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Abstract. The automotive manufacturing industry
faces diverse challenges, including designing new parts,
optimizing schedule times, developing aerodynamic car
designs, refining painting processes, and advancing
autonomous driving. The car painting process is a new
optimization area in the computational context due to the
complexity and damage caused by various factors. Our
research focuses on designing a robotic arm with five
degrees of freedom that operates in a two-dimensional
plane and is integrated with metaheuristics for path
optimization. Our methodology consists of defining and
limiting the problem, analyzing requirements, designing
the robotic arm, implementing routes, and conducting
tests. For the design of data instances, the Methodology
proposed by [42] was used in this work. Subsequently,
a pool of perturbation heuristics and an iterated local
search algorithm are used, which allowed us to design
the best combination of heuristics that can provide a
competitive solution to the problem of route design for
the robotic arm in the automobile painting process.
This study includes a comprehensive review of related

work, theoretical concepts, and the application of
metaheuristics. The results highlight the effectiveness
of the proposed heuristics, with the K-OPT heuristic
demonstrating superior performance. Statistical tests
confirm the significance of the differences among the
heuristics. This paper concludes with insights into
future research directions, emphasizing the importance
of safety practices and Industry 4.0 technology in
mitigating health risks associated with the automotive
painting process.

Keywords. Iterated local search, routing
design, heuristics.

1 Introduction

In the automotive manufacturing industry, there are
different problems to solve, such as the design
of new parts, optimization schedule times, new
aerodynamic car designs, painting processes, and
autonomous driving, among others.
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Algorithm 1 Algorithm construction of robotic arm
TSP solution
Require: n ≥ 0, FF ← Fitness Function

1: S ← empty solution
2: route← empty list of size n
3: for i← 0 to n− 1 do
4: route[i]← random value between 0 and n−

1
5: end for
6: S ← set(route)
7: S ← evaluateSolution(S,FF )
8: return S

Algorithm 2 Two swap heuristic (h1)

Require: n ≥ 1, SI ← Initial Solution, FF ←
Fitness Function

1: solutionB← copy(SI)
2: index← random(0,n− 1)
3: index2← random(0,n− 1)
4: value← solutionB.[index2]
5: solutionB.[index2]← solutionB.[index]
6: solutionB.[index]← value
7: solutionB← evaluateSolution(solutionB,FF )
8: return criteria . toReplace(SI, solutionB)

The initial heuristic involves a double swap
mechanism, requiring selecting two cities or nodes.
These chosen cities exchange positions, creating a
novel solution [46]. The algorithm is shown in 2.

Specifically, the painting process is one
of the most common occurrences during car
manufacturing and its use, as it becomes worn
or damaged due to various factors. In the
first case, when it comes to painting a car
from the beginning, it is done with collaborative
robots that work on specific work areas in most
manufacturing companies.

The second case involves handmade workshop
procedures with tools such as a compressor,
airbrush, etc. For task assignment problems
in collaborative robots, different algorithms help
optimize the route and avoid possible collisions
[67]. However, in most workshops, the car
painters do not have performance methodologies
that improve their work.

State of the art in metaheuristics, according to
[23], has been applied to different problems such
as scheduling [11], manufacturing and production,
water management, oil and energy, traffic control,
and among others.

Nevertheless, the actual problems in the
industry are generally oriented to health, water,
housing, education, and electromobility, and
different artificial intelligence techniques can solve
these problems. The most popular methods in
recent research are neural networks [70], deep
Learning [62], meta-learning [22], and others.

Therefore, there is a lot of research in the
state of the art about the comparison of solving
benchmark problems, artificial instances, or any
other kind of problem [12, 27].

With these two contexts, metaheuristics can
help solve industry problems, such as designing
a route for collaborative robots or robots that
work individually [28].

This work proposes a solution applicable to
traditional painting workshops by designing a
robotic arm with five degrees of freedom that can
work in an x and y plane.

Our project aims to help the car painting
process, where prolonged exposure to chemical
paints causes serious human health problems
(see section 3). Our proposal pays in the
following points:

– Design of a robotic arm with five degrees of
freedom adopted in a two-dimensional plane.
The above is because, in the real application, it
is easier and cheaper to implement.

– Integration of metaheuristics to design routes in
the robot and parts.

– Methodology for recognizing parts and
generating an optimized trajectory for your
painting process.

