
Evaluation of CNN Models with Transfer Learning in Art Media

Classification in Terms of Accuracy and Class Relationship

Juan Manuel Fortuna-Cervantes1, Carlos Soubervielle-Montalvo∗,2,

Cesar Augusto Puente-Montejano2, Oscar Ernesto Pérez-Cham3,
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Abstract. The accuracy obtained in Art Media

Classification (AMC) using CNN is lower compared

to other image classification problems, where the

acceptable accuracy ranges from 90 to 99%. This

article presents an analysis of the performance of

three different CNNs with transfer learning for AMC, to

answer the question of what challenges arise in this

application. We proposed the Art Media Dataset (ArtMD)

to train three CNNs. ArtMD contains five classes of

art: Drawing, Engraving, Iconography, Painting, and

Sculpture. The analysis of the results demonstrates that

all the tested CNNs exhibit similar behavior. Drawing,

Engraving, and Painting had the highest relationship,

showing a strong relationship between Drawing and

Engraving. We implemented two more experiments,

removing first Drawing and then Engraving. The

best performance with 86% accuracy was achieved by

removing Drawing. Analysis of the confusion matrix

of the three experiments for each CNN confirms that

Drawing and Painting have the lowest accuracy, showing

a strong misclassification with the other classes. This

analysis presents the degree of relationship between the

three CNN models and details the challenges of AMC.

Keywords. Art media classification, convolutional neural

networks, transfer learning.

1 Introduction

Art restorers and collectors frequently classify

art media by evaluating their physical features,

subjective characteristics, and historical periods

[16]. However, this classification process can be

challenging because specific attributes may need

to fit neatly into predefined styles, genres, or art

periods, leading to potential misclassification.

A favorable solution to this challenge involves

the utilization of Convolutional Neural Networks

(CNNs). These deep learning algorithms have

garnered recognition in the scientific community

for their prowess in image classification and object

detection tasks [2, 17, 22].

Although there is growing interest in CNNs for

Art Media Classification (AMC), limited research

delves deeply into their classification performance

and class relationship [12, 20]. Furthermore,

there is a growing inclination towards pre-trained

models over traditional computer vision methods,

demonstrating the potential for achieving more

accurate dataset classification [7].
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Fig. 1. Image distribution and composition for the Art

Media Dataset (ArtMD)

In a primary study, serving as a basis for

this work [8], an assessment of the performance

accuracy was conducted on three well-established

CNN architectures in AMC.

The principal objective is to significantly

emphasize the resilience of CNN learning models

in art media classification when leveraging transfer

learning. This study of the three proposed

CNN architectures seeks to determine the optimal

choice for future applications.

Based on the insights gained from previous

work, this study presents a comprehensive

evaluation and performance analysis of three

well-known CNN architectures in the context of

AMC, aiming to address the challenges that arise

when using CNNs with transfer learning [14].

In addition, it investigates the relationship

between classes to shed light on poor classification

performance and how dataset characteristics

influence CNN learning. The main contributions of

this study are as follows:

1) Introduction of an experimental approach

to evaluate CNN performance in the Art Media

Classification (AMC) context and to demonstrate

that AMC represents a problem in the accuracy of

the classifier, being an area of opportunity in the

development of CNN.

2) Creation of the Art Media Dataset

(ArtMD), used for training and evaluating the

classification model.

The dataset combines digitized artworks

sourced from diverse repositories, including

the Kaggle website, the WikiArt database, and

institutional archives from the Prado National and

the Louvre National Museum. The proposal can

be considered a standard for evaluating CNN

models in AMC.

3) Evaluation of three state-of-the-art CNN

models in AMC highlights that accurate inferences

can be drawn for most classes of art media, with a

notable finding that Drawing and Engraving exhibit

a strong relationship with each other.

4) Conducting additional experiments by

removing Drawing and Engraving, which

accentuates a slight relationship with the Painting

class across all remaining classes (Iconography,

Sculpture, and Engraving).

Furthermore, a high relationship is observed

between the predicted class and the original

label for Iconography and Sculpture classes.

These relationship effects can be seen in these

experiments for all CNN models, as presented in

the Experiments and Results section. This article

unfolds as follows: Section 2 briefly overviews the

work related to AMC.

