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Abstract. This paper proposes a mobile architecture for

managing residential electricity consumption data using

IoT-based smart plugs and machine learning algorithms.

The main objective is to monitor, analyze, and predict

electricity consumption in residential environments,

aiming to improve energy efficiency and engage users

through gamification elements, making energy saving

more attractive and motivating. The research addresses

these goals through specific questions, hypotheses,

and methodological steps, including the analysis

of electrical energy consumption data from various

household appliances, the development of machine

learning algorithms such as Holt-Winters, XGBoost,

and Autoencoder LSTM to predict future consumption,

and the creation of a prototype mobile application for

visualizing and managing residential energy consump-

tion. The Autoencoder LSTM model demonstrated

superior accuracy in predicting energy consumption,

highlighting its effectiveness. The results underscore the

importance of integrating energy consumption prediction

technologies and energy management tools in homes to

promote sustainability and reduce environmental impact.

Keywords. Energy consumption prediction, Machine

Learning, Internet of Things (IoT), smart plugs.

1 Introduction

Energy is a fundamental resource in modern

society, and its global demand has markedly

increased over the last four decades, with

projections indicating a 30% increase by 2040 [21,

40]. Energy management has become a

critical factor influencing our future, as much of

today’s energy comes from fossil fuels. This

unsustainable growth and inefficient use of energy

pose significant challenges in a world with a

growing population and evident effects of global

warming. Therefore, improving energy efficiency

is one of the most important objectives in any

society. Measuring electricity consumption and

visualizing every detail is the first step toward

awareness and adopting appropriate measures to

save electricity [34, 30, 31].

A crucial aspect of improving energy efficiency

is integrating smart home energy management

and control systems. These systems allow

users to monitor the electricity consumption of

their appliances individually, facilitating informed

decisions on reducing energy consumption [25,

38, 30]. However, the lack of data standardization

and the complexity of obtaining energy information

in different operating states of devices pose

practical challenges. Therefore, systems capable

of integrating different mobile technologies are

required to manipulate user energy data and

potentially revolutionize how we consume and use

energy in our homes [37, 42].

To effectively address these challenges, it

is crucial to consider the fundamental role of

advanced technologies that offer innovative tools

and analytical capabilities to improve energy

efficiency and reduce environmental impact [12,

27]. These technologies include the Internet

of Things (IoT), which provides connectivity and

communication between devices and sensors in
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an energy infrastructure; Machine Learning (ML)

algorithms that can identify patterns and trends

in energy consumption, enabling more accurate

decision making; cloud computing that plays an

essential role in energy data management and

analysis; and mobile applications that provide an

accessible and convenient interface for end users.

These tools not only improve energy efficiency but

also contribute to reducing the carbon footprint and

moving towards a more sustainable and resilient

energy future [29, 7].

In this context, this work proposes a mobile

architecture for managing residential electricity

consumption data through implementing smart

plugs using IoT technology, machine learning

algorithms, and developing a prototype mobile

application. This approach aims to monitor,

analyze, and predict electricity consumption in res-

idential environments, seeking to improve energy

efficiency and involve users through gamification

elements, making energy saving more attractive

and motivating. Additionally, this research aims

to contribute to developing technological solutions

that promote more sustainable energy habits,

leveraging mobile technology as a tool to improve

energy management at the individual level and,

ultimately, globally.

The remainder of the paper is structured

as follows: Section 2, Background, provides

a brief review of related work, establishing a

sound theoretical framework for the research.

Additionally, the research questions are presented

along with the theoretical context in the study

area. Section 3, Materials and Methods, details

the procedures used in data collection, including

the instruments and techniques employed, as well

as the methods of analysis. Section 4, Results and

Discussion, presents the conclusions derived from

the data analysis, discussing the results in relation

to the research questions posed and exploring their

implications. Finally, Section 5 presents the overall

conclusions of the study and suggests possible

directions for future research.

2 Background

2.1 Related work

In the research by Rashid et al. [32], they propose

implementing the cognitive Internet of Things

(CIoT) in a smart monitoring system for home

appliances. This system includes a Raspberry

Pi-based smart plug, a Google Colab training

server to build a long-term memory model (LSTM)

to predict energy consumption, and a control panel

for real-time monitoring and abnormal consumption

alerts, achieving 80% prediction accuracy.

In the proposed work of Veloso et al. [8],

they focus on detecting appliances in residential

networks using Electrical Load Signing (ELS)

and smart plugs, relying on machine learning

algorithms. Individual electrical parameters of each

load are analyzed and stored in a Home Energy

Management System. Classification algorithms,

such as Decision Tree and Naive Bayes, are

trained to identify appliances in each socket. A

visual application in the system allows users to

monitor active appliances, review consumption

history, and detect anomalies in the power

grid. This method integrates IoT technology

and machine learning to improve control and

knowledge of household energy consumption.

