading to the
deletion of a node with one child (degree-1 node)

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 709

ISSN 2007-9737



or a leaf node. The actual deletion is then executed
according to the following rules:

a) Deletion of a degree-1 node: Since a degree-1
node have only one child, the presence of
a Black node in their subtree is prohibited.
Additionally, considering that a node and its
child cannot both be Red, it follows that a
degree-1 node to be a Black node with a single
Red child. In such case, the value of the Red
child node is copied onto the degree-1 node,
and the Red child node is deleted.

b) Deletion of a Red leaf node: The node
is simply deleted, resulting in a tree that
maintains the characteristics of RB Trees.

c) Deletion of a Black leaf node: Deleting a Black
leaf node would result in a violation of the
3rd property of RB Trees, as the number of
Black nodes in the left and right subtrees of its
parent, would not be equal. In such a scenario,
the fix-up operations continue until at least one
of the rules in (Fig. 10) is applicable.

Regarding RB Trees, the deletion process in
PT-2 can occur at the root, an internal node, or
a leaf node. If the node being deleted has two
children, its value is substituted with either the
largest value in its left subtree or the smallest
value in its right subtree. This transforms the
deletion into a process involving either a leaf Class
node with one Simple child or a leaf node. Then,
the actual deletion is carried out according to the
following rules:

a) Deleting a leaf Class with one Simple node:
The leaf Class does not have a child on one
side, preventing the existence of a Class node
further down the subtree. The value of its
Simple node child is copied to the leaf Class,
and the Simple child node is deleted.

b) Deleting a Simple leaf node: The node is
simply removed.

c) Deleting a Class leaf node: Deleting a Class
leaf node would result in a violation of the
3rd property of ST-2, as the number of
Class nodes in the left and right subtrees
of its parent, would not be equal. In such

(a)

B

DA

EC

B

DA

E

B

DA

EC C

(b)

x
D

EB

A C
x

x

x

(c) (d)

C

CA

D

B B

DA

EC

B

DA

E

x x
EB

A

D

C

E

x

Fig. 10. Rules for fixing-up RB Trees after removing
a Black leaf node. The steps are executed recursively.
The root of the subtree with a reduced number of Black
nodes is represented by a square and is referred to as
’x’. A node represented by a dashed circle shape can
be either a Red node or a Black node. Each rule has
a counterpart, which is derived through symmetry and
not shown. Rule (a) prepares x’s, Black sibling. Rule
(b) is applied when the sibling and both of its children
are Black, causing the deficiency to be passed up to
the parent node. Rule (c) is applicable if the sibling
and its right child are both Black, while the left child of
the sibling is Red. In such cases, a right rotation is
performed on node (D), and the right child of the resulting
sibling is set to Red, thus setting up the context for the
subsequent rule. Rule (d) is applicable in cases where
the sibling node is of Black color and its right child node
is of Red color. After executing rule (d), the deficiency is
eliminated, and the algorithm ends

instances, fix-up operations must be continued
until at least one of the rules of (Fig. 11)
becomes applicable.

At first glance, it appears that both the RB Tree
and PT-2 have the same rules for fixing up after
deletion. However, the two trees handle Case (d)
differently. (Fig. 12) illustrates in detail how both
the RB Tree and PT-2 treat the Case (d).

We can already state that the PT-2 generates
a tree that respects the properties of the RB
Tree after a deletion operation, but it differs in
terms of the number of Simple (Red) and Class
(Black) nodes. This difference will impact the
performance of the two trees, as demonstrated in
the following section.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.710

ISSN 2007-9737



(c)

E

A
x

D

C

B

(d)

A
x

D

E A CC

B

(a) (b)