Section 3 delves into the materials and

methods. Section 4 contains experimental details,

presents results, and analyzes the classification

outcomes. We showcase the accuracy and

interclass relationships of the devised image

classifiers, which remain unexplored in the current

state-of-the-art. Finally, in Section 5, we end

the paper with some conclusions and ideas

for future work.

2 Related Work

Computer vision has become an intriguing

approach for recognizing and categorizing objects

across various applications. It is an auxiliary tool

that mimics human visual perception, opening

doors to various practical applications. One

of these applications pertains to safeguarding

data against adversarial attacks. Deep Genetic

Programming (DGP) employs a hierarchical

structure inspired by the brain’s behavior to

extract image features and explore the transfer of

adversarial attacks within artwork databases.
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(a) (b) (c)

(d) (e)

Fig. 2. Art Image training set exhibits the five art

categories: (a) Drawings produced using a pencil,

pen, or similar tools on paper or another medium; (b)

Engravings, images crafted through cutting or etching

into a surface; (c) Iconography, encompassing religious

images or symbols; (d) Paintings, artworks generated by

applying pigments onto a surface; and (e) Sculptures,

representing three-dimensional art forms shaped or

modeled from materials to achieve a specific form

In this context, the application focuses on

adversarial attacks in categorization [20]. The

paper [11] presents a comparative study on the

impact of these attacks within the art genre

categorization, involving feature analysis and

testing with four Convolutional Neural Networks

(AlexNet, VGG, ResNet, ResNet101) alongside

brain-inspired programming.

Deep learning algorithms have significantly

advanced image classification, particularly in

[18], where pre-trained networks like VGG16,

ResNet18, ResNet50, GoogleNet, MobileNet, and

AlexNet are utilized on the Best Artworks of all

Time dataset.

After adjusting training parameters, the study

selects the best model, finding that ResNet50

achieves the highest accuracy among all other

deep networks.

In [15], the focus shifts to style classification

using the Painter by Numbers dataset,

encompassing five classes: impressionism,

realism, expressionism, post-impressionism, and

romanticism. The model is based on a pre-trained

ResNet architecture from the ImageNet dataset

and is refined by different transformations, such

as random affine transform, crop, flip, color

fluctuations and normalization.

Additionally, the papers [6, 5] explore further the

correlation between feature maps, which effectively

describe the texture of the images. These

correlations are transformed into style vectors,

surpassing the performance of CNN features from

fully connected layers and other state-of-the-art

deep representations.

Furthermore, the introduction of inter-layer

correlations is proposed to enhance classification

efficiency. In [21], a novel approach is presented

to improve the classification accuracy of fine

art paintings. This approach combines transfer

learning with subregion classification, utilizing the

weighted sum of individual patch classifications to

obtain the final statistical label for a given painting.

The method offers computational efficiency and

is validated using standard artwork classification

datasets with six pre-trained CNN models. Further,

[1] employs two machine learning algorithms on

an artwork dataset to demonstrate that features

derived from the artwork play a significant role in

accurate genre classification.

These features encompass information about

the nationality of the artists and the era in

which they worked. Finally, in [9], VGG19

and ResNet50 are applied to classify artworks

based on their style. The study compares their

performance in recognizing underlying features,

including aesthetic elements.

The dataset is derived from The Best Artworks

in the World, selecting five subsets from artists

with distinct styles. The results indicate that CNNs

can effectively extract and learn these underlying

features, with VGG19 showing preference for

subjective items and ResNet50 with favoring

objective markers. In summary, our work

has two main differences from related works:

Firstly, this work presents an in-depth study of

CNN models in AMC, which can be used to
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Fig. 3. Process for the reuse of convolutional pre-trained networks (feature-based transfer learning)

understand the difficulties in this task and find

new alternatives to improve the performance.

Secondly, a detailed analysis of accuracy and class

relationship is presented using a proposed dataset

consisting of the Art Image dataset, the WikiArt

database, and digital artworks from The Louvre

and Prado Museums.

3 Materials and Methods

3.1 Dataset

Information is the paramount element in deep

learning tasks, particularly in the Art Media

Classification (AMC) domain. The Art Image

dataset [20] assumes significance. This

dataset includes training and validation images

sourced from the Kaggle website’s repository of

digitized artworks.