The cost-benefit of the implementation of a
Robotic Arm design and software for automotive
painting processes are important since it covers
the following aspects:
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Algorithm 3 Crossover heuristic (h2)

Require: n ≥ 1, solutionA ← Initial Solution,
FF ← Fitness Function

1: solutionB← copy(solutionA)
2: parent1← solutionA.body
3: n← len(parent1)
4: parent2← sample(range(0,n),n)
5: k ← random(0,n− 1)
6: Index← []
7: for i in range(n) do
8: if i != k then
9: Index . append(i)

10: end if
11: end for
12: son← []
13: for i in range(n) do
14: if i ¿= n - len(Index) then
15: son . append(parent1[Index[i]])
16: else
17: son . append(−1)
18: end if
19: end for
20: f ← []
21: for elem in parent2 do
22: if elem not in son then
23: f . append(elem)
24: end if
25: end for
26: for i in range(n) do
27: if son[i] == -1 then
28: son[i]← f . pop(0)
29: end if
30: end for
31: solutionB← set(son)
32: solutionB← evaluateSolution(solutionB,FF )
33: return criteria . toReplace(SI, solutionB)

– Hardware and Software Acquisition Costs:
The physical implementation of the prototype is
much less expensive than that of a commercial
robotic arm. Likewise, it contains the sensors,
controllers, and materials necessary for its
correct operation.

– Installation and Start-up Costs: The maximum
costs for installation and testing range from $100
to $150 dollars, which makes it a viable option

that is quite competitive with others that cost
around $5,000.

– Use of Optimization Techniques. Optimization
techniques can be used within the complete
painting process to design the routes the robot
must follow, decreasing the cost and time of
this task.

The expected benefits of implementing
the system include labor savings, increased
productivity, reduced waste, improved quality, and
occupational safety. The rest of this article is
structured in 6 sections described below.

An extensive review of relevant literature was
reported in the related works section 2. The theory
section 3 presented main concepts and theoretical
definitions, while the methodology section 5
detailed the procedures used in the research.

The results section 6 showed the findings
obtained from the implemented methodology.
Finally, in the conclusions and future work section
7, an analysis was carried out based on the
results collected throughout the experimentation
with metaheuristics.

2 Related Work

2.1 Car Painting Problem

An important step in the automotive production
system is the aesthetic finish of the vehicle paint,
which changes for the different models and colors
of production and the availability and quantity
of paint ovens. Consequently, the problem of
scheduling and sequencing vehicle models that
minimize the waiting problem in the painting
system arises.

State of the art has addressed different lines
of research for the solution of the vehicle painting
problem: The first focuses on the general aspects
of the problem in the context of painting times
and model sequences and poses the problem
as an optimization system, where Metaheuristic
algorithms solve the scheduling [15]; Secondly,
the research focuses on minimizing the error
corrections in the painting process by studying
the nozzle and stroke size [49]; thirdly, the
literature proposes that the solution lies in the
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Algorithm 4 Nearest neighbor heuristic (h3)

Require: n ≥ 1, solutionA ← Initial Solution,
FF ← Fitness Function, matrix← cost Matrix

1: solutionB← copy . deepcopy(solutionA)
2: parent1← solutionA.body
3: c← random. randint(0, len(parent1)− 1)
4: ic← parent1. index(c)
5: rowt← matrix[c]
6: rowOrderedWithIndex← []
7: for i, value in enumerate(rowt) do
8: rowOrderedWithIndex . append((i, value))
9: end for

10: rowOrderedWithIndex . sort(rowt)
11: orderedIndex← []
12: for index, in rowOrderedWithIndex do
13: orderedIndex . append(index)
14: end for
15: nc← orderedIndex[1]
16: for i, in enumerate(parent1) do
17: if parent1[i] == nc then
18: inc← i
19: break
20: end if
21: end for
22: c1← parent1[ic+ 1]
23: parent1[ic+ 1]← nc
24: parent1[inc]← c1
25: solutionB← set(son)
26: solutionB← evaluateSolution(solutionB,FF )
27: return criteria . toReplace(SI, solutionB)

robot trajectories and the painting sequence,
and generates a new optimization algorithm by
resampling and speed calibration [2, 8].

In another perspective, the painting problem
is manipulated by a set of nodes in the finishing
and painting process network. In the network,
each process configures a certain task; however,
from the point of view of process planning
and optimization, it needs to start from an
initial point [32, 24].

To solve the optimal scheduling problem,
research has adapted the concept of the Voronoi
diagram, which consists of separating the space
around the key points of the painting process.
Consequently, Voronoi diagrams allow the creation
of an environment of efficiency and optimization

that avoids wasting time and speeds up the
coverage of the painting process [55].

2.2 Collaborative Robotic Problem

In an automotive industrial system, one of the
fundamental paradigms is Industry 4.0, where
we highlight the concept of collaborative robotics.
Using graph theory, research has addressed
the issues arising from robot collaboration in a
paint-finishing environment [58].

Accordingly, the robots in the collaborative
network are represented as nodes, whereas the
edges are the process connections between
the robots. Tackling the problems derived from
collaborative robotics through graphs obtains
different benefits: it allows studying the dynamics
of the collaborative network, the distribution
of the nodes and their edge connection,
process synchronization, and coordination of
the primary tasks [59, 57, 66].