EB

D

CA

B

E

D

C

A
x

x

x

EC

A D

B

EC

x

A D

B

A
x

C

D

B

E

D

EB

Fig. 11. Rules for fixing-up PT-2 after deleting a Class
node are applied recursively. A node represented as a
rhombic shape can be either a Class node or a Simple
node. The root of the subtree with a reduced number of
Class nodes is referred to as ’x’. Each rule has a dual,
obtained through symmetry, that is not shown. Rule (a)
transforms the tree to find a direct sister Class for the
underflowed node. Rule (b) is applied when the direct
sister Class has a height equal to zero, elevating the
deficiency to the parent Class node. When the direct
sister Class has a height of one, Rules (c) and (d) are
applied. Rule (c) is applied if the left child of the direct
sister is a Simple node. In this case, a Departitioning
operation of Class (B) is performed followed by a right
rotation on the node (D) and a Partitioning operation of
node (B) to set up the context for the subsequent rule.
Rule (d) is applied if the right child of the direct sister is
a Simple node. In this case, a Departitioning operation
of Class (A) is performed followed by a left rotation on
the node (B) and potentially a Partitioning operation on
the node (D). The algorithm ends after executing rule (d),
having eliminated the deficiency

8 Experimental Tests

The performance evaluation of the Partitioned
Trees (PT-n) were conducted in three stages.
The first and the second stages consisted of
evaluating the performance of the insertion and
deletion algorithms of both PT-n and classical RB
Trees. The last stage is reserved for comparing
the performance of the two Trees under different
frequency of (Insertion/Deletion) operations.

The performance metrics have been deliberately
selected to remain independent of both algorithmic
implementations and the measurement platform.
These metrics include Average Search Height,
Tree Height, and the total number of rotations. The

(d2)

B

DA

EC

x
EB

A

D

C

(d2)

EB

D

A
x

D

B

EC A C

(d1)

B

DA

EC

x
EB

A

D

C

(d1)

D

A
x

D

EC A C

B

B E

Fig. 12. Rules for fixing-up sub-cases of (d) by RB
Tree and PT-2. The primary distinction is based on the
manner in which the two trees alter the (Color/Kind) of
the nodes after fixing-up. Specifically, in RB Tree, the
root node is either Red or Black, and its children are
always Black. In contrast, the root node of PT-2 tree
is always of kind Class, and its children can be both
either Simple or Class nodes. As a result, the number of
Simple nodes in PT-2 is typically greater than the number
of Red nodes in RB Tree

Average Search Height is particularly significant
as it reflects the efficiency of search, insertion,
and deletion operations. A lower average
height indicates quicker and more consistent
performance, benefiting all tree-related tasks.

The simulation environment and the trees algo-
rithms were implemented using the C programming
language in Microsoft Visual Studio Community
17.6.5. RB Tree was implemented by adopting
the method outlined in [11], featuring a nil node.
Subsequently, Partitioned Trees with a nil node
were also implemented. To ensure equitable
comparison between the two structures, both
implementations employ a stack for traversing
trees. All experiments were conducted on an HP
G62 notebook PC with an Intel Core i3-370 CPU
running at 2.40GHz, and equipped with 8 GB of
memory, operating on a 64-bit Windows 7 system.

The key sequences were generated in order to
obtain more complete insight into PT-n and RB
Trees performance. The sizes of the generated
number sequences, denoted as N , vary within the
set: N ∈ {100K, 200K, 300K, 400K, 500K, 1M}.
This variation in sequence sizes was performed in
order to establish how performance depends on
the number of keys.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 711

ISSN 2007-9737



0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(a) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items
A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(b) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(c) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(d) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(e) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(f) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1
·106

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(g) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1
·106

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(h) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1
·106

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(i) Ordered sequence.

