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Abstract. Machine learning-based road-type
classification is pivotal in intelligent road network
systems, where accurate network modelling is crucial.
Graph embedding methods have emerged as the
leading paradigm for capturing the intricate relationships
within road networks. However, their effectiveness
hinges on the quality of input features. This paper
introduces a novel two-stage graph embedding
approach used to classify road-type. The first stage
employs Deep Autoencoders to produce compact
representation of road segments. This compactified
representation is then used, in the second stage, by
graph embedding methods to generate an embedded
vectors, leveraging the features of neighbouring
segments.  Results achieved, with experiments on
realistic city road network datasets, show that the
proposed method outperforms existing approaches with
respect to classification accuracy.
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1 Introduction

Cities worldwide face growing traffic issues,
such as congestion, accidents, and rising fuel
costs. These problems are caused by increased
population, vehicles in traffics, and the overall
number of people using the roads.

Designing and developing smart cities is
essential for better managing and reducing these
traffic problems [11]. Smart city initiatives leverage
information and communication infrastructure (ICT)
to optimize urban living by tackling historical
urban challenges through data-driven solutions
and interconnected systems.

Urban transportation systems within smart
cities encompass diverse applications, aiming
to optimize traffic flow and minimize congestion
by designing intelligent systems that rely on
data captured by sensors strategically placed
throughout road infrastructure. This data can
be leveraged to build and train machine learning
models for various transportation applications,
including real-time arrival estimations and
prediction of traffic flows.

Notably, the potential of machine learning for
the design of intelligent transport systems extends
beyond these well-established applications, with
one promising yet underexplored area being
the automated classification of road types.
Integrating models to classify road-type within
interactive maps offers valuable traffic information
to users, enabling them to avoid congested routes,
accident-prone areas, and intersections with
high frequency.

However, leveraging machine learning for
road-type classification on road network graphs
presents a challenge because of the scarcity of
established hand crafted based methodologies for
generating feature vectors from road segments. To
address this, recent research has explored graph
embedding techniques, that use deep learning
models to capture spatial relationships between
road segments.

Features are automatically extracted within
the graph network structure. Feature vectors
are generated with graph embedding using
their neighbouring road segments. This study
represents an extension of the research initially
presented at the MCPR conference [9], introducing
a new multi-stage graph embedding approach
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Step 1: Input graph datasets = Step 2: Graph transformation

Datasets Original graph

1. Linkoping road 1. Nodes:intersections,

networks cross-roads, dead-ends
2. Johannesburg road 2. Edges: road segments

networks

Source

Transformed graph

Open Street Maps 1. Nodes:road segments

2. Edges:intersections,
cross-roads, dead-ends

Step 3: Feature engineering

Step 4: Multi-stage embedding

Attributes Stage 1

Embedding with Deep

1. Road segment length AutoEncoder

2. Road segment
midpoint coordinates

3. Road segment Stage 2

geometry Embedding with Graph
4. Road segment speed Neural Network approaches
limit 1. GCNN
2. GraphSAGE
3. GAT

Fig. 1. System diagram of the proposed method

for classifying road types in real-world urban
environments [10]. The original research
addressed two key challenges associated with
graph embedding methodologies for road networks
modelling: a) the inability of graph embedding
methods to conduct embedding raw road
segments’ feature vectors of , and b) the frequent
assumption within graph embedding methods that
road segment features are consistently robust
and accurate.

To overcome these challenges, the initial
stage of the original research utilized a Deep
AutoEncoder (DAE) model to embed the raw road
segments’ feature vectors into significantly smaller
dimensions while preserving essential features.

The resulting features from this first stage were
then utilized as input for the second stage, where
Graph Convolutional Neural Networks (GCNN)
were employed to obtain the embedded features
of a given road segment based on the features of
its neighbouring road segments. The classification
of road types was then accomplished using a
MultiLayer Perceptron (MLP) classifier.

Building upon the original work’s multi-stage
graph embedding method, this study conducts
a comparative analysis of various graph
embedding techniques for road network modelling.
The proposed approach is evaluated across
multiple diverse road network datasets to
ensure generalizability.