Paredes-Valverde et al. [26] presents Intelli-

Home, a smart home system that aims to reduce

electricity consumption in the home. IntelliHome

uses big data analysis technologies and machine

learning and statistical techniques to provide

users with meaningful insights into their electricity

consumption habits, aiming to actively involve them

in the energy-saving process through real-time

information and energy-saving recommendations.

The results obtained verify the effectiveness of

the proposed system in terms of saving electricity,

representing an intelligent solution that leverages

data analytics and machine learning to help users

effectively save energy at home.

In the work of Escanillan-Galera et al. [13], they

present the design and development of EnerTrApp,

a prototype mobile web application that allows

consumers to monitor the energy consumption of

household appliances using their smartphones.

The main focus is to evaluate the user interface
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of this application through usability testing to

measure its effectiveness, efficiency, and level

of user satisfaction. The results of the data

analysis indicate that the EnerTrApp user interface

is highly effective, as evidenced by the fact that all

participants completed all the proposed tasks.

Finally, the research of Machorro-Cano et al. [21]

presents HEMS-IoT, a home energy management

system based on big data and machine learning

for home comfort, security, and energy saving.

The J48 machine learning algorithm and Weka

API were used to learn user behaviors and energy

consumption patterns and classify homes based

on their energy consumption.

2.2 Hypothesis and Research questions

The objective is to develop a mobile architecture

with software and hardware elements that will

enable more effective management, monitoring,

and control of energy consumption. This will be

achieved using low-cost IoT sensors to collect

electricity consumption data and an online dataset

to which machine learning algorithms will be ap-

plied to analyze and predict consumption patterns.

The prototype mobile application will allow users

to visualize, monitor, and control their energy

consumption and receive recommendations to

reduce unnecessary consumption, contributing to

cost reduction, environmental sustainability, and

the transition to a more energy-efficient economy.

In this context, residential electricity consump-

tion data management involves the scientific

process of data collection, analysis, and utilization

of information related to household electricity

consumption, with the primary purpose of improv-

ing energy efficiency and promoting sustainable

consumption practices [33, 19]. This management

offers several benefits, providing users with

detailed information about their consumption,

allowing them to identify areas for improvement

and take measures to reduce unnecessary energy

consumption [28].

This research aims to answer the following

hypothesis and research questions:

Hypothesis:

— The implementation of low-cost IoT sensors

and machine learning algorithms will improve

the accuracy of energy consumption predic-

tion.

— Gamification and personalized recommenda-

tions will motivate users to reduce their energy

consumption.

Research questions:

1. How accurate are machine learning al-

gorithms in predicting energy consumption

patterns using IoT smart plugs data?

2. What is the impact do gamification and per-

sonalized recommendations have on motivat-

ing users to reduce their energy consumption?

3 Materials and Methods

Figure 1, shows the proposed architecture for

residential electricity consumption data manage-

ment [25], which is organized in several stages

and layers, integrating hardware and software

components as follows:

— Data collection: The first stage of the

system focuses on the collection of household

electricity consumption data. This is ac-

complished through smart plugs that connect

to appliances and the home Wi-Fi network.

These devices periodically collect and send

data to a local server, which then transfers the

information to a cloud server for storage and

further analysis.

— Data analysis: In the second stage, the

collected data is analyzed to identify patterns

and trends in energy consumption. The

data stored in the cloud is processed using

machine learning algorithms, implemented on

platforms such as Google Colab with libraries

such as Keras, TensorFlow, and Scikit-Learn.

These algorithms help model and train

systems that identify energy consumption

patterns, such as the appliances that consume

the most energy according to the time of day,

days of the week, or seasons of the year.
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Fig. 1. Proposed architecture of the solution

— Data utilization: Finally, the information

obtained from the analysis is used to make

decisions related to electricity consumption

management. Recommendations are pro-

vided to users through the mobile application,

helping them identify areas where they can

improve their energy efficiency.

3.1 IoT Layer

This layer includes smart plugs and appli-

ances, enabling efficient control of energy assets

and transforming conventional homes into smart

homes. Figure 2 shows the current, voltage and

power sensors or smart plugs, allowing energy

consumption to be measured and recorded [9, 6].

To monitor and control these devices, the

Python-kasa library [5], which manages smart

home devices, is used. The discovery process

Fig. 2. Smart plugs for energy metering

is initiated by executing the kasa discover

command, as seen in Figure 3, which will

send discovery packets to the default broadcast

address (255.255.255.255.255) to find compatible

devices on the network. If the device requires

authentication for control, credentials must be

provided using the username and password
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Fig. 3. Discovery of devices on the network

options. Additionally, the Bluetooth wireless

communication protocol will be used for interaction

between the smart plug and other devices, such as

cell phones or tablets, making it possible to control

the plug and the devices connected to it using the

mobile application.