1

Fig. 13. Comparison of Insertion Algorithms in PT-n and
RB Trees

Table 2. Comparison of Node Counts by Kind/Color
After Insertions for PT-n and RB Trees using a Uniform
Distribution

Black/Class Red/Simple

N RB PT-2 PT-3 PT-10 RB PT-2 PT-3 PT-10

100K 51,371 51,371 26,783 2,117 48,629 48,629 73,218 97,882
200K 102,642 102,642 53,555 4,232 97,358 97,358 146,445 195,768
300K 154,057 154,057 80,293 6,328 145,943 145,943 219,707 293,673
400K 205,270 205,270 107,072 8,447 194,730 194,730 292,929 391,553
500K 256,736 256,736 133,899 10,553 243,264 243,264 366,101 489,447
1M 513,454 513,454 267,711 21,107 486,546 486,546 732,289 978,893

Three groups of the key sequences have been
used here, and they differ according to the way of
key generation.

In the first group, random integer keys are
generated using the C++ Standard Library’s
’std::mt19937’ class, an implementation of the
Mersenne Twister algorithm. This class is
specialized for creating integer keys distributed
uniformly across the integer range. To en-
sure distinct sequences of random numbers,
’std::mt19937’ employs various seed values
during initialization, which are obtained from
a random number generator device accessible
through ’std::random device’. This approach
guarantees that the generated keys remain within
the integer value range, avoiding sequence
repetition and eliminating the need for predefined
numerical constraints.

In the second group, double-type keys are gen-
erated using the ’std::normal distribution’

class from the C++ library, following a Gaussian
or normal distribution with a mean of 0.0 and a
standard deviation of 1.0. This results in keys
clustering around 0.0, as expected for a Gaussian
distribution.

In the third group, keys are generated from an
ordered ascending sequence of integers, repre-
senting the worst-case scenario for conventional
BSTs due to the creation of a degenerate tree.
This experiment enhances our comprehensive
understanding of the PT-n capacity to mitigate
degenerate tree formation, ultimately augmenting
the operational efficacy of key insertion and
deletion procedures.

In the upcoming subsections, we will look into
the description and analysis of the results obtained
at each evaluation stage of the PT-n.

8.1 Comparing Insertion Algorithms for PT-n
and RB Tree

We considered the following experiment:

1. Construct PT-n with parameters n =
{2, 3, 4, 5, 6, 7, 10}, and create a Red-Black
Tree using the same sequence (S) of N values.
This sequence is initially generated using
a random uniform distribution method, the
Mersenne Twister, followed by generation in
accordance with a normal distribution, and
finally in an ascending ordered sequence.
Then, compute:

(a) The Average Search Height of both trees.

(b) The height of both trees.

(c) The total number of rotations.

(d) The total number of nodes of each kind
composing the trees.

2. Repeat ten times step (1) for N ={100K, 200K,
300K, 400K, 500K, 1M}.

Figure 13 illustrates the performance metrics
of the insertion algorithm for PT-n and RB
trees. The left column presents the outcomes
for key sequences generated under a uniform
distribution, while the middle column presents the
outcomes of key sequences generated following
a normal distribution.The right column presents

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.712

ISSN 2007-9737



Table 3. Comparison of Node Counts by Kind/Color
After Insertions for PT-n and RB Trees using a
Normal Distribution

Black/Class Red/Simple

N RB PT-2 PT-3 PT-10 RB PT-2 PT-3 PT-10

100K 51,361 51,361 26,762 2,116 48,639 48,639 73,238 97,884
200K 102,767 102,767 53,563 4,223 97,233 97,233 146,437 195,777
300K 154,012 154,012 80,355 6,332 145,988 145,988 219,645 293,669
400K 205,414 205,414 107,140 8,429 194,586 194,586 292,860 391,570
500K 256,781 256,781 133,891 10,553 243,219 243,219 366,109 489,447
1M 513,702 513,702 267,714 21,116 486,546 486,546 732,286 978,884

Table 4. Comparison of Node Counts by Kind/Color
After Insertions for PT-n and RB Trees using an
Ordered Sequence

Black/Class Red/Simple

N RB PT-2 PT-3 PT-10 RB PT-2 PT-3 PT-10

100K 99,980 99,980 49,990 11,110 20 20 50,010 88,890
200k 199,980 199,980 99,990 22,220 21 21 100,010 177,780
300k 299,970 299,970 149,990 33,330 25 25 150,010 266,670
400k 399,980 399,980 199,990 44,440 22 22 200,010 355,560
500k 499,980 499,980 249,990 55,550 23 23 250,010 444,450
1M 999,980 999,980 499,990 111,110 24 24 500,010 888,890

the outcomes for key sequences generated
following an ordered sequence. Tables 2, 3,
and 4, respectively, depict the counts of nodes
categorized by type or color after insertions for
PT-n and RB Trees under uniform distribution,
normal distribution, and ordered sequence.