Computacion y Sistemas, Vol. 28, No. 1, 2024, pp. 257-270

doi: 10.13053/CyS-28-1-4891

The rest of paper is organised as follows:
Section 2 reviews recent advances in road-type
classification,  highlighting their techniques,
models, and results achieved. Section 3
discusses the technical details of the proposed
multi-stage graph embedding approach, outlining
its components and implementation.

Section 4 presents the experimental setup,
evaluation metrics, and obtained results, offering
a comparative analysis with existing methods.
Finally, Section 5 summarizes the essential
findings of the study and outlines potential
directions for future research.

2 Background and Related Work

Researchers can effectively model road networks
using graph theory. This approach captures
the complete topological structure of any road
network, regardless of its size or complexity.
Notably, graphs can represent not only spatial road
networks but also diverse transportation systems,
including highways, public transit networks, air
routes, and waterways.

Furthermore, graph-based models can readily
incorporate various network attributes such as
speed limits, travel times, lane numbers, and
traffic flow patterns. Essentially, graphs depict the
topological structure of a network through nodes
and edges.



1. Original graph

become an edge in L(G)

.-=""edges that share a node in G ~*~._
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2. Transformed graph

Fig. 2. Transformation of original graph to line graph

Nodes, represented by points, correspond to
key locations such as intersections, dead-ends,
and points of interest along the roads. Edges,
represented by lines, connect these nodes and
indicate the road segments between them.

Applications like traffic forecasting [1, 18, 14],
speed limit optimization [12, 16, 7], and the
estimation of travel time [6, 10] have witnessed

successful  implementations using machine
learning techniques.
However, representing road networks as

feature vectors for machine learning models
poses a significant challenge due to the limited
availability of suitable feature extraction methods in
existing literature.

While recent advancements in deep learning
offer an attractive avenue for automatically
learning network structure and representing
individual road segments based on their spatial
connections to neighbouring segments, applying
such techniques to graph-structured data presents
unique difficulties.

Unlike commonly used data types like
images and text, which are Euclidean and
have fixed dimensions, the underlying connectivity
patterns within graph-structured data (such as
road networks) are inherently complex and
non-Euclidean, posing challenges for directly
applying existing deep learning methods.

Recent efforts in applying deep learning
to complex, non-Euclidean graph data often
rely on a fundamental approach: embedding
high-dimensional graph  features into a
lower-dimensional Euclidean space using graph
embedding techniques.

This process reduces the complexity of the data
while preserving its essential relationships. By
capturing these relationships in a simplified form,
the model can tackle various graph-related tasks,
such as predicting node attributes or connections
between nodes.

Ultimately, graph embedding aims to represent
each node (e.g., a road segment) with a
lower-dimensional vector.  This vector retains
the node’s similarity to the node in the original,
allowing researchers to leverage standard metrics
for similarity comparisons in the embedded space.
Several studies have explored various graph
embedding techniques for modelling road network
tasks like traffic flow prediction.

While some, such as the Hybrid Graph
Convolution Neural Network (HGCN) proposed
in [17], capture the spatial connectivity of the
network by representing toll stations as nodes and
road segments as edges, however, the authors
neglected to incorporate node-specific features
beyond location, time, and weather.
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Algorithm 1 Road segment feature extraction
Input: G and L(G).
Output: Road segment feature vector.

1: for s € L(G) do

2: From G obtain [,.

3: From s obtain (z, ys).

4: From s obtain segment geometry.

5: if geometry exist then

6: Obtain 20 equally distanced points of /,:

(l.]?i, ly,‘),':L 2, ..., 20 by divid ls.

7: fori =110 20 do

8: Subtract (Iz;, ly;) from (x5, ys).
9: end for
10: else
11: Convert to line geometry.
12: Repeat steps 6 to 8.
13: end if

14: Obtain S of the speed limits with m
standard values.

15: Concatenate features generated from
steps 2 to 14.