The dataset contains five art media categories:

Drawing, Painting, Iconography, Engraving, and

Sculpture. We opted to formulate the Art

Media Dataset (ArtMD)1, as illustrated in Fig. 1.

This decision was prompted by the existence

of corrupted or preprocessed images within the

original dataset.

1github.com/JanManuell/Art-Media-Classification---Dataset.git

The dataset consists of the same five classes,

each comprising 850 images for training and

180 for validation, originating from the Art Image

dataset. For the test set, 180 images per category

were curated from the WikiArt database and digital

artworks from the Louvre National Museum2 for

Painting and the Prado National Museum3 for

Engraving. A notable characteristic of this dataset

is the RGB format, each with a size of 224×224,

ideal for the input requirements of the proposed

architectures. Fig. 2 showcases a selection of

random images from the training set.

3.2 CNN Architecture and Transfer Learning

Several Convolutional Neural Network (CNN)

architectures are available for addressing

real-world challenges associated with image

classification, detection, and segmentation

[3, 10, 24]. However, each architecture has distinct

advantages and limitations concerning training

and implementation. Choosing the most suitable

architecture involves experimentation and relies

on the specific performance requirements and

intended application.

2collections.louvre.fr/en/
3www.museodelprado.es/coleccion/obras-de-arte
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3. Model Evaluation

– Training and validation of the model.

– Model visualization.

– Model selection.

– Model tuning.

– Model testing and updating.

2. Data

preparation

1. Dataset

(Input)

Fig. 4. Process to improve the classification model

When trading with limited datasets in deep

learning, Transfer Learning emerges as a

popular approach [4]. The idea behind Transfer

Learning is that a Convolutional Neural Network

(CNN) previously trained on a large and diverse

dataset, such as ImageNet, has already acquired

knowledge about general and useful features

present in the images, such as edges, textures,

and shapes.

These features can be reused in a specific

task without the need to train a network from

scratch. The CNN architecture proposed contains

two elements: the feature extraction stage and the

classification stage. Feature extraction involves the

use of previously learned representations during

the original training.

The pre-trained network is taken in this stage,

and the output layers designed for the original task

are removed. The convolutional layers in charge of

feature extraction are retained, which will process

the images of the new task.

Then, in the classification stage, additional

layers, such as fully connected and output layers,

are added at the end of the network to adapt

it to the new features of the specific dataset

(feature-based transfer learning). After that, the

complete network is trained with the dataset, and

its performance is evaluated using task-relevant

metrics, as shown in Fig. 3.

3.3 Improving Model Classification

The proposed methodology for improving the

learning model’s performance can be summarized

in three key stages. In the first stage, the

integration of the dataset is carried out.

It is essential that this dataset presents a

balance between classes and contains images

representative of the problem being addressed. In

the second stage, the images are processed. The

pixel values are normalized to ensure that the

model converges efficiently during training. The

third stage focuses on model validation. In this

stage, the training parameters are adjusted and

updated, allowing the learning model to be

retrained to perform better, as shown in Fig. 4.

3.3.1 Model Evaluation

The model’s classification accuracy improvement

process involves iterative testing, selecting

initial training parameters, and automatic

feature extraction through optimal kernel filters.

This enables subsequent model adjustments.

Evaluation relies on Accuracy, measuring the

percentage of correct predictions, while the

confusion matrix, an N×N table (N being

the number of classes), analyzes patterns of

prediction errors by revealing the relationship

between predicted and actual labels.

3.3.2 Network Training and Parameter Settings

The models are implemented using the Python

programming language and the Keras API with

Tensorflow as the backend. The training

was conducted utilizing an NVIDIA Tesla K80

GPU within the Google Colaboratory4 (Colab)

environment. Colab’s GPU, a graphics processor

in the system, accelerates the result epoch.