It is clear from Figure 13 that both the RB
Trees generated by the new PT-n structure with
n = 2 and the standard RB Tree exhibit the same
performance (average search height, tree heights,
and total number of rotations). Additionally, Tables
2, 3, and 4 show that they also have the same
counts of Color/Kind of nodes. Based on this data,
we can attest that the insertion algorithms of both
the RB Tree and PT-n with n = 2 are equivalent

When comparing PT-n for n = {3, 4, 5, 6, 7, 10} to
the RB tree with a key sequence generated under a
uniform or a normal distribution, it becomes evident
that there is no significant difference in terms
of average search height, and the tree heights
increases by 1 to 5 units for the PT-n tree, with the
maximum increase of 5 units occurring when the
parameter ”n” is set to 10. Simultaneously, there
is a decrease in the number of rotations, attributed
to the fact that as the height of Class nodes
increases, the number of Simple nodes within
Class nodes also increases, resulting in fewer
rotation operations needed to balance the tree.

However, in the case where keys are generated
following an ordered sequence, one observes
higher average search height and tree heights for
PT-n with n = {5, 6, 7, 10} compared to those of
the RB tree, with only a slight reduction in the
count of rotations. This reduction can reach up
to 17 rotations less in favor of PT-n when n = 10,
compared to the RB tree. This phenomenon arises
from the absence of a mechanism for balancing
Simple nodes within Class nodes. Since each
Class node has a height equal to (n-1) or (n-2),
the tree’s height becomes the sum of the heights
of the Class nodes in the longest branch.

8.2 Comparing Deletion Algorithms for PT-n
and RB Tree

We considered the following experiment:

1. Construct PT-n with parameters n =
{2, 3, 4, 5, 6, 7, 10}, and create a Red-Black
tree using the same sequence (S1) of N
values. This sequence is generated first
using the random uniform distribution method,
specifically the Mersenne Twister, followed
by generation in accordance with a normal
distribution, and finally in an ascending ordered
sequence.

2. Generate a random sequence (S2) of approx-
imately N/2 removal operations. Perform the
following computations:

(a) The Average Search Height of both trees.

(b) The height of both trees.

(c) The total number of rotations performed
during the operations.

(d) Count the total number of nodes of each
type in the trees.

3. Repeat steps (1) and (2) ten
times for each N value: N =
{100K, 200K, 300K, 400K, 500K, 1M}.

Based on Figure 14, the performance of both RB
trees, created using the new PT-n structure (with
n = 2), and the standard RB tree, exhibits similarity
in terms of average search height and tree heights.
However, it’s important to note that PT-2 requires

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 713

ISSN 2007-9737



0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(a) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items
A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(b) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(c) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(d) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(e) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(f) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

1

2

3
·105

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(g) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

1

2

3
·105

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(h) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

1

2

3
·105

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(i) Ordered sequence.