16: end for
Input Output
@ Lo Compact N
PR X .. features

bo Od
000

o
QOQO

fjoze

{,-"’ N<<<D

“Encoder

Decoder

Fig. 3. Stage 1 embedding: Deep AutoEncoder

This gap is addressed in Relational Fusion
Networks (RFN) introduced in [4] for speed limit
classification and estimation. RFN leverages a
novel graph convolution operator to effectively
integrate edge information (e.g., road type,
speed limits) into the representation learning
process. This leads to a more comprehensive
understanding of the network dynamics.
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The study presented in [2] investigates the
classification of different road types within realistic
cities using a graph dataset extracted from Open
Street Maps (OSM). Inspired by the Relational
Fusion Network (RFN), the authors incorporate
edge features into the learning process by
transforming the initial graph into a line graph.

The further proposes a novel method for
generating road segment features based on
readily available attributes, such as road segment
length, speed limit, and geometric characteristics.
The authors then compare the performance of
various embedding methods, including Graph
Convolutional Neural Networks (GCCNs) [5],
GraphSAGE [3], Graph Attention Networks (GATSs)
[13], and Graph Isomorphism Networks (GINs)
[15], across different learning settings.

This comprehensive evaluation aims to identify
the most effective approach for classifying road
types within complex urban environments. A
method to classify road types using Deep
AutoEncoder (DAE) method is proposed in [2].
Similar to the work in [8], the authors generated
road segment features using road attributes.

DAE was applied to reduce the dimensionality
of input features while preserving the most
essential features. Classification of road types
was achieved using the MultiLayer Perceptron
(MLP) classifier. The study proposed in [9] is an
improvement to the studies presented in [2] and [8],
where road segment features obtained by DAE are
fed as input to GCNN before classifying road types
with MLP classifier.

3 Materials and Methods

This study builds upon a novel, multi-stage graph
embedding method for road-type classification
tasks, originally proposed in [9]. As shown in
Figure 1, the proposed method extracts road
network graphs from Linkoping and Johannesburg
cities using OSMnx, where nodes and edges are
intersections and road segments, respectively.
The initial graph is then converted into a line
graph where road segments are represented as
nodes. Next, a feature extraction process is
employed following the construction of both the
original and transformed road network graphs.



Algorithm 2 Graph embedding with Deep
Auto Encoder
Require: Original road features: RSEGFS c RY
Outputs: Embedded road features: RSES ¢ RM
1: Parameter definition: DAE encoder and decoder.
2: Model definition: DAE model (encoder, decoder).
3: for X € RSGFS do
4 Fit input feature vectors (X) to DAE model.
5: Randomly initialise weights.
6: while no convergence in error difference do
7.
8

Produce feature vectors on the decoder (Y).
: Find the MSE between X and Y.
9: Update weights.

10: end while

11: Obtain the embedding features vector (Z).
12: RSEGFS <+ RSEGFSU{Z}.

13: end for

14: Return features from the embedded space RSEGFS

Table 1. Datasets description

Dataset Nodes Edges Classes
Linkoping 6,799 13,022 5
Johannesburg 17,431 39,980 5
This process leverages the structural
information encoded in both graphs to

extract road properties relevant for road type
classification. The core innovation: a multi-stage
graph embedding approach, is introduced in
step 4. Similar to the original study, the first
stage leverages Deep AutoEncoder (DAE) to
compress high-dimensional feature vectors into
lower-dimensional representations.

However, this study goes beyond the original
work by investigating alternative methods for the
second embedding stage. Instead of Graph
Convolution Neural Networks (GCNN), it explores
the use of GraphSAGE and Graph Attention
Networks (GAT) to model road types based on
the features obtained from stage 1. Finally, a
MultiLayer Perceptron (MLP) classifier categorises
the road types.

3.1 Input Graph Datasets and
Transformed Graph

This study utilizes undirected road network graphs
of Linkoping and Johannesburg cities extracted
from OSMnx for experimentation.
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The input graph is represented as G = (V, E),
where V' represents nodes, and E represents
edges. Nodes correspond to intersections,
junctions, and crossroads, while edges represent
road segments connecting these nodes.

This section will only refer to the Linkoping City
road networks dataset for simplicity and clarity to
explain how each algorithm was applied to input
graph datasets.

