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Mexico

al216618@alumnos.uacj.mx, hsossa@cic.ipn.mx
{hochoa, vianey.cruz, overgara}@uacj.mx

Abstract. Digital mammogram plays a key role in
breast cancer screening, with microcalcifications being
an important indicator of an early stage. However,
these injuries are difficult to detect. In this paper,
we propose a lightweight Convolutional Neural Network
(CNN) for detecting microcalcifications clusters in
digital mammograms. The architecture comprises two
convolutional layers with 6 and 16 filters of 9×9,
respectively at a full scale, a global pooling layer that
eliminates the flattening and dense layers, and a sigmoid
function as the output layer for binary classification. To
train the model, we utilize the public INbreast database
of digital mammograms with labeled microcalcification
clusters. We used data augmentation techniques to
artificially increase the training set. Furthermore, we
present a case study that encompasses the utilization
of a software application. After training, the resulting
model yielded an accuracy of 99.3% with only 8,301
parameters. This represents a considerable parameter
reduction as compared to the 67,797,505 used in
MobileNetV2 with 99.8 % accuracy.

Keywords. Microcalcifications clusters detection,
shallow convolutional neural network, deep learning.

1 Introduction

Breast cancer is a significant public health
challenge, with the highest incidence among
women [14].

The detection of small calcium deposits from
0.1 mm to 1 mm in length called Microcalcifications
(MCs) [4], plays a vital role in identifying early
breast cancer, leading to a 99% survival rate at
5 years or more [3]. Microcalcifications clusters
(MCCs) are conformed by at least three MCs per
cm2. These lesions are present in up to 50% of the
confirmed cancer cases [29, 36, 37].

The detection of MCs is a complex process due
to their size, shape, and distribution [11]. Among
the medical imaging techniques, mammography is
the most widely used to detect MCCs [4, 6]. The
use of Artificial Intelligence (AI) techniques is safe
and reliable [9] and can be used to detect the initial
signs of diseases [12].

Among these techniques, the Deep Learning
(DL) models [21] have achieved high degrees
of accuracy and Convolutional Neural Networks
(CNNs) are being studied in the field of MCCs
detection [4]. As CNN architectures evolve, they
have become more complex and deeper.

Hence, the complexity has posed
challenges, particularly in medical entities where
resource-intensive models for diagnosis can be
impractical. A solution is to develop lighter CNN
architectures where training and/or retraining
times can be minimized, making the network
more accessible and efficient, all while requiring
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(a) (b) (c)

Fig. 1. Digital mammogram showing (a) a circled
MCCs, (b) a patch of tissue with MCCs, and (c) with
normal tissue

Table 1. Most representative architectures yielded by the
Hyperband search algorithm

CL Filter size Number of filters MPL Parameters Accuracy

2 5 × 5
CL1: 6

2 2,589 99.1%
CL2: 16

2 5 × 5
CL1: 6

0 2,589 99.1%
CL2: 16

2 5 × 5
CL1: 4

0 1,125 98.8%
CL2: 10

1 5 × 5 CL1: 16 0 433 97.8%

6 5 × 5 CL1 - CL6: 4 0 2,129 99%

2 3 × 3 CL1 - CL2: 16 0 957 98%

2 7 × 7
CL1: 6

0 5,037 99.1%
CL2: 16

2 11 × 11
CL1: 6

0 12,381 99.3%
CL2: 16

2 9 × 9
CL1: 6

0 8,301 99.3%
CL2: 16

fewer computational resources. In light of the
challenges exposed, we present a novel approach
incorporating a lightweight and shallow CNN for
detecting the presence or absence of MCCs in
digital mammograms.

This research builds upon the foundations laid
in our prior work [19], representing a continuation
and refinement of our previous findings. The
paper makes significant contributions, which can
be outlined as follows:

– A lightweight CNN specifically designed for
the detection of MCCs in digital mammograms
using a reduced number of parameters. The
network’s efficiency is attributed to its notably
reduced number of parameters, making it an
attractive and practical solution for medical
entities seeking efficient MCCs detection.

