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Abstract. In this paper, the Subtractive Threshold 

Associative Classifier (STAC), a novel supervised 
machine learning model, is presented. The main 
contribution of the proposed model is to have the 
capability to adequately deal with medical dataset for the 
pre-diagnosis of respiratory disease and class 
imbalance data complexity without applying any other 
pre-processing technique, obtained competitive results. 
Furthermore, the proposed algorithm is interpretable and 
transparent, since the reasons why a test pattern was 
classified as belonging to a specific class. The 
experimental results were validated with the purpose of 
finding possible significant differences in performance; 
For this, statistical tests were used. It is necessary to 
emphasize that the experimental tests carried out allow 
us to verify that the novel proposed algorithm is 
competitive against the most used algorithms in the state 
of the art. 
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1 Introduction 

Early detection of diseases has been of utmost 
importance in recent years, due to the different 
benefits that can impact society, such as 
increasing the chances of survival in patients 
suffering from potentially fatal diseases [1]. 
Currently, the research carried out in the pre-
diagnosis of diseases is notably relevant, 
specifically with great interest in minimizing errors 
in the early detection of lung diseases; this, due to 

the different benefits, such as increasing survival 
in patients, achieving a better recovery thanks to 
detection in a premature phase of the disease, 
implementing better clinical management of the 
patient, adopting public health and controlling 
possible outbreaks [1]. 

Recently, machine learning techniques applied 
to the field of medicine have become an 
increasingly important area of research at a global 
level, promoting the frequent emergence in the 
literature of works related to the development of 
novel and advanced models specialized in the pre-
diagnosis of diseases, which makes it an active 
research topic [1]. 

A very important aspect related to medical pre-
diagnosis of diseases is that most datasets related 
to this type of problems are imbalanced, which is 
not favorable to the pre-diagnosis of diseases 
using machine learning algorithms [2]. According 
to the National Cancer Institute of the US National 
Institutes of Health [3] respiratory diseases or lung 
diseases are pathological conditions that affect the 
lungs and other parts of the respiratory system. 

There are two types of respiratory diseases [4]: 
infectious and chronic, which range from mild 
symptoms, such as the common cold, flu and 
pharyngitis, to life-threatening diseases such as 
pneumonia, pulmonary embolism, tuberculosis, 
asthma, lung cancer, pulmonary fibrosis, chronic 
obstructive pulmonary disease (COPD) and severe 
acute respiratory syndromes, such as COVID-19 
disease [5]. 

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1077–1090
doi: 10.13053/CyS-28-3-4961

ISSN 2007-9737



According to the Forum of International 
Respiratory Societies (FIRS) and data from the 
World Health Organization (WHO), respiratory 
diseases are among the most important causes of 
death and disability worldwide [4, 6]. in 2019, 
respiratory diseases were three of the top ten 
causes of death, causing more than 8 million 
deaths annually [6]. COVID-19 pandemic that 
began in 2020 has affected around 400 million 
people until 2022, claiming the lives of more than 6 
million people worldwide [7], and in Mexico has left 
more than 320 thousand dead in a period of two 
years [7], making it the main cause of death 
nationwide during the first half of the year. of the 
year 2021 [8]. 

On the other hand, the diagnosis of respiratory 
diseases is usually made using different methods, 
both invasive and non-invasive; for example, one 
of the most common is through computer-aided 
diagnosis (CAD). Some of the most frequent 
techniques used within CAD to diagnose 
respiratory diseases are: chest x-ray, computed 
tomography and magnetic resonance [9]. 

The diagnostic methods presented in the 
literature have disadvantages and limitations, such 
as: special equipment, highly trained personnel, 
financing, and specialized studies, causing 
negative results when implementing these 
techniques in the diagnosis of diseases. Therefore, 
it is necessary to continue researching new 
methods or technologies that help make a better 
early diagnosis [10]. 

This is why machine learning techniques 
applied to medicine have become an increasingly 
important area of research around the world, as 
well as the application and development of novel 
models for the pre-diagnosis of diseases, which is 
a relevant research field [2, 11, 10]. 

On the other hand, the No Free Lunch theorem 
[12] proves and establishes that there is no 
classifier that is the best on any kind of dataset. 

Given that associative models have been 
shown to be effective and efficient in achieving this 
minimization of errors, in the present research 
work a novel specialized classification machine 
learning model is proposed for the pre-diagnosis of 
respiratory diseases, called Subtractive Threshold 
Associative Classifier (STAC). The experimental 
tests carried out with the STAC allow us to verify 

that the new model is competitive in the state of 
the art. 