Graph embedding techniques aim to embed
node features. However, nodes in the original
graphs (crossroads, junctions, and intersections)
lack crucial information for road-type classification.

Therefore, transforming the original graph into a
line graph is necessary to represent road segments
as nodes, thus facilitating graph embedding. Fig. 2
depicts the process of converting original graph G
into its corresponding line graph L(G).

This transformation involves mapping each
edge (road segment) in G to a distinct node in
L(G). Subsequently, edges in G that share a
common node (e.g., junction) are transformed into
connecting edges within L(G).

3.2 Labelling Road Type Classes

OSMnx  represents road segments with
corresponding road type labels, enabling the use of
supervised learning for modelling road networks.

Unfortunately, the data suffers from imbalanced
classes, with certain road types rarely appearing.
To address this, similar to the original work, certain
road types are merged and assigned new labels
as follows:

— Class 1: Highway, yes, primary, secondary,
motorway-link, trunk-link, primary-link,
secondary-link.

— Class 2: Tertiary-link, tertiary.
— Class 3: Unclassified, planned, road.
— Class 4: Residential.

— Class 5: Living street.
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Algorithm 3 Graph embedding with Graph
Convolution Neural Networks

Require: Road segment embedded graph features
space: RSEGFS c RY.

Outputs: Road segment embeddings: RSES ¢ RM.

1: Define k number of hops.
2: Define input and output layer dimensions at each k.
3: for Z, € RSFS do
Construct computational graph.
Initialise W},.
Set k) as Z,.
fori=1:kdo
Using Eq 2, find hi.
9: end for
10:  Obtain embedded vector E, = k" .
11:  RSES « RSESU{E,}.
12: end for
13: Return RSES.

N

3.3 Feature Engineering

This study employs a feature engineering
technique similar to the one used in [2] to ensure
a fair comparison of results. In this technique,
four key attributes from G and L(G) are extracted
to create a 58-dimensional raw feature vector for
each road segment. These attributes are:

— Road segment length:
single dimension.

Represented by a

— Midpoint coordinates: Represented by two
dimensions, one for longitude and one
for latitude.

— Distances to nearby points: The midpoint
is surrounded by 20 points spaced at equal
distances, and the subtraction of these distances
creates 20 dimensions.

— This categorical feature is represented using 15
dimensions, with each dimension corresponding
to a possible speed limit.

For a given road segment s with
length I, midpoint  coordinates (x5, ys),
and a one-hot encoded speed limit vector
S = {s1, s2, 83, -+, sm} (Where m represents
the number of possible speed limits), each road
segment vector can be obtained using Algorithm 1.
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3.4 Graph Embedding: The Multi-
Stage Approach

The proposed multi-stage graph embedding
method for classifying road types is described in
this section. As previously discussed, the method
employs two distinct embedding approaches. The
Deep AutoEncoder (DAE) model is used in the
first stage.

This model acts as a dimensionality
reduction technique, compressing the
high-dimensional feature vectors associated
with each node (representing road segments) into
a lower-dimensional, compact representation.

This compressed representation captures the
essential characteristics of the road segments
while discarding redundant information. In
the second stage, the approach leverages
graph embedding techniques to extract contextual
information for each road segment.

This is achieved by incorporating the feature
vectors of its neighbouring segments, previously
obtained in Stage 1. Through this process, the
method captures the influence and relationships
between individual roads within the broader
network structure.

3.4.1 Stage 1: Deep AutoEncoder Embedding:

The presented method utilizes a Deep
AutoEncoder (DAE) to embed road segment
features from a high-dimensional space (D) into
a lower-dimensional space (N), where N is
significantly smaller than D (D >>> N).

This dimensionality reduction process aims to
achieve “compact” representations of the road
segments. To understand the meaning of
“compact” features, it's crucial to grasp the DAE
architecture. As depicted in Figure 3, the DAE
comprises three key components:

— Encoder: This component receives a feature
vector (X; = {@i1, zi2, i3, , TiD})
containing D features and processes it
through several hidden layers with progressively
decreasing dimensions.