The following functions will be used: state,

which returns status information, on and off to

turn the device on or off, emeter to return power

consumption information and sysinfo to return

raw system information of the devices. To access

these functions in the mobile application, a REST

API has been implemented so that through the

developed services the functions enabled by the

plug can be used.

For the implementation of the REST API, the

Python programming language has been used with

the Flask framework. This API is composed of a

series of endpoints used to obtain the plug utility

information. An endpoint is defined as one end of

a communication channel, which may include the

URL of a server or a service. Each endpoint is

the location from which the APIs can access the

resources necessary to fulfill their function:

— /turn-on: This endpoint allows the socket to be

turned on when a POST request is made.

— /turn-off: This endpoint allows turning off the

socket when a POST request is made.

— /get-state: This endpoint allows getting the

state of the device when a GET request is

made.

— /consumption: This endpoint allows obtaining

the power consumption when a GET request

is made.

3.2 Data Layer

This layer includes the collection of electricity

consumption data and the database where all

relevant data collected by the system is stored.

This database is essential for data analysis

and decision making based on the information

collected [22, 16].

The central idea is to acquire information from

datasets related to residential energy consumption,

with the objective of covering a wide range of

characteristics relevant to the study in question.

Initially, we have the dataset from smart plugs,

which consists of a limited collection of information

on the electricity consumption of various appli-

ances in specific types of dwellings. To improve the

quality of the analysis and strengthen the predictive

capability of the algorithms, an additional dataset

provided by Eco CO2 will be incorporated, which

contains energy consumption data from various

appliances.

This dataset was generated using 42 smart

plugs distributed in 13 different households as

metering devices for one month. The inclusion

of this second dataset will allow complementing,

enriching, and expanding the variety and depth

of information of the variables and characteristics

considered in the analysis. The public dataset on

energy consumption data is available online on the

Kaggle platform [10].

Time series data were collected for each device

at 5- to 10-minute intervals, which represent a

real-life usage scenario for multiple anonymous

users. The datasets contain one-second interval

power measurements in watts (W), along with a

corresponding timestamp in days and weeks for

each device.

Figure 4, shows the data set which contains the

following information:

— id: Unique identifier of the connected device in

the dataset.

— first ts: Represents the first timestamp (date

and time) recorded for the device (connected).
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Fig. 4. Information content of the data set

— last ts: Indicates the last timestamp (date and

time) recorded for the device (disconnected).

— available duration: Reflects the total duration

of time during which measurements were

performed for the device.

— plug name: Name of the smart plug device

(appliance).

— appliance category: Category of the appli-

ance with which the smart plug device is

associated.

— comment: Additional comments or relevant

information associated with the device, e.g.,

appliance brand.

— files names: Names of the files containing

one-second interval power measurements of

the device.

— power max: Represents the maximum power

measured for the device.

Each appliance is assigned to one of the

available categories according to the “plug name”

column:

— multimedia = [computer, 3D printer, Inter-

net router, laptop, phone charger, printer,

screen, TV, Sound system].

— kitchen = [boiler, coffee maker, freezer,

refrigerator, microwave oven].

— washing = [dishwasher, dryer, washing

machine].

— cooling = [air conditioner, fan].

— other = [air purifier, dehumidifier, radiator,

solar panel, vacuum cleaner].

3.3 Analytic Layer

In this layer, machine learning modeling takes

place where algorithms are used to analyze the

collected data and provide valuable information,

such as energy consumption patterns or energy

usage recommendations [15, 14]. To achieve

effective prediction of residential energy behavior,

it is crucial to employ methods such as time series

and regression models. After a thorough analysis

of various machine learning prediction algorithm

models, three main approaches were decided

upon:

1. Time Series Prediction with the Holt-Winter

method: Time series analysis involves

studying a sequence of data points collected

during a specific interval, recording these

data at consistent intervals over time [19,

17]. The Holt-Winters method, an exponential

smoothing technique, is used to predict

results in time series that show seasonality.