To study the dynamics of the collaborative robot
ensemble, the Euler-Lagrange formulation allows
the mathematical modeling of the movements
in the robotic arms. In a general context,
Euler-Lagrange considers the principle of minimum
energy of the event; this approach leads directly to
an optimization in the movements of the painting
and finishing processes of the vehicles [71, 13].

An aspect to highlight of Euler-Lagrange is the
pressure of the dynamic models since it is based
on the minimum action and allows the deterministic
design of electronic controllers that make the
automotive processes more efficient [60, 31].

In comparison, different techniques have
addressed the problem of coordination and
optimization of collaborative robotic networks:
research in the design of controllers that make the
processes in the network more efficient, adaptation
of the small gain theorem, which analyzes the
steady states in the control system under a
linear dynamics approach; application of shrinkage
analysis dedicated to the treatment of nonlinear
control problems [68, 69, 33].

In summary, research in a collaborative robotics
environment considers three elements of its
behavior: simple control, linear control, and
nonlinear control.
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Algorithm 5 K-OPT (h4 and h5)

Require: n ≥ 2, solutionA ← Initial Solution,
FF ← FitnessFunction

1: solutionB← copy(solutionA)
2: son← solutionB.body
3: ind← random. sample(len(son),n)
4: random. shuffle(ind)
5: sonCopy← son[:]
6: for i in range(self.n) do
7: son[ind[i]]← sonCopy[ind[(i+ 1)%n]]
8: end for
9: solutionB← set(son)

10: solutionB← evaluateSolution(solutionB,FF )
11: return criteria.toReplace(SI, solutionB)

Algorithm 6 Iterated Local Search (ILS)

Require: inSol ← Initial Solution , maxI ←
MaxIterations

1: bestSol← inSol
2: currentSol← inSol
3: iteration← 0
4: while iteration < maxI do
5: perturbedS← perturb(currentSol)
6: localOptima← localSearch(perturbedSol)
7: if isImprovement(localOptima,bestSol)

then
8: bestSol← localOptima
9: end if

10: currentSol← diversify(localOptima)
11: iteration← iteration + 1
12: end while
13: return bestSol

The points mentioned above point to
the complexity and diversity of problems
and stochastic systems that collaborative
robotics represents.

2.3 Health Risks During the Car Painting
Process

The industry dedicated to vehicle painting plays a
crucial role in enhancing the aesthetic appeal and
providing protection to automobiles; however, this
process entails significant health risks for workers
exposed to the chemicals involved.

According to the World Health Organization
(WHO), occupational exposure to chemicals found
in paints and solvents affects approximately
11% of workers globally, including those
exposed to organic solvents present in paints
and varnishes [65].

These products often contain volatile organic
compounds (VOCs) such as benzene, toluene,
and xylene, which have been associated with
mutagenic, carcinogenic, and teratogenic effects
[43, 44, 48], as well as neurological disorders
[61, 3, 36]. The International Agency for Research
on Cancer (IARC) has classified some of the
chemical components present in automobile paints
as possible carcinogens [63], with benzene being
linked to the development of leukemia.

Several reports have documented health issues
experienced by automotive industry workers
concerning their exposure to chemicals present
in paints. For instance, Hammond et al. (2005)
[20] report an increase in the incidence of asthma
and chronic obstructive pulmonary disease, as well
as an elevation in allergy-related symptoms such
as eye and nose irritation, sinusitis, cough, and
even heartburn.

Painters using aerosols have been observed to
experience symptoms including excessive tearing,
persistent cough, and short-term memory loss,
along with a higher prevalence of respiratory
symptoms, corneal opacity, and dry skin compared
to the control group [40].

Furthermore, the risk is not confined solely to
exposure to volatile organic compounds (VOCs),
as it can also arise from contact or inhalation
of metals such as cadmium, chromium, and
nickel present in some paints. These metals
can cause acute and chronic poisoning, as well
as an increased risk of cancer [30, 39]. The
primary Chemical Components Found in Paints
Intended for the Automotive Industry and Their
Health Effects are:

1. Cadmium. Acute and chronic poisonings,
accumulation in kidneys, chronic decrement
in renal, pulmonary, and hepatic function,
causing ulcerations and perforations of the
nasal septum, chronic bronchitis, decreased
lung function, pneumonia, and other respiratory

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 803–820
doi: 10.13053/CyS-28-2-5024

Design of Routes for Collaborative Robots in the Automobile Painting Process through ... 807

ISSN 2007-9737



Fig. 1. Robotic arm design for the prototype. Source:
own design

effects [6]. It exhibits impacts on bones, the
respiratory system, the endocrine system, and
the reproductive system [5]. Classified as
carcinogenic to humans [53, 14].

2. Chromium. Allergic reactions and skin rashes,
in addition to nasal irritation and bleeding [14].
Carcinogenic properties, hemolysis, and organ
failure [38]. Genotoxic, toxic to reproduction
and development [17].