1. Graph Convolution

Graph Conv Embeddings

0
Iy < 2y @

2. GraphSAGE

GraphSAGE Embeddings

0
Iy < 2

ISSN 2007-9737

Classifying Roads with Multi-Step Graph Embeddings 263

3. Graph Attention

Graph Attention Embeddings

M
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Fig. 4. Graph Neural Network approaches. 1) GCN: Target node (red) receives update from its direct neighbours (blue
nodes) and neighbours of the neighbours (green nodes). 2) GraphSAGE: Target node (red) receives update only from &
sampled nodes of its neighbours (blue) and m sampled nodes of neighbours of the neighbours (green). 3) GAT: Learns
a scoring to weigh the influence of neighbouring nodes on the target node

— Compact Features Layer: This layer
represents the heart of the dimensionality
reduction. It compresses the encoded feature
vector (X;) into a lower-dimensional vector
(Z,‘ = {21‘71, Zi2y Zi3s " Zi,N}) with only N
features (N < D).

— Decoder: This component takes the compact
feature vector (Z;) and utilizes it to reconstruct
an approximation of the original feature vector
(Y; = {yi,h Yi,2s Yi3y " yi,D}) through several
dense layers with increasing dimensions.

The “compactness” of the features in the
compact features layer is defined by the error
difference between the original feature vector (X;)
and its reconstructed counterpart (Y;).

If this error difference is minimal; then, the
compact layer features are considered “compact”
as they effectively capture the essential information
of the original features in a reduced dimension.

— Number and size of hidden layers: This
parameter affects the capacity of the model in
learning complex patterns.

— Learning rate: This parameter controls
how quickly the model updates its weights
during training.

— Dimensionality of compact features: This
parameter determines the compression level
achieved by the embedding.

DAE utilizes a fully connected neural network
architecture comprising input, output, and
dedicated “compact features” layers. The encoder
and decoder have input and output layers,
respectively, and they share similar numbers and
sizes of hidden layers.

The process begins with normalizing the input
feature vectors. These normalized vectors are then
fed into the encoder. RelLU activation, defined
as f(x) = max(0, z), is applied to introduce
non-linearities. On the decoder’s output layer, the
reconstructed values are normalized between 0
and 1 using the sigmoid function, defined as:

_ 1
T l4e v’

9(y) (1)

Leveraging the Adam optimization algorithm,
the encoder’s weight parameters are iteratively
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Fig. 5. Stage 1 embedding: Error difference at various DAE models and learning rates for Linkoping road network
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Fig. 6. Stage 1 embedding: Error difference at various DAE models and learning rates for Johannesburg road network

adjusted to minimize the reconstruction error,
defined as the discrepancy between the input
data and its encoded representation. Finally, the
original D-dimensional road segment features are
replaced with the N-dimensional compact features
obtained from the model. Algorithm 2 describes
the DAE model.
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3.4.2 Stage 2: Embedding with Graph Neural
Network Approaches:

Stage 2 leverages graph neural network (GNN)
approaches to exploit the intrinsic topological
and spatial relationships embedded within the
graph-structured road network data.



Table 2. Description of various DAE models

Model Hidden Layers Sizes
A 5 {58,49,40,31,22,13} 4
B 4 {58,48, 38, 28,18} 8
c 3 {58, 46, 34,22} 10

This enables the extraction of richer feature
representations for each road segment by
incorporating information from its neighbouring
segments, leading to a more comprehensive
understanding of the road network’s spatial context
and connectivity.

As highlighted earlier, the ultimate goal of any
GNN approach is to generate the embedded vector
hk of the sampled road segment v for each hop
layer k by aggregating information from its direct
neighbours u € N(v). Several GNN methods are
available in the literature for generating such an
embedded vector.

In this work, the comparison between GCNN,
GraphSAGE and GAT is conducted. It is worth
noting that inputs to each GNN are the road
segment feature vectors Z c RY(from stage 1),
and the outputs are the embedded vector £ ¢ RM.

3.4.3 Graph Convolution Neural Networks

A two-hop GCNN architecture [5] generates the
embedded vector of a given road segment by
aggregating features from its direct neighbours as
well as the neighbours of the neighbours. As
indicated in Equation 2 of Figure 4, GCN generates
embedded vector h of target road segment v at
any hop k by concatenating the embedded vectors
hF=1 and hﬁg}v(u) of the target and neighbouring
road segments, respectively at previous hop k — 1.