– A case study of the proposed model. We
are primarily concerned with the theoretical and
practical applications of our model. Therefore,
we developed a software application to detect
MCCs. The application is being evaluated by
expert radiologists.

The article is organized as follows: Section
2 reviews the related work. Section 3 outlines
materials and methods. Section 4 presents the
results. Section 5 discusses outcomes. Lastly,
Section 6 offers conclusions.

2 Related Work

Efforts to improve accuracy are the main driver
behind recent trends in the detection of MCCs.
Here, we briefly review the works we consider
the most significant because they put our work
into context. Gómez et al. [10] proposed
a methodology for preprocessing 832 digital
mammograms specifically from the mini-MIAS [31]
and the UTP [7] databases.

This CNN model comprises seven
Convolutional Layers (CL) with a kernel size
of 3×3. Following each CL, a Max Pooling Layer
(MPL) and a layer of Rectified Linear Unit (ReLU)
activation functions were incorporated. The CNN
achieved a testing accuracy of 95.83%.

Rehman et al. [25] proposed a Fully Connected
Deep-Separable CNN (FC-DSCNN) for detecting
and classifying MCCs as benign or malignant. The
system involves four steps including image
processing, grayscale transformation, suspicious
region segmentation, and MCCs classification.

They tested the system on 6,453 mammograms
from the public DDSM [27] dataset and from
the private Punjab Institue of Nuclear Medicine
(PINUM) database, achieving results with 99%
sensitivity, 82% specificity, 89% precision, and
82% recall.

Hsieh et al. [11] implemented a VGG-16
network to detect MCCs in 1586 mammograms
from the Medical Imaging Department of the
Chung-Shan Medical University. They used a Mask
R-CNN for MCC segmentation and InceptionV3 for
MCC classification (benign or malignant).
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Table 2. Tuned hyperparameters and optimal values via
Hyperband method

Hyperparameter Evaluated values Best value

CL1
Number of filters 4, 6, 8, 10, 12 6

Filter size (n× n) n = 3, 5, 7, 9, 11 9

CL2
Number of filters 16, 20, 24, 28, 32 16

Filter size (n× n) n = 3, 5, 7, 9, 11 9

Batch size 16, 32, 64, 128 64

Learning rate 0.01, 0.001, 0.0001 0.001

The method achieved a 93% accuracy for
classification and detection, 95% for MCs labeling,
and 91% for MCC classification. The overall
precision, specificity, and sensitivity were 87%,
89%, and 90%, respectively.

Valvano et al. [35] developed two CNNs for the
detection and segmentation of Regions of Interest
(ROIs) or patches containing MCs. They employed
a private database consisting of 283 mammograms
with a resolution of 0.05 mm.

Each patch was labeled positive if it contained
MCs and negative if it did not. The presence or
absence of MCs in each patch was then detected
using a CNN. Both CNNs were constructed with six
CLs. They achieved an accuracy of 98.22% for the
detector and 97.47% for the segmenter.

The most intuitive idea to improve accuracy is
to use deeper CNNs. This requires a lot of time
to train and use it. There is a clear sacrifice of
computational complexity and, in some cases, an
incipient gain in precision. Recently, Luna et al.
[19] showed that, for MCCs detection, very deep
CNN performed similarly to the shallow ones.

They compared different CNNs, in the
state-of-the-art, used for classification purposes
and found that the networks yielded accuracies
between 99.71% and 99.84%. Therefore, for this
type of lesion, shallow networks with a reduced
number of parameters can be designed to be
accommodated in little hardware.

To the best of our knowledge, among these
networks, only the VGG-16 architecture has been
employed for MCCs detection [11]. Nevertheless,
the authors did not report any comparison with
other DL networks or structures, lacking sustain the
use of this network for this type of lesions.

3 Materials and Methods

In this section, we present an overview of the
materials utilized and the methods adopted
to investigate MCCs detection in digital
mammograms using CNNs.