This method assigns greater weight to more

recent observations and decomposes the time

series into components such as level, trend,

seasonality, and error. This model adds a

seasonal parameter to Holt’s model, allowing

the treatment of univariate time series that

show both trend and seasonality. The additive

Holt-Winters model is appropriate when the

fluctuations in the data do not depend on
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the level of the time series, implying that

the fluctuations are constant in size over

time [16, 11]. Therefore, in this case,

the additive Holt-Winters model is applied

to make predictions on residential energy

consumption. The additive smoothing is

based on the calculation of four components

shown in the following equations (1, 2, 3,

and 4). Exponentially smoothed series or

estimated level:

At = α(Xt−St−s)+ (1−α)(At−1+Tt−1) (1)

Trend estimation:

Tt = γ(At −At−1) + (1− γ)Tt−1 (2)

Seasonality estimation:

St = δ(Xt −At) + (1− δ)St−s (3)

Prediction of m periods in the future:Prediction

of m periods in the future:

X̂t+m = At +mTt + St+m−8 (4)

Where:

At is the smoothed value for the level of the

series at time period t.

α is the constant smoothing parameter for the

level.

Xt is the actual value of the series at time

period t.

Tt is the trend component of the series for

time period t.

γ is the constant smoothing parameter for the

trend.

St is the seasonal component of the series for

time period t.

St−s is the seasonal component of the series

calculated for time period t− s.

δ is the constant smoothing parameter for the

seasonality.

s is the length of time for the seasonality.

m is the number of future periods to predict.

X̂t+m is the Holt-Winters prediction for time

period t+m.

2. Supervised Learning Model XGBoost: Based

on decision trees, it improves methods such

as random forest and gradient boosting and

is ideal for complex data sets, making it a

solid choice for our case study [29, 4]. In

regression, it allows predicting quantitative

variables from explanatory variables, either

quantitative or qualitative. To fit a training

dataset using XGBoost, an initial prediction is

performed. Residuals are calculated based on

the predicted value and the observed values.

A decision tree is created with the residuals

using a similarity score of the residuals. The

similarity of the data of a leaf is calculated, as

well as the similarity gain of the subsequent

split. The gains are compared to determine an

entity and a threshold for a node. The output

value for each leaf is also calculated using the

residuals [20, 18]. XGBoost uses the following

parameters to optimize the algorithm and

provide better results and higher performance:

— Regularization: a regularization param-

eter (lambda) is used when calculating

similarity scores, to reduce sensitivity to

individual data and avoid over-fitting.

— Trimming: A tree complexity parameter

(gamma) is selected to compare the

gains. The branch where the gain is

less than the gamma value is pruned.

Avoid over-fitting by cutting unnecessary

branches and reducing tree depth.

3. Self-Supervised Autoencoder Neural Network

LSTM: An LSTM Autoencoder is an imple-

mentation of an automatic encoder-decoder,

for sequence data that uses a LSTM

(Long Short-Term Memory) architecture and

are especially suited for modeling temporal

sequences [27, 3]. By employing an

Autoencoder, we seek to learn meaningful

representations of the data that help us to

identify complex and subtle patterns in energy

behavior [39].

— LSTM encoder-decoder: Reads the input

sequence, encodes it into a lower-

dimensional representation and then
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Fig. 5. Data Correlation Matrix

decodes it to recreate the original

sequence.

— Performance evaluation: The model

is evaluated on its ability to faithfully

recreate the input sequence.

— Model tuning: The model is tuned until it

reaches a desired level of performance in

recreating the sequence.

— Obtaining the encoder: Once the

desired performance level is reached, the

decoding part of the model is removed,

leaving only the encoder.

— Using the encoder: The encoder model

is used to convert input sequences into

fixed-length vectors.

To analyze the electrical consumption datasets

of household appliances, a structured process

including the following steps was carried out:

3.3.1 EDA: Exploratory Data Analysis

The main objective of the EDA is to obtain initial

information and knowledge about the data before

applying the modeling techniques [36]. After

analyzing the data and observing Figure 5, a low

correlation between the variables could be noticed,

this indicates that changes in one variable are not

strongly related to changes in the other variables.

Fig. 6. Classification of the different categories of

household appliances

3.3.2 Data set analysis

1. Extraction of characteristic features and

classification of load curves of household

appliances: A detailed analysis of the

data was performed to identify distinctive

features in the load curves of the appliances.

Subsequently, a classification function was

used to group the load curves into different

categories of appliances as shown in Figure 6.

2. Characterization of characteristic patterns

of electricity consumption in the different

categories of household appliances identified

in the previous stage. To carry out this

characterization, the energy consumption

patterns of each type of appliance are

compared and analyzed. This involves

examining factors such as the amount of

energy consumed at different times of the

day, the duration of each appliance’s activity

periods, and any other relevant aspects that

may influence electricity consumption. Figure

7, provides visualizations of these electricity

consumption patterns for different categories

of appliances. This helps to better understand

how energy consumption varies by appliance

type, which can be useful in making informed

energy efficiency and management decisions.