Weakening of the immune system, damage
to the kidneys and liver, respiratory problems,
disruption of genetic material, stomach
discomfort and ulcers, and lung cancer
[47, 56, 4].

3. Nickel. Systemic, immunological, neurological,
reproductive, developmental distortion, and
carcinogenic negative effects [9]. Accumulation
in the kidney, inflammation of bronchioles,
alveolar congestion, hyperplasia of alveolar
cells [19].

It may cause dizziness, pulmonary
embolism, and respiratory failure [47]. It
also leads to congenital disabilities, asthma,
chronic bronchitis, heart disorders, and allergic
reactions such as skin rashes.

Associated with various types of lung, nasal,
laryngeal, and prostate cancers. Induce various
side effects, including allergies, cardiovascular
and renal diseases, pulmonary fibrosis, and
lung and nasal cancer. Epigenetic alterations
are observed affecting genome level [16].

4. Benceno. Carcinogenic, causing cancer of
the esophagus, ovaries, testicles, colon, and
kidneys, as well as acute myeloid leukemia [52].
Induces dysbiosis of intestinal microbiota and
metabolic disorders in mice [45, 18].

Additionally, it is associated with atopic
dermatitis, irritant contact dermatitis,
allergic dermatitis, neoplasms, infections,
skin irritation, hypersensitivity, mucosal
irritation, rash, redness, skin swelling,
allergic hypersensitivity reactions, cutaneous
melanoma, non-melanoma skin cancer, dry
skin, itching, rash, red itchy blisters, and burns
[72, 64, 37].

5. Tolueno. Neuronal inhibitor associated
with progressive damage to the central and
peripheral nervous system and memory loss.
It can lead to neurological dysfunction and
hematological damage. It directly affects the
central nervous system, causing euphoria,
confusion, depression, headache, dizziness,
hallucinations, seizures, ataxia, stupor,
and coma [35].

It may cause leukoencephalopathy and
psychosis, as well as behavioral and functional
abnormalities such as decreased memory
capacity, cognitive impairment, and symptoms
resembling depression [50].

6. Xileno. Neurotoxic effects, hepatotoxicity, and
nephrotoxicity, leading to the formation of toxic
intermediate and end products akin to those
of benzene [21].

It may cause nausea, headache, a sense
of ’euphoria,’ dizziness, weakness, irritability,
vomiting, slow reaction time, confusion,
clumsiness, difficulty speaking, loss of
balance, ringing in the ears, drowsiness,
loss of consciousness, and anemia.
Results in fetotoxic effects such as delayed
ossification [7, 26].

The reports above provide a clear and
concerning perspective on the health hazards
workers face exposed to chemicals in paints used
in the automotive industry. These risks range from
acute effects such as skin and respiratory tract
irritation to more severe consequences, including
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Fig. 2. Route design methodology for collaborative
robots in automobile painting (source: own creation)

the development of chronic respiratory diseases
and an increased risk of cancer. Adopting
appropriate safety practices, adequate training,
and using protective equipment are crucial to
minimize these risks and preserve the health of
workers in this industry.

Furthermore, it is relevant to develop strategies
to reduce human contact, and one of these
strategies is introducing industry 4.0 technology,
which enables remote execution of activities.

3 Theory

3.1 Heuristics and Metaheuristics

In our study, we employed the approach outlined
by Ortiz et al. [41], which employs various
frameworks for managing Constraint Satisfaction
Problems (CSP). An initial solution is generated,
refined, and applied perturbative heuristics.

A simple definition of CSP can be found in
[42, 41], defined with V = v1, v2, . . . , vn a set of
variables, W = w1,w2, . . . ,wm a set of values of
each variable and R = rv1, rv2, . . . , rvn a set of
restrictions for each variable given.

3.1.1 Heuristics

A simple definition given by [51] is ”Heuristic
approach is based on trial and error to find
or discover solutions to the problems”. Two
types of heuristics are most commonly used
in metaheuristics: construction and perturbation.
According to those mentioned earlier, we define
construction and perturbative heuristics used in

this work. According to [29], two main techniques
for building Traveling Salesman Problem (TSP)
solutions are greedy heuristic or aleatory and the
formal definition of TSP can be found in [25]. In this
investigation, the aleatory heuristic was chosen to
make the initial solutions (see Algorithm 1) and five
perturbative heuristics described in algorithms 2, 3.

The second heuristic is the Crossover
heuristic (h2). It necessitates the use of
two solutions. A starting solution (Solution
A) is provided in the initial scenario, and a
second solution (Solution B) is created using a
different heuristic.

An arbitrary cutting point is chosen, where the
first portion from Solution A forms the basis of
the first offspring solution (SS1), complemented by
the second segment from Solution B. The second
offspring solution (SS2) is created by the initial part
of Solution B combined with the latter segment of
Solution A (see Algorithm 3).