It then uses some aggregator function fagq
to obtain the contribution of neighbouring
road segments to the target road segment
before applying the Sigmoid function o. W
represents the set of weights associated with
the target and neighbour road segments. The
experimental section of the study will investigate
the performance of three GCNN aggregator
functions namely, GCNN-Mean, GCNN-Max,
and GCNN-Sum.
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3.4.4 GraphSAGE

A two-hop GraphSAGE architecture [3] generates
the embedded vector of a given road segment by
aggregating information from only a set of sampled
neighbouring road segments. As indicated in
Equation 4 of Figure 4, GraphSAGE generates
embedded vector h of target road segment v at any
hop & by first applying the aggregator function fagq
to the embedded vector hﬁ'g}v(u) of neighbouring
road segments, at previous hop k — 1.

The aggregated vector is then concatenated
to the embedded vector h*~1 before applying the
Sigmoid function 0. The experimental section of
the study will investigate the performance of three
GraphSAGE aggregator functions: GSAGE-Mean,
GSAGE-Max, and GSAGE-Sum.

3.4.5 Graph Attention Networks

Similar to GCNN, a two-hop GAT architecture
[13] generates the embedded vector of a given
road segment by aggregating features from its
direct neighbours as well as the neighbours of
the neighbours. However, GAT further learns
the attention weights that describe the influence
of each neighbouring road segment towards the
target road segment.

As indicated in Equation 5 of Figure 4, GAT
generates the average weighted embedded vector
h of target road segment v at any hop k
over multiple heads by applying attention weights
o), to the corresponding neighbours shown in
Algorithm 3 is the the pseudo-code for achieving
the embedding task using GCNN. GraphSage and
GAT follow the same pseudo-code with the only
exception being the generation h”.

3.5 Classifying Road Types With
MLP Classifier

The study employs a Multilayer Perceptron (MLP)
classifier, characterized by its non-linear activation
functions and multiple hidden layers, for road
type classification.

The MLP is trained, validated, and tested
on feature vectors generated using a multi-stage
graph embedding method. A concise summary
of MLP parameters is provided, instead of
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Fig. 7. Stage 1 embedding: Examples of actual and reconstructed road segment feature vectors for Johannesburg road

network based on the test dataset

delving into the intricate mathematical framework
of the MLP, which isn’t crucial to this method’s
originality. To ensure a fair comparison with the
approach presented in [9], a single hidden layer
MLP classifier equipped with the Adam optimizer
is employed.

The input layer size matches the dimensionality
of the input road segment, while the output layer
size aligns with the number of road type labels (five
classes). Road segment feature vectors are fed
through the input and hidden layers of the MLP
classifier. The output layer leverages the softmax
activation function to generate probability values
for each road-type class.

The cross-entropy loss function measures
the discrepancy between predicted and true
class labels. The Adam optimizer then utilizes
this calculated loss to update the MLP’s
weight parameters.
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4 Experimental Results

Datasets of road network of Linkoping and
Johannesburg cities, with 6761 and 17431 road
segments (nodes), respectively, are used to carried
out the experiments. Algorithm 1 is used to
generate 58-dimensional feature vector from each
road segment.

4.1 Stage 1: Graph Embedding with
Deep Autoencoder

The aim of this stage is to embed road segment
features from D dimensional space (D = 58) into
N dimensional space with compact road segment
features. Section 3.4 describes how to produce
compact features. Road segments data was split
into 50% for the training set, 20% for the validation
set used to obtain the optimal DAE parameters and
30% for the testing set.