The paper is organized in the following manner. 
Section 2 presents the related works, where a brief 
description of the different works published related 
to pre-diagnosis of respiratory diseases using 
machine learning is given. On the other hand, 
section 3 presents a brief description of the 
different datasets and algorithms used. In the 
section 4 some materials and methods are 
presented, highlighting the theoretical concepts 
that will support this work. 

Likewise, the proposal of this work is addressed 
in section 5, and section 6 shows the results 
achieved from the experimental phase to evaluate 
the viability of the new model; Finally, conclusions 
and proposals for future work are presented in 
section 7. 

2 Related Works 

Recently, the researches focused on the pre-
diagnosis of respiratory diseases has gained 
momentum worldwide, with broad interest in 
improving the early detection of respiratory 
diseases. Currently, to make this type of diagnosis 
in respiratory diseases, different methods are 
applied, both invasive and non-invasive. Some of 
the most common methods are computer-aided 
diagnosis (CAD), pulmonary function tests (such 
as spirometry, lung volume, gas diffusion, and 
bronchoscopy), microbiological diagnoses, and 
molecular biology-based diagnoses [10, 13]. 

Within the state of the art, several works have 
addressed the topic of pre-diagnosis of respiratory 
diseases applying Machine Learning techniques. 

Maleki et al. [14] addressed the pre-diagnosis 
of lung cancer, one of the most common diseases 
among humans worldwide. For the classification 
task, the authors use general data referring to 
patients suffering from lung cancer. The dataset 
under consideration for the study of this research 
is made up of 100 patterns with 23 features, which 
describe information about the patients. Finally, in 
the classification process, in this case used to 
diagnose lung cancer, the kNN algorithm is 
applied, which the model reaches an accuracy 
equal to 1. 
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On the other hand, Spathis et al. [15] studied 
the prevention, diagnosis and early detection of 
respiratory diseases, such as asthma and chronic 
obstructive pulmonary disease (COPD). The 
authors carried out a comparative study applying 
different algorithms, such as: Naïve Bayes, logistic 
regression, multilayer perceptron neural networks 
(MLP), support vector machines (SVM), near 
neighbors (kNN), decision trees, and Random 
Forest. As a result of the comparative analysis, it 
was observed that the best classification algorithm 
for diagnosing asthma and COPD is the random 
forest algorithm, which obtained the highest 
accuracy values. 

In the work presented by Cardoso et al. [16] 
proposed a new methodology to diagnose 
interstitial lung disease (ILD) obtained better 
results in diagnosis over the related works of this 
art. The authors applied feature extraction 
techniques to reduce dimensionality, such as 
Principal Component Analysis (PCA) and linear 
discriminant analysis applying models as SVM, 
kNN, and feedforward deep neural network, which 
reached the best performances. 

Finkelstein et al. [17] used three machine 
learning algorithms (Naïve Bayes, adaptive 
Bayesian network, and support vector machines) 
to perform a comparative analysis on the early 
detection of exacerbations in adult patients with 
asthma. The models reached excellent 
performance at the metrics sensitivity 
and specificity. 

Amaral et al. [18] developed a medical decision 
support system to simplify clinical use as well as 
improve the diagnosis of airway obstruction in 
patients suffering from asthma. The comparative 
study used the principal component analysis (PCA) 
technique to try to improve classification 
performance. 

However, based on the results obtained, it was 
concluded that the use of dimensionality reduction 
does not significantly benefit the performance of 
the algorithms in this particular case. It is shown 
that the best algorithm to diagnose airway 
obstruction in patients with asthma is the kNN 
algorithm with a value of k=1 and the AdaBoost 
classifier, which allow sick patients to be classified 
with outstanding performance. 

With the aim of increasing the survival rate in 
patients suffering from lung cancer, Radhika et al. 

[19] propose to diagnose lung cancer early in 
affected patients using: Naïve Bayes, Support 
Vector Machines (SVM) and logistic regression. 

In another trend, novel machine learning 
techniques have recently emerged, which work 
adequately using images as input information, 
easily outperforming other algorithms in this type of 
tasks [20]. These techniques are called deep 
learning (Deep Learning) or convolutional neural 
networks (CNN). 

For example, Xiong et al. [21] proposed a 
specialized CNN model to recognize 
Mycobacterium tuberculosis using tissue samples 
treated with acid-fast staining, where after the 
experiments carried out, the new proposed CNN 
model achieved sensitivity values of 97.94% and 
specificity of 83.65%. 