3.1 Data

We used the INbreast database [22] for training,
validating, and testing the model. It comprises 410
grayscale digital mammograms of 2,560 × 3,328
and 3,328 × 4,084 pixels, each pixel is 70
microns. The mammograms are labeled with
various types of lesions. In this study, we selected
exclusively the ten mammograms labeled as MCC
in the database.

3.1.1 Data Preparation

We converted the Digital Imaging and
Communication In Medicine (DICOM) images
database into Portable Network Graphic (PNG)
format. The labeling and coordinates of the breast
lesions were available in separate Extensible
Markup Language (XML) files and independently
associated with the images.

In order to accurately mark the MCCs on the
digital mammograms, we developed a custom
software, in Python 3.0, to read and extract the
MCCs coordinates from XML files for precise
localization and annotation of these lesions
within mammograms.

3.1.2 Patch Extraction

The proposed model processes mammograms in
patches of 1 cm2 equivalent to 144 × 144 pixels
as those shown in Figs. 1 (b) and (c). We
developed another dedicated computer program
in Python 3.0 to extract annotated patches from
the mammograms.

In total, 1,576 patches with MCCs and 1,692
patches without lesions were selected. The initial
CNN training sessions were conducted using the
dataset [22] as it is. The results were not as
expected in all the tested architectures [19]. We
asked an expert radiologist to clean our database.
She noticed that some patches, labeled as MCCs,
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Fig. 2. Case study of the proposed CNN model. If the patch is classified as absence of MCCs, it becomes lighter, and
if it is classified as presence the patch darkens

did not contain MCCs, and some unlabeled ones
did contain them. Now, with the cleaned database
the results exceeded 98% on accuracy [19].

3.1.3 Data Augmentation

The availability of mammograms labeled with
MCCs in the INbreast database is limited. Since
DL models depend on the quantity and contextual
meaning of training data, we artificially increased
the number of examples in the database by
applying reflection, 180◦ turn, reflection and 180◦

turn, and 90◦ turn, to each patch to obtain 6,304
extra patches with MCCs and 6,768 extra patches
without MCCs.

Notice that only geometric transformations
were applied to preserve the original features.
Consequently, we ended up with a total of 7,880
patches with MCCs and 8,460 patches without
MCCs, resulting in a comprehensive dataset of
16,340 patches.

3.1.4 The Datasets

When training a DL model, it is very important to
have a dataset with almost the same number of
samples in each class. This prevents the model
from becoming biased toward one class.

Hence, 7,880 patches with MCCs and 7,880
patches with normal tissue from the database
were used. By Pareto’s Principle [2], from the
dataset we assigned 80% of the data for both
training and validation, while the remaining 20% for
testing purposes.

More specifically, we utilized 64% (10,088
patches) for training and 16% (2,520 patches)
for validation, and for testing, we reserved the
remaining 20% (3,152 patches).

To ensure consistency, all patches were
normalized by dividing their pixel values by
255. Notice that the data augmentation process
was applied to each dataset individually to
avoid overfitting.
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(a) (b)

(c)

Fig. 3. Patch x (a) with MCCs and feature maps (b) F0

and (c) F1 (see Fig. 2)

(a)

(b)

Fig. 4. Filtering process of (a) the third trained filter of
CL1 and (b) magnitude response of the filter

3.1.5 The Proposed Architecture

The proposed architecture was conceived on the
premise that biological models of MCs and their
surrounding tissue exhibit a reduced number of
features [38]. The MC is modeled as a sum
of Gaussian functions [38] with limited frequency
support (from 0.1 to 1 millimeter) [4].

Therefore, we concluded that it is unnecessary
to use a very deep CNN to classify MCCs. This
was demonstrated in [19] where CNN models like
LeNet-5 [16] with only 5 layers or AlexNet [15]
with 8 layers can effectively detect MCCs with the
same accuracy.

Besides, these two networks were specifically
designed to classify numbers and natural images
with a large set of features. Furthermore, in the
literature, the current networks are pre-trained on
natural images [20]. Hence, it is essential to
capture a greater number of low- and high-level
features. In the reported works on MCCs detection
and classification [24, 18, 23, 26, 28], there is a
notable absence of experiments.