The third heuristic, the Nearest Neighbor (h3),
involves selecting a random point from an initial
solution. Subsequently, the heuristic identifies the
city closest to this chosen point (see Algoritmn 4).

The fourth heuristic, known as K-OPT
(h4), operates by choosing three variables
and exchanging their respective values among
themselves. If the exchange is not feasible, the
initial solution is returned. In the TSP, this method
is called K-interchange. Finally, the last heuristic
is 4-OPT (h5): It has the same functionality as
K-swap with k=4.

3.1.2 Metaheuristics

The metaheuristics are used to solve problems
intelligently by choosing the best from a larger
number of available solutions [23]. A metaheuristic
algorithm lets one search for optimal solutions to a
particular problem with some restrictions.

This searching process can involve
some operators such as selection, mutation,
improvement, crossover, and, in specific cases, a
set of rules or mate mathematical equations that
provide a guide during multiple iterations. These
iterations are carried out until the solution found
meets some criterion [23].
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Table 1. Description of cars used for 3D modeling

No. Name Points Length Path

1 AUDI-R8-CAPO-2024 90 93.0
2 AUDI-R8-CARROCERIA-2024 174 175.4
3 AUDI-R8-PARTE TRASERA-2024 78 81.0
4 AUDI-R8-PUERTAS-2024 42 41.0
5 AVEO-SEDAN-CAPO 53 52.0
6 AVEO-SEDAN-CARROCERIA 136 176.0
7 AVEO-SEDAN-PARTE TRASERA 58 57.0
8 AVEO-SEDAN-PUERTAS 28 27.0
9 BUGATTI-CARROCERIA 41 44.0
10 BUGGATI CHIRON-CAPO 35 34.0
11 BUGGATI CHIRON-CARROCERIA 189 215.8
12 BUGGATI CHIRON-PUERTA TRASERA 45 48.0
13 BUGGATI CHIRON-PUERTA 62 61.0
14 CADILLAC ELR-CAPO 48 47.0
15 CADILLAC ELR-CARROCERIA 52 54.0
16 CADILLAC ELR-PUERTA TRASERA 28 27.0
17 CADILLAC ELR-PUERTA 66 68.6
18 camaro-z-28-1969-CAPO 132 131.0
19 camaro-z-28-1969-CARROCERIA 101 104.0
20 camaro-z-28-1969-PUERTA 64 65.0
21 Chevrolet-Camaro-model-CAPO 56 55.0
22 Chevrolet-Camaro-model-CARROCERIA 44 49.0
23 chevrolet-camaro-model-PARTE TRASERA 24 23.0
24 Chevrolet-Camaro-model-PUERTAS 79 81.5
25 DATSUN 1500 PICK UP-CAPO 48 47.0
26 DATSUN 1500 PICK UP-CARROCERIA 66 68.0
27 DATSUN 1500 PICK UP-PUERTA TRASERA 40 39.0
28 DATSUN 1500 PICK UP-PUERTA 41 40.0
29 dodge-charger-1969-CAPO 47 46.0

No. Name Points Length Path

30 dodge-charger-1969-CARROCERIA 165 192.0
31 dodge-charger-1969-PUERTAS 53 54.0
32 FERRARI-CAPO 84 83.0
33 FERRARI-CARROCERIA 250 309.0
34 FERRARI-PUERTAS 38 37.0
35 FORD F150 RAPTOR-CAPO 107 107.0
36 FORD F150 RAPTOR-PUERTA TRASERA 55 54.0
37 FORD F150 RAPTOR-PUERTAS 71 70.0
38 FORD FIESTA MK3-4-CAPO 54 53.0
39 FORD FIESTA MK3-4-CARROCERIA 120 134.0
40 FORD FIESTA MK3-4-PUERTA TRASERA 86 85.4
41 FORD FIESTA MK3-4-PUERTAS 67 66.0
42 FORD GT40 -3-CAPO 53 53.0
43 FORD GT40 -3-CARROCERIA 82 83.6
44 FORD GT40 -3-PUERTAS 103 103.0
45 FORD MUSTANG -3-CAPO 83 82.0
46 FORD MUSTANG -3-CARROCERIA 82 83.0
47 FORD MUSTANG -3-PUERTAS 107 120.0
48 FORD MUSTANG 1965 -4-CAJUELA 36 35.0
49 FORD MUSTANG 1965 -4-CAPO 76 75.0
50 FORD MUSTANG 1965 -4-CARROCERIA 78 77.0
51 FORD MUSTANG 1965 -4-PUERTAS 36 35.0
52 FORD MUSTANG 1967 -4-CAPO 30 29.0
53 FORD MUSTANG 1967 -4-CARROCERIA 64 63.0
54 FORD MUSTANG 1967 -4-PUERTA TRASERA 18 17.0
55 FORD MUSTANG 1967 -4-PUERTAS 34 33.0
56 FORD RANGER -3-CAJUELA 18 17.0
57 FORD RANGER -3-CARROCERIA 84 83.0
58 FORD RANGER -3-PUERTAS 66 69.0

The Iterated Local Search algorithm (ILS) was
used in the experimentation. This metaheuristic
was proposed by Lourenço et al. [34], which
constructs or modifies a solution through an
embedded heuristic. The generated solutions are
better than randomly generated or altered ones.
This algorithm aims to intensify the initial solution
by exploring its neighbors. The ILS algorithm is
depicted in 6, taken from Talbi El-Ghazali [54].