Another example under the same group of 
algorithms is Christe et al. [22] presenting a study 
to evaluate the performance of a new computer-
aided diagnosis system based on a convolutional 
neural network (CNN) for automatic classification 
of high-resolution computed tomography images 
into four radiological diagnostic categories. 
Likewise, there are related works where 
techniques related to deep learning are applied to 
pre-diagnose patients suffering from respiratory 
diseases of COVID-19 or pneumonia [11]. 

Finally, within the related literature there are 
works where pulmonary acoustic signals from 
patients' thoracic ultrasound have been used, in 
order to make diagnoses of diseases linked to the 
chest, such as pleural effusion, atelectasis, 
pneumothorax and pneumonia [23]. For example, 
Pham et al. [24] make use of convolutional neural 
networks to detect respiratory diseases from 
recordings of respiratory sounds, using traditional 
machine learning models, such as Support Vector 
Machines (SVM) and Nearest Neighbors 
(kNN) algorithms. 

3 Datasets and Algorithms 

In this section, a brief description of the pattern 
classification algorithm applied in the present work 
and the used datasets related to respiratory pre-
diagnosis diseases are presented. 
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3.1 Datasets Related to Respiratory 
Diseases 

For this work, 12 datasets were selected in three 
different repositories, the Knowledge Extraction 
base on Evolutionary Learning (KEEL) repository 
[25] located at https://sci2s.ugr.es/keel/datasets. 
php, the Machine Learning Repository from the 
University of California at Irvine (UCI) [26] located 
at https://archive.ics.uci.edu/ml/index.php, and 
finally, the Kaggle repository located at https:// 
www.kaggle.com/datasets. Of the 12, 10 datasets 
have an imbalance ratio (IR) greater than 1.5, 
which means have an imbalanced complexity. The 
IR ratio is calculated as the expression 1. 

Detailed information about each of the selected 
datasets is shown in Table 1: 

𝐼𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
. (1) 

On the other hand, the 12 datasets mentioned 
above were selected because they include 
information on the most common respiratory 
diseases [5], such as pneumonia, pulmonary 
embolism, tuberculosis, asthma, lung cancer, 
pulmonary fibrosis, chronic obstructive pulmonary 

disease. (COPD) and severe acute 
respiratory syndromes. 

Post-operative: This dataset comes from a 
study to determine where a patient should be sent 
after post-operative recovery, because 
hypothermia is a major risk post-surgery. 

Thyroid: The task of classifying this dataset is 
to determine whether a given patient is healthy 
(normal) or suffers from hypothyroidism 
or hyperthyroidism. 

Newt-thyroid1 and Newt-thyroid2: Both 
datasets represent an imbalanced version of the 
original Thyroid dataset. In the Newt-thyoid1 set, 
the positive class belongs to the hyperthyroidism 
class, and the patterns of the negative class are 
made up of the patterns of the rest of the classes. 

Thoracic-Surgery: This dataset represents 
patients who underwent major lung resections for 
primary lung cancer between 2007 and 2009 at the 
Thoracic Surgery Center in Wroclaw. 

Lung-Cancer: This dataset describes three 
types of pathological lung cancers. The objective 
of the data set is to classify these three types 
of cancers. 

Survey Lung-Cancer: The classification task of 
this dataset is to detect whether or not a given 

Table 1. Description of the selected datasets 

Datasets Features Patterns IR Classes 

Categorical Numerical 

Post-operative 8 0 90 32.00 3 

Thyroid 0 21 7200 40.10 3 

Newt-thyroid1 5 0 215 5.14 2 

Newt-thyroid2 5 0 215 5.14 2 

Thoracic-Surgery 13 3 470 5.70 2 

Lung-Cancer 0 52 32 1.40 3 

Survey Lung-Cancer 14 1 309 6.90 2 

ACPs Lung Cancer 38 0 901 31.25 4 

Exasens 0 7 80 1.00 2 

Lymphography 3 15 148 40.50 4 

Lymphography-NF 3 15 148 23.60 2 

Primary-tumor 16 1 336 42.00 18 
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patient suffers from lung cancer, based on different 
variables collected from a survey. 

ACPs Lung Cancer: This dataset represents 
information on peptides (amino acid code) and 
anticancer activity in lung cancer cell lines. 