Table 3. Parameter settings required for the experiments

Parameters
Learning rate {0.001, 0.01, 0.1}
Output dimension {16, 32, 64}
Epochs 1000
Batch size 1024
Dropout 0.2

Table 4. Prediction results for Linkoping road
network datasets: Results for different graph embedding
methods are shown in terms of micro F1-Score. Training
time for every 50 epochs is also shown

Training val. F1i

Approach Time (s) Test F1
Raw features 04 62 59
DAE 02 66 64
GCN-Sum 26 77 72
GCN-Mean 31 76 70
GCN-Max 32 79 75
GSAGE-Sum 20 78 77
GSAGE-Mean 23 77 76
GSAGE-Max 29 79 78
GAT 29 78 76

Table 2 describes the parameters of several
DAE models at varying numbers and sizes of
hidden layers, respectively. For instance, model A
has 5 hidden layers of size {49, 40, 31, 22, 13}
on the encoder and decoder component, while the
compact layer size (N) is 4.

Figure 5 shows the error difference obtained
by each DAE model at varying learning rate
parameters for the Linkoping road network based
on the test set.

Figure 6 shows the error difference obtained
by each DAE model at varying learning rate
parameters for the Johannesburg road network
based on the test set. It can be seen that the lowest
possible error difference is achieved with model B
at 0.001 learning rate parameter.
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This shows that DAE successfully performs
the embedding of road segments 58-dimensional
feature space into 8-dimensional space for
both Linkoping and Johannesburg road network
datasets. Figure 7 depicts the examples of actual
and reconstructed road segment feature vectors
obtained by the DAE model for the Johannesburg
road network using a test dataset.

4.2 Stage 2. Embedding with Graph
Convolution Neural Network

In this stage, the aggregation of information from
neighbouring road segments is used to generate
road segment embedded vectors using methods
discussed in section 3.4.2. As in [9], the dataset
was split into 70% for training, 15% for validation
and 15% for testing. Each embedding model
comprises a definition of a two-hop layer, in which
inputs of the first layer are the 8-dimensional road
segment feature vectors generated from stage 1.
The M-dimensional output of the second layer is
fed into the MLP classifier. The experiments are
designed mainly to investigate the performances
of various graph embedding methods for modelling
both Linkoping and Johannesburg road networks.

4.2.1 Hyperparemeter Settings

As discussed in section 3.4.2, experiments are
conducted using 7 different graph embedding
approaches namely GCNN-Mean, GCNN-Max,
GCNN-Sum, GSAGE-Mean, GSAGE-Max,
GSAGE-Sum and GAT.

For each approach, the model that achieves the
lowest micro F1 score during the validation process
is selected as the best-performing model, and it is
further tested on the test set. Furthermore, various
learning rates (0.001, 0.01 and 0.1) and output
dimension M parameters (16, 32, and 64) are
investigated on each approach to obtain optimal
parameters. Batch normalization is applied after
each layer as a regularizer.

Combining  different  graph  embedding
approaches, output dimensions and learning
rates yield 126 models for both Linkoping and
Johannesburg road network datasets. Table 3
illustrates the parameters required to conduct
the experiments.
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Table 5. Prediction results for Johannesburg road
network datasets: Results for different graph embedding
methods are shown in terms of micro F1-Score. Training
time for every 50 epochs is also shown

Training val. F1

Approach Time (s) Test F1
Raw features 08 67 64
DAE 03 74 70
GCN-Sum 91 78 74
GCN-Mean 88 78 73
GCN-Max 116 79 73
GSAGE-Sum 65 84 81
GSAGE-Mean 81 86 84
GSAGE-Max 70 85 82
GAT 67 79 76

Table 6. Comparison of impact of method used on
classification performance: The proposed method uses
DAE features as input to graph embedding methods,
while the method proposed in [2] uses raw features
as input. The results compare the micro F1 score of
GCNN, GraphSAGE and GAT using DAE features and
raw features

Approach Proposed Other
method F1 method F1
GCN-Mean 70 58
GSAGE-Mean 76 62
GAT 76 76

4.2.2 Linkoping Road Networks

Table 4 shows the micro F1 score achieved by the
best model on each approach based on the test set
for road type classification on the Linkoping road
network graph dataset. The training time after 50
epochs is also presented.

The results obtained by each embedding
method are compared with the performance of
DAE features and only when raw features are
given to the classifier. Raw features refer to the
58-dimensional road segment features generated
by Algorithm 1.
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DAE features are embedded features obtained
in the first stage of the proposed method,
where Algorithm 2 generates 8-dimensional road
segment features. As indicated, using only raw
features yields the micro F1 score of 59%.