3.2 Car Painting Problem

The car painting problem has had different
variations, and according to [10], the problem
above derives from the Paint Shop Problem for
Words. In a paint shop, cars go through two
painting steps. The first paint step applies a coat
of filler paint, and the second one applies a coat of
base paint depending on the final color of the car.

According to the type of filling, they are divided
into white and black for each car model and each
base color. Each of the two painting steps is
done using separate spray nozzles, which must be
cleaned before a new color can be applied, which
can be expensive.

The above results in the definition of the
Multi-Car Multi-Color Paint Shop Problem, whose
objective is to find a color assignment in the
sequence that minimizes the number of color
changes for the fill paint nozzle and the paint
nozzle base and that also satisfies the color
demand required for the different models [10].

3.3 Trajectory Design in Car Painting Problem

With the previous context, this work proposes the
design of routes for a robotic arm that can execute
within a controlled environment. For our problem,
we consider that a vehicle can be cleared into
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Fig. 3. 3D vehicle hood with mesh (own source)

a w number of pieces. So, each vehicle V has
several parts, each denoted as v0 . . . vw. Each
piece v has a set of points P denoted as p1 . . . pn,
which allows generating a matrix of costs MC and
adjacencies MA.

With the above, we seek to create a
permutation of the P points for each piece v so that
it does not go through both places simultaneously.
The mathematical expression corresponding to the
calculated distance of the points P of each of the
pieces is defined as:

distance =

n−1∑
i=0

dDistancesC[fi][fi+1], (1)

where:

– distance represents the calculated distance.

– dDistancesC[fi][fi+1] represents the distance
between nodes fi and fi+1.

– n is the length of the list f .

3.4 Robotic Arm Design

The arm design has two types of movements:
circular and linear. Each modeled part
was assembled using the Autodesk Inventor
Professional 2023 software.

Using the restricted tools, their function
coincides with the central axes of the cylindrical
figures with which their same axes were joined.

Afterward, a matching function placed each
piece glued to another. Once these assemblies
were in place, the leveling function was used to
overlap the bases of the robotic arm to match the
upper parts at the same point as the fixation tool
to prevent the piece from moving with the other
assemblies. The final prototype can be seen in
Figure 1. This work focuses exclusively on the
development of metaheuristics for designing routes
for the robotic arm; therefore, subsequent research
will explain its design.

4 Methodology

The methodology developed in this work is
described in the next sections.

– Definition and Limitation of the Problem. The
different cars will be chosen and designed in a
CAD sketch in this stage. The type of car and the
number of parts each drawing will include will be
defined. We define the principal parts such as
the roof, doors, bonnet, and bumper.

Subsequently, all completed designs will be
collated to form a database of CAD models. This
would represent steps 1 and 2 shown in figure
2. The cars considered for the database were
selected among the most common models on
the global market, such as Mazda, Ford, etc.

– Requirements Analysis. In Figure 2, steps
3 and 4 refer to the breakdown of the cars in
their different views. Once each car instance
has been obtained, the points of interest will
be assigned to those through which the robotic
arms must pass to paint each piece. With
this information, a database will be made (step
5), which will subsequently be characterized by
instances (step 6).

– Design. In the design phase, the robotic
arms’ routes will be designed to respect all
the restrictions posed in the problem limitation
phase using heuristic construction techniques.
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Table 2. Shapiro Wilks statistics for each heuristic

Heuristic Statistic P-Value

h1 0.721222043 3.54E-09

h2 0.645808816 1.45E-10

h3 0.652767837 1.91E-10

h4 0.660536528 2.60E-10

h5 0.665777683 3.22E-10

– Implementation. Once the routes have been
designed, it will be validated which of them are
feasible to be applied in a simulation (see Figure
2 in step 7 and step 8). A statistical comparison
of the routes built will be made.

– Tests. In this phase, we move on to
applying them either in a simulation or in
a physical prototype. In addition, all tests
and corrections will be made regarding the
path of the robotic arms, either physically or
through simulation.

5 Methodology

The methodology developed in this work is
described in the next sections.