Exasens-COPD: This dataset aims (based on 
demographic information from saliva) to classify 
patients into four classes according to their 
membership: chronic obstructive pulmonary 
disease, COPD or COPD, asthma, respiratory 
infections and completely healthy patients. 

Lymphography: The classification task of this 
dataset is to detect the presence of lymphomas in 
addition to their current status. 

Lymphography-NF: This dataset is a two-class 
only version from the KEEL repository of the 
original Lymphography dataset. In this set, the 
positive class is made up of the “normal” and 
“fibrosis” classes while the negative class is made 
up of the rest of the classes. 

Primary-tumor: This dataset aims to classify 
patients within 21 different classes, according to 
the type of tumor they suffer from. 

3.2 Classification Algorithms 

This section describes the pattern classification 
algorithms proposed to carry out the comparative 
study against the novel model presented in this 
work, which are applied to the datasets described 
in section 3.1. The algorithms presented below 
were selected because they comprise the most 
relevant models in the results table within the state 
of the art on topics related to pattern classification, 
as can be seen in [27, 28, 29]. 

Naîve Bayes [30] is a type of algorithm that 
belongs to probability-based classifiers. This 
classification algorithm is based on Bayes' 
Theorem, specifically considering all independent 
attributes from a probabilistic approach. 

Another classifier used was the kNN or K-
nearest neighbor algorithm [14], specifically the 
1NN and 3NN models. In WEKA, the classifier 
algorithm is called Instance-Based (IBk). 

Multilayer perceptron (MLP) [31] is a well-
known classification algorithm within the literature 
on topics related to Machine Learning. MLP is a 
network composed of artificial neurons (also called 
units) interconnected with each other, forming 
three different types of layers, which are: the input 

layer, the hidden layer and finally the output layer 
(output layer). 

Sequential minimal optimization (SMO) [32] is 
one of the most important and widely used 
optimization algorithms for support vector 
machines (SVM) within the state of the art when 
comparing classifiers. This classifier uses the 
sequential minimal optimization algorithm created 
by John Platt to train support vector machines 
using kernel functions based on linear, polynomial, 
radial basis or sigmoid functions. 

And finally, the classifier C4.5 [33] is a decision 
tree, which is an extension of the ID3 algorithm. 
This type of classifier is highly recognized within 
the state of the art because it is explainable, it is 
based on information theory and its hierarchical 
structure allows us to see how the patterns of a 
data set are classified. 

These algorithms were executed in the WEKA 
software in version 3.8, using the default 
parameters offered by the software. 

4 Associative Memories 

This section includes fundamental concepts of two 
pioneering models of associative memories, 
Steinbuch's Lernmatrix [34] and Willshaw's 
Correlograph [34], due to these models are the 
basis for the proposed model presented in 
section 5. 

An associative memory 𝑴 is a pattern input and 
output system (see equation 2), whose main 
objective is to learn to correctly recover complete 
patterns from input patterns, which can be altered 
with different types of noise (additive, subtractive 
or mixed) [34]: 

𝑥 → 𝑴 → 𝑦. (2) 

There are two types of associative memories. 
Autoassociative memory, which meets the 
following conditions: 𝑥𝜇 = 𝑦𝜇  ∀𝜇 ∈ {1,2, … , 𝑝}. On 
the other hand, the memory is declared to be 
heteroassociative if it holds that 𝑥𝜇 ≠ 𝑦𝜇  ∃𝜇 ∈
{1,2, … , 𝑝} [15]. 

Associative memories are made up of two 
essential phases [15]. 

Learning phase. It consists of creating the 
associative memory (matrix) M that manages to 
store the p associations of the fundamental set. 

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1077–1090
doi: 10.13053/CyS-28-3-4961

Respiratory Disease Pre-Diagnosis through a Novel Pattern Classification Algorithm based ... 1081

ISSN 2007-9737



Recovery phase. It consists of operating the 
associative memory (matrix) M with the objective 
of finding the sufficient conditions to obtain the 
fundamental output pattern 𝑦𝜇 from the 

fundamental input pattern 𝑥𝜇. 

4.1 Steinbuch’s Lernmatrix 

The Steinbuch Lernmatrix is a heteroassociative 
memory, which can function equally as a binary 
pattern classification algorithm if the output 
patterns corresponding to each input pattern are 
correctly chosen. 

4.1.1 Learning Phase 

The learning phase consists of finding a way to 
generate a matrix 𝑴 that stores the information of 

the 𝑝 associations of the fundamental set. The 

process to determine each of the components 𝑚𝒊𝒋 

can be described in two steps [34]. 