4colab.research.google.com/
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Table 1. Training parameters of the proposed model

Hyperparameter Value

Learning rate 0.0001

Minibatch 16 or 32

Loss function ’categorical crossentropy’

Metrics ’acc’,’loss’

Epochs 500

Optimizer Adam

Callbacks API

ModelCheckpoint
Monitor = ‘val loss’, save best only = True,

mode=‘min’

EarlyStopping
Monitor = ‘val acc’, patience = 15,

mode = ‘max’

CVLogger ‘model history.csv’, append = True

ReduceLROnPlateau
Monitor = ‘val los’, factor=0.2,

patience=10, min lr = 0.001

Fig. 5. Workflow to analyze the performance of CNNs

and the relationship between classes

Notably, Colab determines itself by offering free

GPU and TPU support during runtime, extending

up to 12 hours in some instances, unlike other

cloud systems. The base architectures used are

the VGG16, ResNet50, and Xception networks,

renowned for their early success in large-scale

visual recognition challenges such as ILSVRC [24].

Before training each CNN, it is essential to

define the loss function-indicating how the network

measures its performance on the training data and

guides itself in the desired direction (also known as

the objective function) and the optimizer-dictating

how the network updates itself based on the

observed data and its loss function.

These parameters control the adjustments to

the network weights during training. Additionally,

regularization techniques, including DropOut

(DO) [25], Data Augmentation [19], and Batch

Normalization (BN) [23], are incorporated.

A Callback, serving as an object capable of

executing actions at different stages of training

(e.g., ModelCheckpoint for saving the Keras model,

EarlyStopping to halt training when a metric

plateau, CSVLogger for logging epoch results in

a CSV file, and ReduceLROnPlateau to decrease

learning rate on metric stagnation), is integrated.

This holistic approach yields a learning model

capable of predicting art media in dataset (test)

images with enhanced Accuracy. The training

parameters for the proposed models are detailed

in Table 1.

4 Experiments and Results

In a previous study [8], three CNN architectures

were evaluated for classifying art media,

demonstrating the robustness of CNN learning

models with a focus on transfer learning. This

current work builds on those results, and a detailed

evaluation of the same architectures in the context

of AMC is performed. The main objective is to

address the challenges when employing CNNs

with transfer learning in this domain, in addition

to analyzing the relationship between ArtMD

classes to understand the poor classification

performance and how the dataset influences the

learning process of CNNs. The workflow for the

proposed experimental study is depicted in Fig. 5.

As described earlier, the learning models are built

upon three foundational architectures: VGG16,

ResNet50, and Xception. The models are trained

using the ArtMD, incorporating images from the

Kaggle website, WikiArt database, and digital

artworks sourced from the Louvre Museum in

France and the Prado Museum in Spain.
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Table 2. Overview of the classification model performance on the Art Media Dataset [8]

Setup 1: Pre-trained CNN base+Dense Classifier (GlobalAveragePooling2D(GAveP2D)+DO(0.2))

CNN Params [M] Epoch Time [min] loss acc val loss val acc test loss test acc

VGG16 14.7 91 (90) 173 0.5983 0.7832 0.5699 0.7868 0.8017 0.6911

ResNet50 23.6 50 (49) 84 1.2745 0.4981 1.2295 0.5335 1.5442 0.4122

Xception 20.8 64 (64) 136 0.2920 0.8927 0.3470 0.8761 0.6792 0.7444

Setup 2: Pre-trained CNN base+Dense Classifier (Dense(128)+D0(0.4)+Dense(64)+DO(0.2))

CNN Params [M] Epoch Time [min] loss acc val loss val acc test loss test acc

VGG16 17.9 30 (14) 89 0.3313 0.8707 0.4026 0.8527 0.7551 0.7544

ResNet50 36.4 51 (47) 107 1.3590 0.3860 1.2926 0.4275 1.4392 0.3822

Xception 33.7 25 (15) 44 0.3437 0.8654 0.3614 0.8862 0.7967 0.7422

Setup 3: Pre-trained CNN base+Dense Classifier (GAveP2D+Dense(64)+BN()+DO(0.4)+Dense(64)+BN()+DO(0.5))

CNN Params [M] Epoch Time [min] loss acc val loss val acc test loss test acc

ResNet50 23.7 50 (40) 100 1.0438 0.6024 0.8845 0.6786 1.3535 0.5422

Table 3. Performance of classification models (Only four classes)

Setup 4 (Engraving class was removed): Pre-trained CNN base+Dense Classifier (Dense(128)+DO(0.3)+Dense(64)+D0(0.2))