– Definition and Limitation of the Problem. The
different cars will be chosen and designed in a
CAD sketch in this stage. The type of car and the
number of parts each drawing will include will be
defined. We define the principal parts such as
the roof, doors, bonnet, and bumper.

Subsequently, all completed designs will be
collated to form a database of CAD models. This
would represent steps 1 and 2 shown in figure
2. The cars considered for the database were
selected among the most common models on
the global market, such as Mazda, Ford, etc.

– Requirements Analysis. In Figure 2, steps
3 and 4 refer to the breakdown of the cars in
their different views. Once each car instance
has been obtained, the points of interest will
be assigned to those through which the robotic
arms must pass to paint each piece.

With this information, a database will be
made (step 5), which will subsequently be
characterized by instances (step 6).

– Design. In the design phase, the robotic
arms’ routes will be designed to respect all
the restrictions posed in the problem limitation
phase using heuristic construction techniques.

– Implementation. Once the routes have been
designed, it will be validated which of them are
feasible to be applied in a simulation (see Figure
2 in step 7 and step 8). A statistical comparison
of the routes built will be made.

– Tests. In this phase, we move on to applying
them either in a simulation or in a physical
prototype. In addition, all tests and corrections
will be made regarding the path of the robotic
arms, either physically or through simulation.

6 Results

Based on the criteria outlined in sections 3
and 5, the car painting problem demands a
dedicated data structure as presented in [41]. For
this instance set, our approach leaned towards
employing the MMA and LPH structures.

These were selected based on their relevance
and applicability within the problem’s framework,
as detailed in the referenced work by Ortiz
et al. (2023).

Different 3D models of vehicles were designed
using the computer mechanical design software
Inventor 3D. A set of 58 CAD designs was obtained
according to various characteristics.

We grouped the cars according to the number
of pieces counted, and the designs are described
in table 1.

After selecting the vehicle 3D-CAD models,
they were imported into Auto CAD to work in a
2D format. This is because if each piece has to
be painted with a specific route, it needs to be in
a two-dimensional plane to know the coordinate
(x, y), where the robotic arm will be located.

Subsequently, a 20X20 mesh was drawn in
each piece, which let us draft our piece’s contours
to generate the trajectory coordinates. These
coordinates help us determine which points are of
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Table 3. Median for heuristics