1. Each of the components 𝑚𝒊𝒋 of the matrix 𝑴 is 

initialized to zeros. 

2. Each component 𝑚𝒊j is updated according to 

the rule 𝑚𝑖𝑗 + ∆𝑚𝑖𝑗, where: 

∆mij = {

+ε                       if yi
μ

= 1 = xj
μ

,

−ε               if yi
μ

= 1 and xj
μ

= 0,

0                    In any other case,

  (3) 

where each 𝜀 represents any previously selected 
positive constant. 

4.1.2 Recovery Phase 

The recovery or classification phase if used as a 
classifier consists of multiplying the previously 
trained memory 𝑴 with a given unknown input 
vector, with the objective of finding the class to 
which the input vector belongs. 

To carry out the recovery phase, it is necessary 
to calculate the 𝑖-th coordinate of the output vector 
(vector that represents the pattern class), which is 
obtained using the following expression [1, 34]: 

𝑦𝑖
𝜔 = 

{
1   𝑖𝑓   ∑ 𝑚𝑖𝑗 ∙ 𝑥𝑗

𝜔
𝑛

𝑗=1
= ⋁ [∑ 𝑚ℎ𝑗 ∙ 𝑥𝑗

𝜔
𝑛

𝑗=1
]

𝑝

ℎ=1
,

0                                                In any other case.

  
(4) 

4.2 Willshaw’s Correlograph 

The Willshaw’s correlograph is an optical device, 
which can function as an associative memory. This 
associative memory works in the following way. 

4.2.1 Learning Phase 

The Correlograph learning phase is made up of 
two steps [35]. 

1. The associative memory (matrix) 𝑴 filled with 
values equal to zero is created. 

2. It is subsequently updated according to the 
following expression: 

𝑚𝑖𝑗 = {
1               𝑖𝑓             𝑦𝑖

𝜇
= 1 = 𝑥𝑗

𝜇
,

𝑝𝑎𝑠𝑡 𝑣𝑎𝑙𝑢𝑒         any other case.
  (5) 

4.2.2 Recovery Phase 

The retrieval phase consists of presenting the 
previously trained associative memory 𝑴 with an 
input vector 𝑥𝜔 ∈ 𝐴𝑛, 𝐴 = {0,1}. The way in which 
the input vector is presented to the associative 
memory is by making the product of the memory 
(matrix) 𝑴 by the vector 𝑥𝜔. Subsequently, a 
thresholding operation is performed, according to 
the expression shown below [35]: 

𝑦𝑖
𝜔 = {

1    𝑖𝑓    ∑ 𝑚𝑗𝑖 ∙ 𝑥𝑗
𝜔 ≥ 𝑢,

𝑛

𝑗=1

0            𝐼𝑛 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒.

   (6) 

Likewise, 𝑢 is the threshold value, which its 
creators mention that an approximate estimate of 
its value is: log2 𝑛, where n is equal to the 
dimension of the input patterns [35]. 

5 Proposed Algorithm 

The proposed novel pattern classification 
algorithm, named Subtractive threshold 
associative classifier (STAC), belongs to the 
associative approach to pattern classification. Our 
proposed model is mainly based on the two 
pioneering associative memories, the Lernmatrix, 
which was created by Steinbuch, and the 
Correlograph, created by Willshaw. 

In order for out proposed model to be able to 
deal with missing values and mixed data a 
preprocessing is applied to the dataset to resolve 
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this complexity in the data. On the other hand, the 
novel STAC algorithm makes use of an encoder, to 
convert real values to binary strings, as well as a 
mathematical transform. 

The Johnson-Möbius method [36] and the 𝜏[9] 
transform [37] are explained. Johnson-Möbius 
encoder transfers all the values of the dataset with 
the purpose of eliminating negative values, in this 
sense, a sum of the minimum value is made within 
said set; Subsequently, if necessary, a number of 
decimals to be processed is set and, if required, 
the decimals are truncated so that they are 
adjusted to the set number of decimals; 
Afterwards, it is required to scale all the data in the 
set in order to eliminate these values. 

Finally, to build the binary chain, the maximum 
number of the set is taken as a reference to define 
the length of the binary chain, where each real 
number is represented with as many ones as its 
value indicates, preceded by a string of zeros until 
the length is complete. defined. 