The authors typically bring the knowledge
of a pre-trained CNN to their own domain
by retraining it to observe the prediction or
classification results regardless of the depth of the
network. However, models of MCCs proposed from
biological analyses [38] report that these lesions
have a limited number of features, often described
as a sum of Gaussian functions.

Therefore, we decided to experiment with
one convolutional and one MPL first. Then,
we increased the number of layers and noticed
that, after two or more layers, the performance
was similar. Afterward, we experimented by
suppressing the Pooling Layers (PLs) and noticed
an improved performance.

Finally, we replaced the Flattening and
FCLs with a Global Max Pooling Layer (GMPL)
and noticed that the performance was not
compromised. However, the number of parameters
drastically decreased. Finally, for training,
Hyperband search [17] was used to tune the
hyperparameters. Table 1 shows the most
representative combinations yielded by the
algorithm. We propose the lightweight CNN
depicted in the case study of Fig. 2.

Each model was trained using TensorFlow
framework 2.0 [1] in Google Colaboratory [5].
The platform automatically adjusted the computer
resources as needed. For instance, in the latest
session, the model accessed a 108GB hard drive,
an Intel Xeon (R) CPU @ 2.20GHz processor, and
13GB of memory.

Notice that, we will call the architecture to the
structure of the CNN (number of layers, how they
are connected, and the type of activation function)
and the model to the function that the CNN is
approximating after training. The architecture
consists of two CLs with a ReLU layer at the output
of each, followed by a GMPL.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 245–256
doi: 10.13053/CyS-28-1-4892

Lightweight CNN for Detecting Microcalcifications Clusters in Digital Mammograms 249

ISSN 2007-9737



Fig. 5. Plots of the element-wise average of the components of the F2 classified as presence (black dotted graph) and
absence of MCCs (gray dotted graph)

The output layer consists of a sigmoid function.
The two CLs are used at full scale, that is, no PLs
are inserted to reduce dimensionality. The Binary
Cross Entropy (BCE) cost function used is shown
in Eq. (1):

L(y, ŷ) = − 1

m

m∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] , (1)

where − 1

m

m∑
i=1

is the average loss of the whole

batch, m denotes the training set size, yi is the
label, taking binary values 0 or 1 and ŷi is the
predicted value. −1/m ensures that the cost is
always greater or equal to 0.

3.1.6 Hyperparameter Tuning

Searching for optimal hyperparameters was a
challenge because of the limited computational
resources. Hence, we employed the Hyperband
search method [17] for hyperparameters tunning by
exploring the number and filter sizes, batch size,
and learning rate within a relatively narrow range
of options.

We used dropout regularization with a
permanency of 80% throughout the training
process and Adaptive Moment Estimation (ADAM)
regularization. Table 2 shows the values of the
hyperparameters evaluated by the method along
with the best results.

3.2 The Proposed Model

From the previous section, the resulting CNN
model consists of two CLs, each followed by a
ReLU layer. The first layer has 6 filters of size
9×9, denoted by W0 with biases B0. The output
is represented as:

F0 = max(0, W0 · x+B0), (2)

where max(0, z) denotes the largest value
between zero and z. Similarly, the second layer
comprises 16 filters of size 9× 9, denoted by W1

with biases B1. The output can be modeled as:

F1 = max(0,W1 · x+B1). (3)

The resulting 16 feature maps are sent to a
GMPL to obtain the maximum value of each map
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Table 3. Performance comparison of the proposed CNN
versus MobileNetV2 and LeNet-5

Architecture Accuracy Parameters

MobileNetV2 99.8% 67,797,505

LeNet-5 99.3% 2,233,365

Proposed 99.3% 8,301

to yield a vector of 16 features represented as
F2 = max(F1). The F2 vector is sent to the output
layer where a predicted value between 0 and 1
is assigned according to the vector values. The
proposed CNN model is shown in Fig. 2.