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

1 131.6 383.1 210.7 135.9 161.8 30 308.7 1283.9 710.0 383.7 462.7

2 299.5 1114.1 551.1 356.5 429.6 31 73.2 189.3 112.3 68.4 78.1

3 112.8 314.9 172.8 114.0 129.4 32 117.8 320.0 173.8 119.1 138.6

4 50.9 103.8 62.7 48.7 52.7 33 570.0 2363.6 1194.0 714.2 860.3

5 67.5 152.2 91.2 64.6 71.8 34 46.0 87.2 57.8 43.5 45.5

6 249.0 894.5 499.3 271.9 343.5 35 158.2 494.3 244.2 170.1 202.5

7 73.3 175.5 101.0 72.0 82.8 36 71.7 171.2 99.8 67.3 77.4

8 31.1 52.6 36.4 30.4 30.7 37 97.6 266.6 140.1 102.3 117.7

9 54.0 121.5 71.1 51.9 56.6 38 66.6 157.6 91.6 65.3 74.5

10 40.4 75.9 49.5 40.3 42.0 39 194.6 663.8 350.5 214.3 255.7

11 346.2 1379.5 745.9 438.4 529.5 40 136.7 413.4 220.9 140.7 165.4

12 55.0 126.4 76.9 55.0 59.8 41 96.2 251.9 144.7 94.1 112.0

13 79.8 199.4 114.7 77.4 92.2 42 64.9 154.2 89.8 64.0 72.9

14 58.2 127.6 74.9 56.7 62.4 43 125.2 374.9 215.3 123.7 145.0

15 66.5 161.4 93.4 67.3 73.3 44 162.1 500.1 284.7 166.7 200.7

16 29.5 52.7 35.8 30.9 30.8 45 116.3 315.2 168.4 115.5 138.5

17 92.2 238.3 126.8 90.3 102.3 46 116.4 342.1 185.5 118.8 139.2

18 194.1 661.2 328.1 228.4 273.4 47 172.7 582.3 330.4 185.8 229.7

19 147.1 477.0 256.7 162.0 191.0 48 41.7 83.5 54.1 40.1 42.0

20 97.6 271.7 143.8 95.3 108.3 49 102.6 270.0 145.7 102.2 120.8

21 71.4 164.8 94.0 67.5 77.4 50 107.8 302.1 166.6 109.5 125.1

22 56.1 125.8 77.9 54.1 58.7 51 42.0 82.8 54.3 40.6 41.8

23 26.0 42.4 31.0 26.2 25.7 52 32.7 58.0 39.1 32.7 33.8

24 110.9 328.2 180.4 112.0 134.7 53 83.5 214.6 125.6 81.3 96.4

25 57.7 127.4 76.2 56.9 62.7 54 18.4 24.8 19.2 18.7 18.2

26 94.4 248.8 140.3 90.9 103.5 55 40.7 74.2 48.1 38.9 40.2

27 48.7 100.8 63.7 46.7 50.6 56 18.4 24.4 18.6 18.7 17.8

28 50.4 105.1 59.6 49.1 52.6 57 117.5 347.5 183.8 123.4 142.8

29 59.3 123.9 76.5 55.4 60.7 58 88.4 221.0 123.4 88.5 101.3

interest and which must be left inside so that the
piece is painted in its entirety by the robotic arm
described in 3.4. An example of meshing is found
in Figure 3. In Figure 3, the hood of our vehicle is
shown in yellow, while red represents the contour
that establishes the limits where our algorithm will
trace the trajectories that will cover the hood.

With the help of our Cartesian coordinates
application for Auto CAD loaded from the AP
command, we will place the points that will be our
coordinates in X and Y , which will be exported
directly to an Excel file. This .csv file was used
to determine our routes and generate a matrix to
program our algorithm.
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Table 4. Heuristics ranks per test

h1 h2 h3 h4 h5

FT 1.7 5.0 4.0 1.6 2.8

AFT 1.7 5.0 4.0 1.6 2.8

QT 1.9 5.0 4.0 1.5 2.6

6.1 Heuristics Results

We will describe the parameter configuration
for each construction heuristics and explain the
statistical tests used to compare the experiments.
The experimentation involved testing Instances
on a laptop with the following specifications: an
Intel® Core™ i3-1005G1 CPU clocked at 1.20
GHz, 8 GB of RAM, and a 64-bit Windows 11
operating system.

The methodology was implemented using
Python, and the experiments were iterated 31
times. Each heuristic experiment had a stipulated
limit of 100,000 function calls per instance.

For the statistical analysis, first, the
Shapiro-Wilks statistical test was applied to
check if the data had a normal distribution, and
the results indicated that the data did not follow
a normal distribution; therefore, the median was
chosen as the statistical representative.

We use the benchmark proposed in previous
sections with 58 instances tested with 31 runs.
We show our results in Table 2. The Friedman
(FT), Alienated Friedman (AFT), and Quade (QT)
statistical tests were applied to distinguish the
performance of the heuristic set.

We set α = 0.05 and h0 : there are
no differences between the performance of the
heuristics and ha : there are differences between
the performance of the heuristics. Table 4 shows
the ranges obtained in the three statistical tests.

The results show that the best heuristic is h4,
based on the Friedman, Friedman Aligned, and
Quade tests. It is important to remember that the
no-free fight theorem mentions that each algorithm
will perform differently according to the context.

Therefore, no algorithm is best for all types
of problems [1]. The experimentation present in
this work is based on the characteristics of the
problem, and we report the results fairly (the same

function calls); in this case, the best heuristic was
h4. It should be noted that the objective of this
work is to use and present the effectiveness of the
tools previously proposed by [41], where different
problems of the Constraint Satisfaction Problem
are addressed.

With the above, the generality of the design
and solution methodology for various combinatorial
issues continues to be demonstrated.

7 Conclusion and Future Work

In the present work, state-of-the-art research was
reviewed, focusing specifically on the problem of
programming and sequencing vehicle models to
minimize times in the painting system.

In addition, the health risks faced by workers
exposed to chemical agents present in automotive
paints were researched.

After carrying out this state-of-the-art study, the
problem is usually solved with different techniques
in a very complex way and sometimes very
expensive in terms of algorithms.

Therefore, this area of opportunity was
identified, in addition to the future vision of
continuing with the prototype and testing it with
pieces that can be painted by it and scaled.

Methodologically, the current research reviews
and exposes the application of the methodology
proposed in [41] to optimize the scheduling of
vehicle painting tasks, thus addressing existing
CAD designs and achieving a route design for its
future simulation.

Analyzing the results obtained from the
experimentation provides information on the
effectiveness of the heuristics used to address the
automobile painting problem.

Utilizing a variety of statistical tests, among
which are Shapiro-Wilks and the Friedman,
Friedman Aligned, and Quade tests for
general comparison, significant variations in
the performance of the heuristics (h1 to h5)
are observed.

Due to the data do not follow a normal
distribution, the median was chosen as the
representative measure for statistical analysis.
In particular, the h4 heuristic consistently
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demonstrated superior performance in all
statistical tests. Furthermore, this work reaffirms
the applicability of the methodology proposed by
Ortiz et al. (2023) by addressing different problems
with combinatorial optimization constraints.

The findings contribute to a deeper
understanding of the selection heuristics and the
methodology’s effectiveness in solving complex
constraint satisfaction problems. In this case, the
study problem was the design of routes for the
painting process in automobiles.
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