1

Fig. 14. Comparison of Deletion Algorithms in PT-n and
RB Trees

Table 5. Comparison of Node Counts by Kind/Color
After Deletions for PT-n and RB Trees using a
Uniform Distribution

Black/Class Red/Simple

N RB PT-2 PT-3 PT-10 RB PT-2 PT-3 PT-10

100K 35,426 33,708 15,623 876 14,574 16,292 34,377 49,124
200K 70,917 67,441 31,258 1,748 29,083 32,559 68,742 98,252
300K 106,268 101,125 46,963 2,626 43,732 48,875 103,037 147,374
400K 141,704 134,779 62,589 3,512 58,296 65,221 137,411 196,488
500K 177,215 168,528 78,273 4,371 72,785 81,472 171,728 245,629
1M 354,219 336,885 156,473 8,702 145,782 163,115 343,527 491,298

Table 6. Comparison of Node Counts by Kind/Color
After Deletions for PT-n and RB Trees using a
Normal Distribution

Black/Class Red/Simple

N RB PT-2 PT-3 PT-10 RB PT-2 PT-3 PT-10

100K 35,392 33,683 15,649 871 14,609 16,317 34,352 49,129
200K 70,791 67,346 31,288 1,746 29,210 32,655 68,713 98,255
300K 106,290 101,098 46,935 2,625 43,711 48,903 103,066 147,376
400K 141,741 134,788 62,635 3,491 58,260 65,213 137,366 196,510
500K 177,174 168,538 78,244 4,368 72,827 81,463 171,757 245,633
1M 354,356 336,920 156,424 8,736 145,645 163,081 343,577 491,265

Table 7. Comparison of Node Counts by Kind/Color
After Deletions for PT-n and RB Trees using an
Ordered Sequence

Black/Class Red/Simple

N RB PT-2 PT-3 PT-10 RB PT-2 PT-3 PT-10

100K 49,976 49,976 24,988 5,528 24 24 25,012 44,472
200K 99,975 99,975 49,982 11,080 25 25 50,018 88,920
300K 149,972 149,972 74,988 16,635 28 28 75,012 133,365
400K 199,974 199,974 99,984 22,190 26 26 100,016 177,810
500K 249,971 249,971 124,985 27,745 29 29 125,015 222,255
1M 499,970 499,970 249,985 55,520 30 30 250,015 444,480

fewer rotation operations compared to the RB
tree when keys are generated either uniformly or
according to a normal distribution. This difference
is due to PT-2 producing more Simple nodes and
fewer Class nodes after deletion, as shown in Table
5 and Table 6 , because of the ”d2” sub-rule in
Figure 12. Consequently, after deleting nodes,
PT-2 needs fewer restructuring operations since it
doesn’t have to fix the tree structure after removing
Simple nodes. When keys are generated in order,
both PT-2 and the RB tree have the same total
rotations. This is because PT-2 applies sub-rule
”d1” from Figure 12, which mirrors the RB tree’s
mechanism. This leads to both trees having
identical node kind/color counts after deletions, as
highlighted in Table 7.

When comparing PT-n, where n =
{3, 4, 5, 6, 7, 10}, to the RB tree, it is evident
that both tree structures exhibit similar behaviors
when subjected to key sequences generated from
either a uniform or normal distribution, as well as
an ordered sequence. Specifically, we observe
a noticeable reduction in the total number of
rotations in favor of PT-n as the parameter ”n”
increases in comparison to the RB tree. This
phenomenon can be attributed to the fact that
with the increasing value of parameter ”n” , the
count of Simple nodes positioned beneath Class
nodes also increases, as demonstrated in tables
5,6 and 7. Consequently, this rise in the number
of Simple nodes leads to a reduced necessity
for rotation operations, as the removal of Simple
nodes no longer requires rotation to maintain the
tree’s balance.

Furthermore, as discussed in the ’Comparing
insertion algorithm for PT-n and RB tree’ subsec-
tion, we also observe a related phenomenon when
keys are ordered. In this situation, PT-n with n =
{5, 6, 7, 10} display higher average search height
and tree height compared to RB trees. This is due
to the absence of a mechanism to balance Simple
nodes within Class nodes in PT-n.