CNN Params [M] Epoch Time [min] loss acc val loss val acc test loss test acc

VGG16 17.9 35 (18) 57 0.1422 0.9524 0.3070 0.8991 0.6550 0.8208

ResNet50 36.4 26 (4) 68 0.1806 0.9351 0.2454 0.9304 0.7702 0.8514

Xception 33.7 27 (14) 68 0.1318 0.9548 0.2615 0.9056 0.6025 0.8278

Setup 5 (Drawing class was removed): Pre-trained CNN base+Dense Classifier (Dense(128)+DO(0.3)+Dense(64)+D0(0.2))

CNN Params [M] Epoch Time [min] loss acc val loss val acc test loss test acc

VGG16 17.9 29 (19) 73 0.0696 0.9747 0.1412 0.9631 0.6434 0.8375

ResNet50 36.4 26 (4) 64 0.1147 0.9649 0.1195 0.9645 0.6549 0.8514

Xception 33.7 17 (4) 36 0.1549 0.9461 0.1343 0.9597 0.4589 0.8611

4.1 Classification Performance Evaluation

Table 2 illustrates a comparison between the

reference models’ accuracy and loss across

different datasets (training, validation, and test) and

the proposed setups to the base structure.

This initial investigation delves into the CNNs’

performance concerning each dataset class.

Notably, the Xception model excels, achieving the

highest classification accuracy of 74% in the first

setup. Conversely, the VGG16 model attains

its peak performance with 75% accuracy in the

second setup.

The ResNet50 model exhibits a lower accuracy

in the test set compared to the training and

validation sets. In a third setup focusing on

enhancing classification performance through

the dense classifier, the ResNet50 model

demonstrates acceptable performance with

an accuracy of 54%.

Furthermore, this proposed approach features

a reduced number of training parameters

compared to its predecessor. The accuracy

of the proposed models, in particular, maintains

homogeneity when training with the training and

validation sets. This is expected because there is

a control to avoid model overfitting.

The proposed regularization methods and

Callbacks are integrated into the architecture

to eliminate overfitting to monitor the learning

process. With the test information, the base

models achieve an accuracy below the training and

validation set.

Interestingly, the models predict images (test)

that have never been used for training, meeting the

goal of generalization of knowledge in CNNs, but

not enough to achieve the optimal performances

reported in classification tasks. Fig. 6a, 6d and 6g

show the confusion matrix for the test set (with five

classes) in the three models.
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(a) VGG16 - Five Classes (b) VGG16 - No Engraving Class (c) VGG16 - No Drawing Class

(d) ResNet50 - Five Classes (e) ResNet50 - No Engraving Class (f) ResNet50 - No Drawing Class

(g) Xception - Five Classes (h) Xception - No Engraving Class (i) Xception - No Drawing Class

Fig. 6. Confusion matrix for the Art Media Dataset (Test)

As illustrated, the Iconography class has a

high classification performance by the VGG16 and

Xception model (177 and 176 images correctly

classified). Also, the Xception model improves

classification performance with respect to the

Sculpture class (162 images correctly classified).

In both cases (Iconography and Sculpture) with

a classification performance above 90%. Some

categories share similarities in color, composition,

and texture. Therefore, misclassification errors in

the three CNN models, such as the Drawing and

Engraving class, are common. On the other hand,

the Painting class shows a classification rate of

about 95 images in the three CNN models.
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TOP1 TOP2 TOP3 TOP4

Painting Drawing Iconography Sculpture Engraving

Drawing Engraving Painting Iconography Sculpture

Engraving Drawing Sculpture Painting Iconography

Sculpture Iconography Drawing Painting Engraving

Iconography Painting Engraving Sculpture Drawing

Very high relationship                        High relationship

Regular relationship                           Low relationship

Very low relationship                         No relationship

Fig. 7. Summary of the class relationship effect in the CNN models using ArtMD

This means that the class is highly connected

with the other classes and that it is difficult for CNN

to predict which category it belongs to.

4.2 Classes Relationship Effects in the
CNN Models

The relationship between classes refers to the

similarity between the characteristics of each class,

which can confuse CNN models [13]. In addition,

errors in the confusion matrix can occur for various

reasons, such as the quality and quantity of training

data, the complexity of the classification problem,

or the suitability of the learning algorithm used.