3.2.1 Software Application

We developed a web-based software application
to test the model’s ability to analyze digital
mammograms in real time with the domain
used to train the network (INbreast database
[22]). The user interface allows to import digital
mammograms in a PNG format. The software
extracts progressively 1 cm2 patches from the
mammogram scanning it from top to bottom and
from left to right.

The patch undergoes analysis by the proposed
model that yields results between 0 and 1. A near
0 result indicates the absence of MCCs, prompting
the application to display the patch in a light gray
color. Conversely, a result close to 1 indicates
the presence of MCCs, displaying the patch as it
is. The application can be configured to display
the patch with a color depending on the class it
belongs to.

Additionally, counters for each class are
maintained to display the number of patches found
with and without MCCs during the scanning. The
application is hosted on a local server equipped
with a 100GB hard drive, an Intel Xeon (R) CPU
@ 2.20GHz processor, and 8GB of memory.

Debian [30] serves as the operating system,
Apache 2 [32] as the HTTP server, and PHP 8
[34] as the backend. PHP handles tasks such as
uploading mammograms to the server, removing
the black background, and splitting images into
patches for analysis.

Angular v14 [8] is used as the frontend, fetching
patches from the backend and utilizing a web
service to implement the proposed model. The
application’s aesthetic is styled using the Bootstrap
library [33].

3.2.2 Case Study

Fig. 2 shows a case study implemented for the
proposed model. The input mammogram is split
into patches of 144 ×144 pixels. The coordinates
of each patch are stored and the patch x is sent
to the trained CNN model where it undergoes
classification. The classified patch is seamlessly
integrated back into the mammogram at its original
location with a different grayscale that depends on
the output classification result ŷ .

The result is shown in a displayed mammogram
with detected normal tissue in light gray and
injured tissue in dark gray. The transformation
can be inverted anytime to show the original
image. This case study was implemented in
a software application that is under test by the
Centro de Imagen e Investigación (Medimagen) of
Chihuahua, México [13].

4 Results

This section exposes the results of the proposed
CNN. All the models were trained with 100 epochs.
Fig. 3 shows (a) one patch with MCCs that
undergoes prediction, (b) the six feature maps F0

yielded by the first CL, and (c) the sixteen feature
maps F1 at the output of the second CL.

Fig. 4(a) shows the convolution process of the
input patch with MCs with the third trained filter of
the CL1. The brightest pixels represent the parts
of the spectrum with the highest magnitude. Fig.
4(b) shows the magnitude response of this filter.
Observe the limited frequency support.

Fig. 5 shows two plots of the element-wise
average output of the sixteen components of the
vector F2, the upper graph, represented by the
dotted black line, is the average of the prediction of
one hundred patches classified as presence. The
light gray dotted line is the element-wise average
of the prediction of one hundred patches classified
as absent.

Computación y Sistemas, Vol. 28, No. 1, 2024, pp. 245–256
doi: 10.13053/CyS-28-1-4892

Lightweight CNN for Detecting Microcalcifications Clusters in Digital Mammograms 251

ISSN 2007-9737



Fig. 6. Proposed model performance accuracy for (black line) training and (gray line) validation

In other words:

F2 av = (F2,1 ·+F2,2 ·+ · · · ·+F2,100) · /100, (4)

where ·+ and ·/ are the element-wise sum and
division operations and F2,i the ith vector after
each prediction. Table 3 presents a comparison
of both accuracy and the number of trainable
parameters among the proposed model and the
MobileNetV2 and LeNet-5 networks.

In [19], MobileNetV2 demonstrated the highest
precision in detecting MCCs, while the LeNet-5
network exhibited the fewest number of trainable
parameters. Observe that both, the MobileNetV2
and the LeNet-5, were trained from scratch using
the same datasets as in the proposed model was
trained. Fig. 6 shows the accuracy performance
throughout the configured epochs for both the
training and the validation processes.

It is important to mention that an expert
radiologist corroborated the testing results by using
the software application developed.