8.3 Comparing Performance of PT-n and RB
Tree under Different Workloads

We considered the following experiment:

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.714

ISSN 2007-9737



0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(a) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items
A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(b) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(c) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

tr
ee

he
ig
ht

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(d) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

tr
ee

he
ig
ht

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(e) Normal distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

tr
ee

he
ig
ht

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(f) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

2

4

6

·105

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(g) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

2

4

6

·105

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(h) Normal distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

2

4

6

·105

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(i) Ordered sequence.

Figure 1: Comparison of RB and PT-n Trees performance with 25% Insertions and 75% Deletions.

1

Fig. 15. Comparison of RB and PT-n Trees performance
with 25% Insertions and 75% Deletions

1. Construct PT-n with parameters n =
{2, 3, 4, 5, 6, 7, 10} and create a Red-Black
Tree using the same sequence (S1) of N
values. This sequence is initially generated
using a random uniform distribution method,
the Mersenne Twister, followed by generation
in accordance with a normal distribution, and
finally in an ascending ordered sequence.

2. Generate a new sequence (S2) containing
N values, following the same key generation
process as the first sequence (S1). This se-
quence is designed to have varying workloads:
(25% Insertion, 75% Suppression), and (75%
Insertion, 25% Suppression). Then, compute :

(a) The Average Search Height of both trees.
(b) The height of both trees.
(c) The total number of rotations performed

during the operations.

3. Repeat step (1) and (2) ten
times for each N value: N =
{100K, 200K, 300K, 400K, 500K, 1M}.

Based on the data in Figures 15 and 16, it’s
evident that PT-2 and RB Tree share similar aver-
age search height and tree heights characteristics
across diverse workloads. Nevertheless, they
diverge significantly in terms of the total number of
required rotations.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(a) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(b) Normal Distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

number of items

A
ve
ra
ge

Se
ar
ch

H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(c) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(d) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(e) Normal distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

number of items

T
re
e
H
ei
gh

t

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(f) Ordered sequence.

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1
·106

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(g) Uniform distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1
·106

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(h) Normal distribution.

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1
·106

number of items

ro
ta
ti
on

s

RB
n=2
n=3
n=4
n=5
n=6
n=7
n=10

(i) Ordered sequence.

Figure 1: Comparison of PT-n and RB Trees performance with 75% Insertions and 25% Deletions.

1

Fig. 16. Comparison of PT-n and RB Trees performance
with 75% Insertions and 25% Deletions

Specifically, when keys follow a uniform or
normal distribution, PT-2 require fewer rotations
than RB Tree with a 25% insertions and 75%
deletions workload. Conversely, RB Tree needs
fewer rotations than PT-2 when workload consist of
75% insertions and 25% deletions. This difference
arises because PT-2 generate more ’Simple nodes’
during deletions compared to RB Tree, which
generate fewer ’Red nodes’, as explained in the
subsection titled ”Comparing Deletion Algorithms
for PT-n and RB tree.” Consequently, a high volume
of insertions require more rotation operations to
balance PT-2 compared to RB Tree.

However, when keys are generated sequentially,
PT-2 and RB Tree exhibit identical total numbers
of rotations across various workloads. This
phenomenon can be attributed to both tree
types adhering to the same rules after insertion
and deletion operations, as discussed in the
subsections ”Comparing Insertion Algorithms for
PT-n and RB tree” and ”Comparing Deletion
Algorithms for PT-n and RB tree”.

When comparing PT-3 and RB Tree, we observe
similar average search height across varying
workloads and key sequence generation methods,
including uniform distribution, normal distribution,
and ordered sequences. However, they diverge
in terms of tree heights and total rotations.
Specifically, PT-3 and RB Tree exhibit the same

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 715

ISSN 2007-9737



height when keys are generated with a uniform
or normal distribution. Conversely, when keys are
generated in an ordered sequence, PT-3 exhibits
a lower height by about one unit compared to
RB Tree. Additionally, PT-3 requires fewer total
rotations compared to RB Tree for various key
generation methods and across varying workloads.
This phenomenon stems from the increase of the
”n” parameter in PT by 1 or 2 units, resulting in
a more relaxed Class height and reduced rotation
operations during updates, without a substantial
increase in tree height.