3. Calculation of the percentage of total standby

or idle consumption of appliances: A
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Fig. 7. Characterization of power consumption

signatures for multimedia category

ht]

Fig. 8. Inactivity count of household appliances

specific analysis is carried out to determine

the percentage of total consumption of an

appliance when it is in standby or idle mode.

This calculation will provide information on

the impact of passive consumption on total

household energy consumption as shown in

Figure 8.

4. Simulation of fluctuations in total household

electricity consumption: The load curves of the

different selected appliances are aggregated

to calculate fluctuations in total household

electricity consumption. This step will include

the consideration of important assumptions,

such as the selection of the appliances to be

included in the total household consumption

Fig. 9. Standard deviation of household appliances

Fig. 10. Inactivity count vs. standard deviation

profile and the manipulation of time series

data, to simulate variations in the consumption

patterns of the users as shown in Figure 9.

5. Calculation of the relationship between vari-

ability in electricity consumption patterns and

device activity. The relationship between

variability in power consumption patterns and

device activity refers to how changes in device

usage and activity affect the amount and way

electrical energy is consumed. This involved

analyzing how fluctuations in device activity,

such as on, off, or power modulation, are

reflected in electricity consumption patterns,

which can have important implications for

energy management and efficiency in homes

(see Figure 10).

6. Identification of peak consumption periods

and visualization of the impact of load shifting:

Peak consumption periods are identified

based on available appliance consumption

data, by visualizing the impact on peak

load if load shifting were applied, that

is, redistributing electricity consumption to

mitigate peak demand as shown in Figure 11.
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Fig. 11. Periods of maximum consumption of household

appliances per category

3.3.3 Data Modeling

The aforementioned algorithms will be modeled to

solve the problem at hand, selecting the relevant

features to be used as inputs to the models.

— Data preprocessing: First, the time column

(timestamp) is converted to Date Time format

to effectively handle dates and times.

data[’timestamp’] =

pd.to datetime(data[’timestamp’])

Then, the timestamp column is set as the

index of the DataFrame to facilitate temporal

analysis.

data.set index(’timestamp’,inplace=True)

The data is resampled to have an hourly

frequency. This involves averaging the

energy consumption data over one-hour

(’H’) intervals, which helps to smooth out

short-term variations and highlight more

significant trends.

resampled data =

data[’power’].resample(’H’).mean()

— Data division: The data is divided into training

and test sets. 80 % of the data is used to

train the models, while the remaining 20 %

is reserved for evaluating performance and

accuracy. For the Holt-Winters and XGBoost

models the training set size is calculated by

multiplying the total data length and the first

samples are selected up to the calculated size.

train size = int(len(resampled data)

* 0.8) train, test =

resampled data[0:train size],

resampled data[train size:]

For the Autoencoder LSTM model the

normalized data set is split using the

train test split function. This splitting

is essential to train and evaluate the ability of

the autoencoder to efficiently reconstruct the

original data.

scaler = StandardScaler()

normalized data = scaler.fit transform

(resampled data.values.reshape(-1, 1))

X train, X test =

train test split(normalized data,

test size=0.2, shuffle=False)

3.3.4 Model training

Once the models have been configured, they are

trained using the training data set. During training,

the models adjust their parameters to minimize

a loss or error function so that they can make

accurate predictions about future data.

— Holt-Winters Model: The model is instantiated

using the ExponentialSmoothing class from

the statsmodels.tsa.holtwinters library and the

training data (train) is passed to the model,

along with certain parameters. In this case,

seasonal=’add’ is specified to indicate that

additive seasonality is expected in the data

and seasonal periods=24 to indicate that the

seasonality follows a 24-hour (daily) pattern.

The model is then fit to the training data using

the fit() method. During this process, the

model will estimate the parameters that best fit

the data and learn the relationships between

past observations to make future predictions.

The result of the model fit is stored in the

model fit variable, which contains the model

already trained and ready to make predictions.

model = ExponentialSmoothing(train,

seasonal=’add’, seasonal periods=24)

model fit = model.fit()

— XGBoost model: A new feature is added, in

this case, the time of day (hour), which is

extracted from the time index of the original

data, this provides the model with additional
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information about the time of day at which the

data was recorded.

train data = pd.DataFrame(’hour’:

train.index.hour, ’power’:

train.values)

test data = pd.DataFrame(’hour’:

test.index.hour, ’power’:

test.values)

The combined data is normalized using

StandardScaler, this process ensures that

all features have a similar scale, which can

improve the convergence of the model and the

overall performance of the algorithm.

scaler = StandardScaler()

train scaled =

scaler.fit transform(train data)

test scaled= scaler.transform(test data)

The features (X train, X test) are then

separated from the target variable (y train,

y test). The features are selected as all

columns except the last one, which is the

energy consumption variable (power), this is

done to train the model with the input features

and predict the response variable. Finally, the

model (XGBRegressor) is instantiated in order

to minimize the performance error and then

train the model using the training and test sets

with additional features. During training, the

model will adjust its parameters to find the

relationship between the input features and

the target variable so that it can make accurate

predictions on new data.