On the other hand, the new STAC algorithm 
applies a process to transform the previously 
converted binary strings (using the Johnson-
Möbius binary string encoder). This transformation 
uses a simple but powerful mathematical 

transform, called by the authors, the 𝜏[9] (Tau[9]) 

[37]. The 𝜏[9] transforms each binary component 
into a pair of binary values, based on the 
following expression: 

𝜏[9](1) = (
1
0

), 

𝜏[9](0) = (
0
1

). 

(7) 

The STAC algorithm consists of two phases, a 
learning phase and a retrieval (or 
classification) phase. 

5.1 Learning Phase of STAC 

1. All input patterns are converted to binary 
values using the Johnson-Möbius code. 

2. A 𝜏[9] transform is applied to all the components 
of the input patterns converted in the step 1. 
The Tau[9] transform converts a binary digit into 
a pair of binary digits, according to the 

following: 𝜏[9](1) = (1,0) and 𝜏[9](0) = (0,1).  

3. A one-hot output pattern is associated with 
each input pattern transformed in step 2. 

4. The learning phase of the original Lernmatrix 
is performed in order to obtain the M matrix. 

5.2 Classification Phase of STAC 

1. The unknown input pattern 𝑥𝜔 is converted to 
binary values using the Johnson-Möbius code. 

2. The 𝜏[9] transform (which was detailed in step 
1 in the learning phase) is applied to all the 
components of the pattern converted in the 
step 1. 

3. A value of 𝑢 is obtained, which is calculated 

as follows: 

𝑢 = log2 (log2 𝑛 + √𝑛)3, (8) 

where, n is equal to the dimension of 
input patterns. 

4. Using the 𝑢 value obtained in step 3, the 
recovery phase is performed from the original 
Lernmatrix, but modified according to the 
following expression: 

𝑦𝑖
𝜔 = {

1      𝑖𝑓   ∑ 𝑚𝑖𝑗 ∙ 𝑥𝑗
𝜔

𝑛

𝑗=1

≥ 𝑢𝑚𝑏𝑟𝑎𝑙,

0                        𝐼𝑛 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒,

 

𝑢𝑚𝑏𝑟𝑎𝑙 = (⋁ [∑ 𝑚ℎ𝑗 ∙ 𝑥𝑗
𝜔

𝑛

𝑗=1
]

𝑝

ℎ=1
) − 𝑢. 

(9) 

5. The proportions are voted according to the 
positions in each class corresponding to the 
𝑦𝜔  pattern recovered in step 4, in order to 
obtain the predicted class of the unknown input 
pattern 𝑥𝜔. 

6 Experimental Results and 
Discussion  

This section reports experimental results using the 
proposal classifier STAC against the most relevant 
classifiers of state of art. On the other hands, 
section 6.1 describes the validation method and 
performance metrics. 

Finally, section 6.2 presents classification 
results obtained by the algorithms. 
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6.1 Validation Method 

In this section, we describe the validation method 
used in the experimental stage. 

In order to obtain reliable results when 
measuring the performance of the classifiers in the 
experimentation stage, previously it is necessary to 
have implemented a validation method, which 
divides the original dataset into two sets: a test set 
and a learning set. 

There are many ways to define these datasets, 
the most used and recommended by various 
authors is the k-fold cross-validation method [38]. 
However, because the datasets selected in the 
present research work mostly present class 
imbalance, it was decided to use the stratified 5x2 
fold cross-validation (5x2 scv) method [26, 38], the 
which is widely recommended for imbalanced 
datasets, since they retain approximately the same 
percentage of patterns of each class for each of 
the folds. 

In order to properly compare the classifiers 
executed in the experimental stage, it was 
necessary to apply a performance measure. Since 
the selected datasets present class imbalance, the 
Balanced Accuracy (BA) performance measure 
was used. This metric is recommended for 
imbalanced datasets by reason of it decreases the 
bias between the minority and majority class, thus 
obtaining results that reflect the true capacity of the 
classifiers [39]. 

The Balanced Accuracy metric for k classes is 
calculated as follows: 

𝐵𝐴 =
1

𝑘
∑

𝑇𝑖

𝑁𝑖

𝑘

𝑖=1

, (10) 

where, Ti represents the number of correctly 
classified patterns of each class i, and Ni 
represents the total number of patterns belonging 
to each class i. 

6.2 Classification Results 

Within the experimental phase that will be detailed 
below, two comparative experiments were carried 
out. The first shows the results obtained by the 
classifiers reported within the state of the art and 
the proposed STAC algorithm, which can be seen 
in Table 2, as well as the statistical results of these 
in Table 3 and Table 4. 