For higher values of the parameter ”n” in PT-n,
such as n = {5, 6, 7, 10}, an increase in both the
average search height and tree height is observed
compared to the RB Tree, particularly when keys
are generated in sequential order. This disparity
arises from the lack of a mechanism to balance
Simple nodes within Class nodes in PT-n.

9 Conclusion and Future Work

PT-n is interesting for its simple and easy-to-
comprehend insertion and deletion algorithms.
Empirical results indicate that the structure
outperforms traditional RB Trees, requiring fewer
restructuring operations. Notably, when parameter
’n’ is set to three, the maximum height of the PT-3 is
less then that of the RB Trees. Another key feature
of the PT-n data structure is its flexibility, which
stems from the utilization of the ’n’ parameter. In
practice, larger values of ’n’ lead to the generation
of less balanced trees with reduced maintenance
requirements, while smaller ’n’ values result in
more balanced trees with increased maintenance
needs. This feature makes PT-n particularly
suitable for use in environments with expensive
maintenance, such as schedulers. Nevertheless,
the current implementation of the data structure
requires the storage of 8 bits to consider both the
height and the Kind of nodes, which may negatively
impact storage efficiency. A potential solution could
be to develop a method for calculating the height of
the nodes without having to store it. Consequently,
minimizing the storage demand to a single bit per
node, freeing up 7 bits of storage per node.

References

1. Adelson-Velskii, M., Landis, E. (1963). An
algorithm for the organization of information.
Dokl.Akad. Nauk SSSR 146, Vol. 3, pp. 1259–
1262.

2. Andersson, A. (1993). Balanced search trees
made simple. In Proceedings of the WADS
Conference (WADS’93), pp. 60–71.

3. Andersson, A., Icking, C., Klein, R.,
Ottmann, T. (1990). Binary search trees
of almost optimal height. Acta informatica,
Vol. 28, pp. 165–178.

4. Bayer, R. (1971). Binary b-trees for virtual
memory. In Proceedings of the 1971 ACM
SIGFIDET (now SIGMOD) Workshop on Data
Description, Access and Control, pp. 219–235.

5. Bayer, R. (1972). Symmetric binary b-trees:
Data structure and maintenance algorithms.
Acta informatica, Vol. 1, pp. 290–306.

6. Bayer, R., McCreight (1970). Organization
and maintenance of large ordered indices. In
Proceedings of the 1970 ACM SIGFIDET (now
SIGMOD) Workshop on Data Description,
Access and Control, pp. 107–141.

7. Bayer, R., McCreight (1972). Organization
and maintenance of large ordered indexes.
Acta informatica, Vol. 1, pp. 173–189.

8. Besa, J., Eterovic, Y. (2013). A concurrent
red-black tree. Journal of Parallel and Dis-
tributed Computing, Vol. 73, pp. 434–449.

9. Bounif, L., Zegour, D. E. (2019). Toward a
unique representation for AVL and red-black
trees. Computación y Sistemas, Vol. 23, No. 2.

10. Boyar, J., Larsen, K. S. (1994). Efficient
rebalancing of chromatic search trees. Journal
of Computer and System Sciences, Vol. 49,
pp. 667–682.

11. Cormen, T. H., Charles E. Leiserson, R.
L. R., Stein, C. (2009). Introduction to
algorithms. MIT press, 3 edition.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Fahd Mustapha Meguellati, Djamel Eddine Zegour, et al.716

ISSN 2007-9737



12. Foster, C. C. (1965). Information retrieval:
information storage and retrieval using AVL
trees. Proceedings 20th national conference,
ACM, pp. 192–205. DOI: 10.1145/800197.

806043.

13. Foster, C. C. (1973). A generalization of avl
trees. Communications of the ACM, Vol. 16,
No. 8, pp. 513–517. DOI: 0.1145/355609.

362340.