X train, y train = train scaled[:,

:-1], train scaled[:, -1]

X test, y test = test scaled[:, :-1],

test scaled[:, -1]

model = XGBRegressor(objective =

’reg:squarederror’)

model.fit(X train, y train)

— LSTM Autoencoder Model: The autoencoder

architecture is defined as consisting of an

input layer (input layer), an encoded layer

(encoded) and a decoded layer (decoded).

The encoded layer has 8 neurons with

a ReLU activation function, which allows

the autoencoder to learn important features

from the data. The decoded layer has 1

neuron with a linear activation, resulting in

reconstruction of the original data. During

training, the autoencoder learns to reconstruct

the input data, which involves capturing and

compressing important features of the original

data.

input layer = Input(shape=(1,))

encoded = Dense(8,

activation=’relu’)(input layer)

decoded = Dense(1,

activation=’linear’)(encoded)

autoencoder = Model(input layer,

decoded)

autoencoder.compile(optimizer=’adam’,

loss=’mean squared error’)

The model is trained for 50 epochs with a

batch size of 32, and validation on the test set

(X test) is used to monitor model performance

during training.

autoencoder.fit(X train, X train,

epochs=50, batch size=32,

shuffle=True, validation data=(X test,

X test))

3.3.5 Evaluation of models

After training the models, their performance

is evaluated using the test dataset. Several

performance metrics are calculated that provide

information about the model’s ability to generalize

to unseen data and its accuracy in making

predictions [24, 1]. Error metrics are fundamental

tools for comparing the effectiveness of different

models and for estimating their performance and

reliability. In this context, we seek to minimize

the value of these indicators, as this represents a

better fit of the model to the observed data [41].

The error metrics that will be calculated to evaluate

the performance of the models are:

— Mean Squared Error (MSE): It is the mean

of the squares of the errors. The lower the

MSE, the better the performance of the model.
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It is calculated as the mean of the squared

differences between the actual values and the

predicted values (see equation 5).

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 (5)

— Root Mean Squared Error (RMSE): It is the

square root of the MSE. It provides a measure

of the error in the same unit as the original

data, which facilitates its interpretation (see

equation 6).

RMSE =
√
MSE (6)

— Mean Absolute Error (MAE): It is the average

of the absolute values of the errors. It provides

an idea of the magnitude of the average error

as seen in equation 7.

MAE =
1

n

n∑

i=1

|yi − ŷi| (7)

Where:

yi are the actual values.

ŷi are the predicted values by the model.

n is the number of samples (length of the test set).

We seek to minimize the value of the error

indicators (MSE, RMSE and MAE), since this

indicates a better fit of the models to the observed

data and, therefore, a better predictive capacity.

3.4 User Interface Layer

This layer interacts directly with users through

the mobile application that is delivered in APK

format [28]. The application serves as the entry

point for users interacting with the system as seen

in the figure 12.

The developed application represents a high-

fidelity prototype designed natively for Android de-

vices, using the Model-View-ViewModel (MVVM)

architecture to ensure an organized and modular

structure [23]. High-fidelity prototypes are

essential tools in the advanced stages of

Fig. 12. Mobile application interface

application development, as they closely resemble

the final product in terms of design, interactivity,

and functionality. This close similarity allows

a thorough evaluation of crucial aspects such

as usability, aesthetics, and functionality of the

application design.

The user using the mobile application receives

the energy efficiency information in the following

way:

— The mobile application communicates with

the cloud service via the internet. This

communication is established using a ”Client

ID and API Key,” ensuring authentication

and secure communication with the cloud

infrastructure or backend server.

— The mobile application makes requests to the

server to obtain the power consumption data

of the smart plugs associated with the user.

These requests can be periodic, for example,

every time the user opens the application or at

set time intervals.

— Upon receiving the data request, the server

retrieves the power consumption information

from the corresponding smart plugs and

transfers it to the mobile application through

the established connection.

— Once the mobile application receives the

power consumption data, it processes the

information and displays it to the user in

an understandable way. This can include

graphs showing power consumption over

time, Statistics summarizing energy usage,

comparisons of current consumption with
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past data and Personalized energy-saving

recommendations.

The user interface is designed to be intuitive

and user-friendly, enabling users to easily navigate

through the different features of the application.