The second experiment, shows the results 
obtained by the associative classifiers used as the 
basis for the STAC algorithm (Lernmatrix, 

Correlograph, and LM(𝜏[9]), and the 
proposed model.  

It can be seen from Table 2 that the proposed 
STAC algorithm achieved high performance, 
obtaining the best BA value on six of the twelve 
datasets used. As for example in the data sets: 
PostOperative, Lung-Cancer, ACPs Lung Cancer, 
Lymphography, Lymphography-NF and 
Primary- tumor. 

In favor of our proposal, it can be noted that, in 
most cases, the performance values achieved by 
the proposed STAC classifier are close to the 
highest performances obtained by the other 
classifiers, such is the case of the set of Survey 
Lung-Cancer data, where the STAC algorithm 
obtained a result of 0.761, which is not so far from 
the best performance, with a value of 0.779 
achieved by the MLP classifier. 

Other similar cases occur in the Newt-thyroid1, 
Newt-thyroid2 and Exasens dataset, where the 
proposed model resulted in performance values 
equal to 0.960, 0.969 and 0.902, respectively, very 
similar to the best performances obtained by the 
other classifiers. 

To carry out a comparative analysis with 
greater reliability in the results, the Friedman test 
[7] was used, to demonstrate the existence of 
significant differences in the observed 
performances. 

The proposed STAC model is placed at the first 
place in the ranking, with a value of 2.0417, with 
respect to the remaining 5 algorithms, making it the 

 

Fig. 1. Illustration of the stratified k-fold cross-validation 

method with k=2 
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best model for the classification task described in 
this research work. 

After performing the Friedman test, the null 
hypothesis is rejected with a confidence value of 
95% and a probability value of p = 0.001231, which 
is largely below the level of significance 
established for this research, the which is 𝛼 = 0.05. 
Therefore, the existence of significant differences 

between the different classification algorithms 
is demonstrated. 

Due to the results of the Friedman test, a post-
hoc test was applied, the Holm test [8], the results 
of which can be seen in Table 3. 

The test rejects the hypothesis with a value 
adjusted less than or equal to 0.05. 

Table 2. Results obtained by state-of-the-art classifiers according to the BA measure 

Dataset Naïve 
Bayes 

3-NN MLP SMV C4.5 STAC 

PostOperative 0.321 0.311 0.295 0.328 0.327 0.352 

Thyroid 0.726 0.548 0.784 0.496 0.983 0.724 

Newt-thyroid1 0.988 0.913 0.965 0.745 0.926 0.960 

Newt-thyroid2 0.989 0.909 0.966 0.757 0.904 0.969 

Thoracic-Surgery 0.578 0.508 0.523 0.500 0.511 0.508 

Lung-Cancer 0.569 0.513 0.513 0.506 0.492 0.594 

Survey Lung-Cancer 0.716 0.711 0.779 0.774 0.666 0.761 

ACPs Lung Cancer 0.634 0.610 0.635 0.681 0.250 0.949 

Exasens  COPD 0.875 0.852 0.885 0.820 0.910 0.902 

Lymphography 0.578 0.434 0.491 0.641 0.582 0.867 

Lymphography-NF 0.747 0.498 0.793 0.698 0.598 0.965 

Primary-tumor 0.271 0.230 0.234 0.252 0.233 0.340 

Best BA 3 0 1 0 2 6 

Table 3. Friedman test results 

Algorithm Ranking1 

STAC 2.0417 

Naïve Bayes 2.7500 

MLP 3.0417 

C4.5 4.0000 

SMV 4.1667 

3-NN 5.0000 

1ordered from best to worst 

Table 4. Post-hoc comparison obtained by the Holm test 

i Algo z p Holm Test 

5 3NN 3.873 0.000 0.0033 

4 SMV 2.782 0.005 0.0038 

3 C4.5 2.564 0.010 0.0045 

2 MLP 1.309 0.190 0.0083 

1 NB 0.927 0.353 0.0166 
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Therefore, it is observed that there are 
significant differences between the performances 
obtained by the proposed STAC algorithm and the 
classifiers: 3NN, SVM and C4.5. 

After carrying out the experiments described in 
this section, it is observed that the proposed STAC 
model stood out with excellent results; because it 
significantly outperforms the other algorithms used 
in the state of the art under the same 
classification task. 