14. Ghiasi-Shirazi, K., Ghandi, T., Taghizadeh,
A., Rahimi-Baigi, A. (2020). Revisiting 2-3
red-black trees with a pedagogically sound
yet efficient deletion algorithm: The parity-
seeking delete algorithm. https://arxiv.

org/abs/2004.04344. DOI: 10.48550/ARXIV.
2004.04344.

15. Guibas, L. J., Sedgewick, R. (1978). A
dichromatic framework for balanced trees.
In 19th Annual Symposium on Foundations
of Computer Science (sfcs 1978), IEEE,
pp. 8–21.

16. Haeupler, S., B. Siddhartha, Tarjan, R.
(2015). Rank-balanced trees.. ACM Transac-
tions on Algorithms (TALG), Vol. 11, No. 4,
pp. 30:1–30:26.

17. Hirschberg, Daniel, S. (1976). An insertion
technique for one-sided height-balanced trees.
Communications of the ACM, Vol. 19, No. 8,
pp. 471–473.

18. Howard, P. W., Walpole, J. (2014). Relativistic
red-black trees. Concurrency and Compu-
tation: Practice and Experience, Vol. 26,
pp. 2684–2712.

19. Kosaraju, S., Rao. (1978). Insertions and
deletions in one-sided height-balanced trees.
Communications of the ACM, Vol. 21, No. 3,
pp. 226–227.

20. Larsen, K. S. (2002). Relaxed red-black trees
with group updates. Acta informatica, Vol. 38,
pp. 565–586.

21. Park, H., Park, K. (2001). Parallel algorithms
for red-black trees. Theoretical Computer
Science, Vol. 262, pp. 415–435.

22. Roura, S. (2013). Fibonacci bsts: A new
balancing method for binary search trees..
Theoretical Computer Science, Vol. 482,
pp. 48–59.

23. Räihä, Kari-Jouko, Zweben, S. H. (1979).
An optimal insertion algorithm for one-sided
height-balanced binary search trees. Com-
munications of the ACM, Vol. 22, No. 9,
pp. 508–512.

24. Sedgewick, R. (2008). Left-leaning red-black
trees. Dagstuhl Workshop on Data Structures,
pp. 17.

25. Zegour, D. (2022). Partitioned binary search
trees (p (h)-bst): A data structure for computer
ram. Data Science with Semantic Technolo-
gies: Theory, Practice, and Application,
pp. 139–177.

26. Zegour, D. E. (2022). Improving the red-black
tree delete algorithm. https://doi.org/10.

21203/rs.3.rs-1194654/v3.

27. Zegour, D. E. (2023). M-PBBST(n1, n2):
Multiple partially balanced binary search
trees in one. https://doi.org/10.21203/rs.
3.rs-2857732/v1.

28. Zouana, S., Zegour, D. E. (2018). Red green
black trees: Extension to red black trees.. J.
Comput., Vol. 13, No. 4, pp. 461–470.

29. Zouana, S., Zegour, D. E. (2019). Partitioned
binary search trees: a generalization of red
black trees. Computación y Sistemas, Vol. 23,
No. 4, pp. 1375–1391.

Article received on 14/02/2024; accepted on 14/02/2025.
*Corresponding author is Fahd Mustapha Meguellati.

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 701–717
doi: 10.13053/CyS-29-2-4820

Partitioned Trees 717

ISSN 2007-9737

10.1145/800197.806043
10.1145/800197.806043
0.1145/355609.362340
0.1145/355609.362340
https://arxiv.org/abs/2004.04344
https://arxiv.org/abs/2004.04344
10.48550/ARXIV.2004.04344
10.48550/ARXIV.2004.04344
https://doi.org/10.21203/rs.3.rs-1194654/v3
https://doi.org/10.21203/rs.3.rs-1194654/v3
https://doi.org/10.21203/rs.3.rs-2857732/v1
https://doi.org/10.21203/rs.3.rs-2857732/v1