The main components of the user interface include:

— Dashboard: Provides an overview of the user’s

current energy consumption, displaying key

metrics and visualizations at a glance.

— Detailed View: Allows users to drill down

into specific data points, view detailed

consumption history, and analyze trends over

time.

— Notifications: Alerts users to important events,

such as abnormal consumption patterns

or reminders to implement energy-saving

recommendations.

— Settings: Enables users to customize their

experience, manage their smart plugs, and

configure notification preferences.

By offering a seamless and engaging user

experience, the mobile application aims to

empower users to take control of their energy

consumption, making energy-saving efforts more

accessible and effective.

3.5 Application Services Layer

This layer contains several essential components

for the system’s operation, including user authenti-

cation and session management, which indicates

that the system can manage multiple users and

maintain session security and persistence. It also

handles data management, enabling the system to

collect and process energy usage information to

prepare reports and predictions on future energy

consumption [33, 35, 2].

Firebase was used here as a cloud platform to

manage all the information through the following

functions:

— The power of the Firebase ML API was

leveraged along with the Google Colab

environment to implement the developed ML

algorithms in an efficient and scalable manner,

providing the prototype mobile application

with intelligent and enriching capabilities

that enhance user interaction and offer

personalized and contextual experiences.

— User Authentication: Firebase provides a

complete user authentication system that

allows you to manage user registration, login

and identity verification in a secure way,

through email and password login.

— Realtime Database: Firebase Realtime

Database is a cloud database that allows you

to store and synchronize data in real time

between application clients. This feature is

used to store application data securely in the

Firebase cloud, with options to set custom

security rules that control who can read and

write to the database.

— Cloud Storage: Firebase Storage provides

a scalable and secure cloud storage service

for files. It allows secure uploading

and downloading of files from within the

application, with options to control access

permissions and controlled file sharing.

— Cloud Firestore: Firestore is a flexible and

scalable document database that allows you

to organize and query data efficiently. Like

Firebase Realtime Database, Firestore offers

customized security rules to protect stored

data and ensure secure access.

— Cloud Functions: Firebase Functions allows

you to implement custom server logic in the

Firebase cloud. This is useful for performing

complex or sensitive server-side operations,

such as data processing, input validation,

push notifications, and other tasks requiring

secure access to data.

Figure 13 presents the scripts used in the initial

Firebase programming phase. At this stage, APIs,

JSON, client identifiers and specific variable logic

were used to ensure the correct functioning of the

application’s functionalities.
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Fig. 13. JSON for making requests to the Firebase and

Colab cloud

4 Results and Discussion

This section presents the results obtained from

the research and discusses their relevance and

implications for the proposed objectives. Initially,

the implementation process of the system for

collecting and analyzing electricity consumption

data using IoT smart plugs is described. Subse-

quently, the results of applying machine learning

algorithms to predict energy consumption patterns

and the impact of personalized recommendations

and gamification on user behavior are presented.

4.1 Implementation of the Data Collection
System

The proposed system was successfully imple-

mented, enabling the collection of real-time elec-

tricity consumption data from various household

appliances. Smart plugs were installed in a sample

of residential homes, and data were collected over

three months. The smart plugs periodically sent

data to a local server, which then transferred the

information to a cloud server for storage and further

analysis.

Figure 14 shows some visualizations of the

predictions generated by the models for various

appliances. In each graph, the training and test

Fig. 14. Visualization of Model Prediction

data are presented, along with the current and

future predictions.

The collected data were analyzed to identify

patterns and trends in energy consumption. For

example, it was observed that certain appliances,

such as air conditioners and refrigerators, showed

distinct patterns of energy consumption, with

higher usage during specific times of the day and

certain seasons. This information was used to

develop machine learning models to predict future

energy consumption patterns.

4.2 Machine Learning Model Performance

Three machine learning models were developed

and evaluated: Holt-Winters, XGBoost, and LSTM

Autoencoder. The performance of these models

was assessed using metrics such as Mean

Squared Error (MSE), Root Mean Squared Error

(RMSE), and Mean Absolute Error (MAE).
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— The Holt-Winters model was applied to the

time series data, and the results indicated

a reasonable level of accuracy in predicting

energy consumption patterns. The model was

able to capture the seasonality and trends in

the data, but its performance was limited by

its reliance on past observations, making it

less effective in predicting sudden changes in

consumption patterns.

— The XGBoost model outperformed the Holt-

Winters model, providing more accurate

predictions of energy consumption patterns.

The model’s ability to handle complex data

and incorporate multiple features contributed

to its improved performance. The inclusion of

features such as the time of day and appliance

type helped the model make more informed

predictions.