5 Discussion

In Fig. 3 (b) we notice that, in the first, second,
fourth, and sixth maps (from left to right), the
MCs locations appear in a pitch black with a
rounded feature. Smaller MCs locations are more
noticeable in the first and second maps. However,
larger MCs locations are detected on the second,
fourth, and sixth maps.

These maps separate the MCs leaving only the
information of the surrounding tissue. The third and
fourth maps highlight the features of the MCs being
more prominent on the third map. Besides, the
surrounding tissue is attenuated leaving only the
MCs features.

Furthermore, Fig. 3 (c) shows a higher level of
features. However, we can still see that, from left
to right and top to bottom, the third, fifth, eighth,
eleventh, twelfth, and thirteenth maps carry the
tissue features, and the remaining maps are the
MCs features.
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The proposed CNN identifies and separates in
the feature maps the various characteristics in a
patch. To save parameters, a GMPL is added
to the output of the second layer. Fig. 5 shows
two plots F2 av corresponding to the averaged
elements of each output F2 as explained in the
previous section.

Notice how the two plots do not overlap each
other, this means that on average, there is no
overfitting in the network. It is important to observe
that ten feature maps yield results close to zero
when MCCs are absent and results greater than
0.5 when MCCs are present. Here, the third feature
map yields a result greater than 0.5 when MCCs
are absent.

However, the same map yields a value close
to one when MCCs are present. Additionally,
feature maps 7 and 8 give results close to the
overlap. Nevertheless, on average, the results are
separated. Fig. 6 shows that training and validation
performance are not separated from each other.

In fact, they maintain the same tendency. This
suggests that there is no overfitting. Table 3 shows
that our network achieves comparable accuracy to
LeNet-5 CNN with the notable advantage of being
268 times smaller. Moreover, observe that the
MobileNetV2 CNN yields an accuracy that is only
0.5% higher than the proposed network. However,
the proposed network is 8,167 times smaller.

The MCs range from 0.1 to 1 mm [4] and
the scanner used to collect the INbreast database
has a resolution of 70 microns per pixel in both
directions (horizontal and vertical) [22].

Therefore, an MC varies in size from
approximately 2 to 14 pixels which indicates
a limited frequency support (from |1/14| to |1/2|)
as shown in Fig. 4(b) where the bandpass region
is delimited by the size of the MC, which clearly
indicates that this filter is trained to capture
the support.

Moreover, within this region of MCs support,
there are other signals that are not MCs as
shown in the output features map of Fig.
4(a). Nevertheless, these extra features will be
discriminated by the CL2.

6 Conclusions

In this paper, we propose a lightweight CNN for
detecting MCCs in digital mammograms. The input
layer has 6 filters of size 9×9 with ReLU activation
functions to have a 6-dimensional feature maps.
The second layer performs a nonlinear mapping
using 16 filters of size 9×9 with ReLU function.

No PL was added to reduce the dimensionality
of the CLs. A GMPL is added to reduce the
number of parameters and transform the last
16-dimensional feature maps into a 1D vector. For
binary classification, the last layer is a sigmoid
function. The resulting model comprises 8,301
parameters making it easily implementable across
various frameworks. The achieved accuracy aligns
with results from the LeNet-5 and the even more
intricate MobileNetV2.

The application developed for our model is
under test by the Centro de Imagen e Investigación
(Medimagen) of Chihuahua, México. A noteworthy
discovery by the expert radiologist, while using
the application, was that the model can identify
MCCs that initially were not labeled in the
INbreast database. This is because the unmarked
MCCs were challenging to observe without the
support of the application, and the almost
imperceptible MCCs often turn out to be malignant.

The ongoing aspect of this research involves
developing a faster residual CNN with enhanced
performance. Then, the proposed model in this
research serves as a foundation for the new CNN.
In addition, other types of layers such as the
depthwise separable convolutional layers are also
being tested. Because of the simplicity of our
CNN, we are developing a framework to include
explainability in the model. In addition, we are
collecting a database of Mexican mammograms,
labeled by expert radiologists with several types of
lesions that can be used to train new models of DL
to work in hospitals and clinics of the country.
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