Also, using DAE features slightly improves the
micro F1 score to 64%. This slight improvement
is understandable given that DAE features are
much more robust and accurate compared to raw
features. It can be observed that all 7 graph
embedding methods in the second stage of the
proposed method outperform both raw features
and DAE features.

However, GSAGE-Max outperforms the rest of
the methods with 22% improvement compared to
the performance of raw features. It can further be
observed that GAT and GraphSAGE approaches
have much shorter training time compared to
GCNN approaches, this observation is reasonable
given that GCNN uses all the neighbouring
road segments to generate an embedded vector,
whereas GraphASAGE and GAT only take a
sample of neighbours.

4.2.3 Johannesburg Road Networks

Table 5 shows the micro F1 score achieved by the
best model on each approach based on the test set
for road type classification on the Johannesburg
road network graph dataset.

The training time after 50 epochs is also
presented. The results obtained by each
embedding method are compared with the
performance of DAE features and only when raw
features are given to the classifier.

Raw features refer to the 58-dimensional road
segment features generated by Algorithm 1.
DAE features are embedded features obtained
in the first stage of the proposed method,
where Algorithm 2 generates 8-dimensional road
segment features. As indicated, using only raw
features yields the micro F1 score of 64%.

Also, using DAE features slightly improves the
F1 score to 70%. It is further observed that all 7
graph embedding methods in the second stage of
the proposed method outperform both raw features
and DAE features.



However, GSAGE-Mean outperforms the rest of
the methods with 20% improvement compared to
the performance of raw features.

4.3 Comparison with Existing Works

Performance of the proposed method was
compared to the model presented in [2] for
classification of road types of Linkoping City. There
are similarities between and GCNN methods: (1)
they use the same road network graph dataset. (2)
They use similar classifier parameters.

They differ on the embedding approach. In
fact, Graph embedding methods proposed in [2]
apply embedding using raw data as opposed to
the proposed method that will initially use DAE to
generate the compact version of road segments
before graph embedding methods is applied.

Table 6 shows the comparison of the methods
in terms of micro f1 score. It can be observed
the method proposed in this study outperforms the
method proposed in [2] for road type classification
when GCNN-Mean and GSAGE-Mean are used as
graph embedding methods.

The results achieved for GAT are similar for both
studies. However, it can be observed that the use
DAE embedding approach significantly improves
the performance of graph embedding methods for
road-type classification tasks.

5 Conclusion

A multi-stage graph embedding method for
the classification of road has been presented.
Experiments are conducted using the Linkoping
and Johannesburg road networks dataset
extracted from OpenStreetMaps. Similar to
[2], road attributes such as length, mid-point
coordinates, geometry and speed limit are used to
generate raw features for each road segment.

Embedded road segment feature vectors are
produced from raw features using a two state
graph embedding method. GCNN (Sum, Mean
and Max), GraphSAGE (Sum, Mean, and Max) and
GAT methods were used in this study to investigate
their performance for road type classification on the
obtained road network graph datasets.
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The results indicated that all seven
methods outperform both raw and DAE
features.  Furthermore, GraphSAGE-Sum and
GraphSAGE-Mean outperform other methods
for classifying road types in Linkoping and
Johannesburg cities, respectively. The results
obtained by GCNN-Mean, GraphSAGE-Mean
and GAT on the Linkoping road dataset were
compared to the methods proposed in [2], where a
similar dataset was used to solve the same tasks
when only raw features were input to the graph
embedding methods.

Results further indicate that the use DAE
embedding method to generate compact road
segment features significantly improves the
performance of graph embedding methods for
modelling road types. Future work of the study
will generate more road segment features using
attributes such as lane count.

Furthermore, replacing the one-hot encoding
method with deep neural network embedding
for representing categorical features is worth
attempting.  Additionally, the F1-score metrics
used in this study have been found to exhibit a
bias influenced by the imbalanced degree of the
imbalanced dataset. Therefore, future work will
utilise metrics such as the Matthews Correlation
Coefficient (MCC).
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