In the second experiment, carried out with 
associative classification algorithms, of which the 
proposed STAC algorithm is based. Table 5 shows 
how the new proposed STAC algorithm clearly 

outperforms the other associative classifiers. 
Managing to obtain the best result in 10 of the 12 
data sets used. To carry out a comparative 
analysis with greater reliability in the results, the 
Friedman test [39] was used, to demonstrate the 
existence of significant differences in the 
observed performances. 

Table 6 shows the ranking obtained by the 
Friedman test according to the different associative 
classification algorithms presented. The proposed 
STAC model is placed at the first place in the 
ranking, with a value of 1.25, making it the best 
model for the classification task described in this 
present document. 

Table 5 Results obtained by the associative classifiers 

Dataset CG LM LM(𝝉[𝟗]) STAC 

PostOperative 
0.200 0.318 0.255 

0.352 

Thyroid 
0.000 0.297 0.625 

0.724 

Newt-thyroid1 
0.500 0.629 0.927 

0.960 

Newt-thyroid2 
0.500 0.624 0.961 

0.969 

Thoracic-Surgery 
0.500 0.532 0.517 

0.508 

Lung-Cancer 
0.333 0.386 0.553 

0.594 

Survey Lung-Cancer 
0.500 0.816 0.674 

0.761 

ACPs Lung Cancer 
0.250 0.856 0.941 

0.949 

Exasens-COPD 
0.500 0.601 0.874 

0.902 

Lymphography 
0.250 0.582 0.735 

0.867 

Lymphography-NF 
0.500 0.79 0.814 

0.965 

Primary-tumor 
0.047 0.055 0.282 

0.340 

Best BA 0 2 0 10 

Table 6. Friedman test with the associative classifiers 

Algorithm Ranking 

STAC 1.2500 

LM(𝜏[9]) 2.1667 

Lernmatrix 2.5833 

Correlograph 4.0000 

Table 7. post-hoc by the Holm test on associative classifiers 

i Algo z p Holm 

3 CG 5.217 0.000 0.016 

2 LM 2.529 0.011 0.025 

1 LM(𝜏[9]) 1.739 0.081 0.050 
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After performing the Friedman test, the null 
hypothesis is rejected with a confidence value of 
95% and a probability value of p = 0.000003, which 
is largely below the level of significance 
established for this research, the which is 𝛼 = 0.05. 
Therefore, the existence of significant differences 
between the different associative classifiers 
is demonstrated. 

After performing the experiments described 
using the associative classifiers, it is observed that 
the proposed STAC algorithm stood out with 
competitive results; due to the significant 
differences between the performances obtained by 
the algorithm, obtained in two of the three 
associative classifiers used as a basis for the 
proposed STAC algorithm, under the same 
classification task. 

Therefore, the results obtained support the 
statement that the proposal of the novel STAC 
model is suitable for the pre-diagnosis of the most 
common respiratory diseases. 

7 Conclusion and Future Work 

In the present work, a novel associative algorithm 
for pattern classification, STAC (Subtractive 
Threshold Associative Classifier) designed for the 
pre-diagnosis of respiratory diseases, was 
proposed and presented. 

Likewise, another advantage of the STAC 
classifier is that it is an explainable model; making 
it transparent in its classification process, 
understanding why a pattern is classified to a 
certain class. 

The experimental results carried out in section 
6 point out the outstanding capacity of the 
proposed STAC algorithm, because they surpass 
several of the most used classification algorithms 
in the state of the art regarding the pre-diagnosis 
of respiratory diseases; excelling in exactly 6 of the 
12 datasets used in the experimental phase. 

Furthermore, according to the Friedman test, 
the best classifier in the experiments carried out 
was the STAC algorithm, indicating the presence 
of significant differences, with a probability value of 
p = 0.001230; Likewise, the post-hoc Holm test 
reflects that there is also the presence of significant 
differences in the performance obtained by the 
proposed algorithm and the other classifiers. 

In future work, the intention will be to apply the 
novel STAC algorithm on datasets with different 
approaches, with the aim of evaluating its 
performance and behavior in different diseases or 
even non-medical datasets; likewise, it is proposed 
to compare the STAC algorithm with more state-of-
the-art classifiers. 

Finally, it is planned to prove why the proposed 
threshold works properly, and considerably 
improves the performance of the algorithm STAC. 
With this, it is proposed to consider some more in-
depth analysis on the behavior of the model when 
using different threshold and the one proposed in 
this work. 
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