Therefore, it is essential to analyze further

the nature of the errors and the dataset’s

characteristics to understand why the three CNN

models are making errors and to determine if there

is a real relationship between classes or if they are

due to other causes. To get an idea of which class

(Drawing or Engraving) has fewer characteristics in

common, it is proposed to modify the dataset to

only four classes.

This involves modifying the dense classifier

stage setup of the three models (VGG16,

ResNet50, and Xception): Dense(128) + DO(0.3)

+ Dense(64) + DO(0.2) + Dense(4). In the first

additional study (setup 4), the Engraving class was

removed, increasing the accuracy of the VGG16,

ResNet50, and Xception models, reaching a top

accuracy of 85% (ResNet50).

In the second study (setup 5), the Drawing class

was removed, and a similar behavior was obtained

with a maximum accuracy of 86% (Xception). It

should be noted that this increase in accuracy was

mainly observed in the test set, while in the training

and validation sets, top accuracy exceeded 90%,

as detailed in Table 3.

The confusion matrices shown in Figures 6b-c,

6e-6f, and 6h-6i reveal that three of the four

classes (Drawing or Engraving, Iconography, and

Sculpture) have a classification performance above

90% in the ResNet50 and Xception models in

setup 4 and setup 5.

Furthermore, it is noted that in all three CNN

models, the Painting class is highly related to the

other categories, as they share characteristics of

style, period, and techniques. This suggests that

the main challenge lies in the complexity of the field

of study, particularly in the Drawing and Engraving

classes and the Painting class.

The summary of the three CNN models yields

the following Fig. 7 In which we observe that

the Drawing class presents the most problems

for the classification task, with two (Painting and

Engraving) of the four remaining classes. The

Engraving class shows a very high relationship with

the Drawing class. As for the Sculpture class, it has

a shallow relationship with the Iconography class.

The class with minor problems is the Iconography

class, achieving almost null relationships.
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The color selection was made based on

the miss-classification in the three CNN models:

(125 < Very high), (100 < High < 125), (75 <

Regular < 100), (50 < Low < 75), (15 <

Very low < 50), and (No relationship < 15).

In the setup and implementation of the network,

it was decided to use a function of the Keras

library, preprocess input, which allows processing

the images with the same characteristics as the

CNN pre-trained with the ImageNet database.

The function is only applied to the ResNet50

architecture due to its low performance.

5 Conclusion and Future Work

This paper proposes an evaluation and

performance analysis of three different CNNs

applied to Art Media Classification (AMC) in order

to answer the question of what challenges arise

in AMC using CNNs with transfer learning. The

features previously obtained in training the CNNs

allow improving the accuracy of each learning

model, without the need to start from scratch.

Given the need to evaluate the learning model,

the Art Media Dataset (ArtMD) was introduced.

The dataset includes the art classes: Drawing,

Engraving, Iconography, Painting, and Sculpture.

Initially, the VGG16 model obtained the best

accuracy with 75%, but when analyzing that

the main challenge lies in the dataset and that

the CNNs have a difficult field of study, a new

configuration is proposed.

Instead of using five classes, it was decided

to evaluate only four (Drawing or Engraving,

Iconography, Painting, and Sculpture). Therefore,

the three proposed models now obtain a top

accuracy of 86%. These experiments allow us

to analyze miss-classification and discuss the

relationship effects in the three CNN models to

understand the artwork’s composition.

The results show that all the tested CNNs

present a high relationship in the classification of

Painting due to characteristics of style, period,

etc., followed by the relationship between classes

of Drawing and Engraving due to the similarities

of both classes. Separately, both classes are

unrelated and have a classification performance

above 90%.

In the case of Iconography and Sculpture (with

low or no relationship), it can be inferred that

any model will be able to perform a correct

classification. In our experimental study, we

applied Data Augmentation, DropOut, and Batch

Normalization to the dataset to mitigate the

overfitting of CNNs.

As future work, we will design a classification

system based on the results obtained in this

research. To achieve this, a more detailed analysis

of different styles of artwork will be carried out

to extract additional information that reduces the

class relationship effect.

Furthermore, we propose to use wavelet

analysis as a preprocessing module to obtain

spectral information and improve the accuracy

of the proposed CNN architectures. Finally,

the results can be used to enhance the design

of image classification systems applied in other

areas, such as medical, surveillance, aerial

robotics, and automation.
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