— The LSTM Autoencoder model showed the

highest accuracy among the three models,

effectively capturing the temporal depen-

dencies in the data. The model’s ability

to learn meaningful representations of the

data allowed it to predict future consumption

patterns with high precision. The results

demonstrated that the LSTM Autoencoder

model is well-suited for applications requiring

accurate predictions of energy consumption.

The results of performance metrics may vary over

time, different appliance models may have different

efficiency levels, some appliances may present ad-

ditional challenges in terms of predictability due to

their nature and variability in energy consumption,

and finally, external and environmental factors may

also affect the energy consumption of appliances.

The table 1, shows the effectiveness of each

algorithm as a function of the performance metrics

for each appliance by category.

For the prediction of new consumption data, the

Autoencoder LSTM model was used, which has

shown great potential in this case. This model

takes advantage of the ability of the LSTM layers to

capture the complex temporal dependencies in the

electricity consumption data, which allows accurate

prediction of future consumption behavior. By

using the LSTM Autoencoder as the best model,

Fig. 15. Prediction for new consumption data

it is possible to more effectively anticipate

fluctuations in residential electricity consumption

and make informed decisions to improve energy

use. Figure 15, shows the energy consumption

for two appliances and the predictions for this new

residential electricity consumption data.

The implementation of these algorithms has

demonstrated that the models are able to

accurately predict energy consumption at different

periods of the day and under various conditions.

The combination of IoT sensor data with advanced

machine learning techniques has provided detailed

insight into the behavior of energy consumption.
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Table 1. Results of the Performance Metrics of the different models for household appliances

Category Household Appliance (id) Performance evaluation (metrics)
Holt-Winters XGBoost Autoencoder LSTM

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE

Washing machine 343 6480.1 80.4 21.90 19.36 6497.7 36.85 0.005 0.077 0.066

Washing machine 32 4381.7 66.1 19.18 18.50 4323.6 36.85 9.07 3.011 0.838

Dishwasher 53 29072 170.5 82.38 71.65 28152 36.85 55.62 7.45 2.25

Washing Washing machine 157 831.8 28.8 5.13 5.50 850.43 36.85 10.47 3.23 0.89

Washing machine 52 670.5 25.8 5.34 4.43 672.85 36.85 125.30 11.19 1.26

Washing machine 135 33500 183 44.38 44.09 33419 36.85 11953 109.3 24.35

Dryer 219 11321 106.4 43.33 36.94 11604 36.85 19.32 4.39 0.78

Washing machine 218 8954.3 94.6 44.1 36.27 8596.9 36.85 34.35 5.86 1.19

Internet router 295 0.03 0.18 0.13 0.14 0.04 36.85 0.00 0.023 0.015

Sound system 252 0.48 0.69 0.45 0.48 0.42 36.85 0.000 0.06 0.053

3D printer 29 259.5 16.1 8.48 8.91 264.3 36.85 1.02 1.01 0.26

Pone charger 282 97.7 9.8 6.9 6.51 100.7 36.85 0.25 0.50 0.34

Laptop 289 52.5 7.2 6.2 6.15 54.01 36.85 0.045 0.21 0.13

Multimedia Tv 290 55.1 7.4 2.4 3.29 54.49 36.85 0.68 0.83 0.34

Screen 302 87.44 9.35 5.23 5.24 86.7 36.85 21.18 4.60 4.56

Screen 146 38.6 6.21 3.87 4.02 39.87 36.85 0.02 0.14 0.14

Laptop 64 20.34 4.51 2.92 2.92 20.33 36.85 0.11 0.34 0.14

Computer 44 5085.6 71.3 53.01 61.23 5500.8 36.85 3.66 1.91 1.50

Printer 286 0.14 0.37 0.28 0.32 0.16 36.85 0.002 0.05 0.03

Internet router 131 0.51 0.71 0.47 0.74 0.63 36.85 0.011 0.10 0.04

Vacuum 254 1.86 1.36 0.40 0.40 1.86 36.85 0.06 0.255 0.06

Air purifier 293 0.008 0.09 0.07 0.43 0.19 36.85 0.00 0.01 0.017

Radiator 309 487052 697.8 626.5 288.1 104911 36.85 636.59 25.23 17.04

Other Dehumidifier 310 34076 184.5 128.9 164.8 30219 36.85 2.30 1.51 0.51

Vacuum 236 57.5 7.5 1.9 1.88 57.06 36.85 0.077 0.27 0.27

Dehumidifier 322 611.4 24.7 19.07 13.13 394.4 36.85 0.42 0.65 0.18

Solar panel 325 959.66 30.97 20.67 17.74 1016.5 36.85 93.59 9.67 5.47

Boiler 226 1223.3 34.9 20.75 17.12 1024.1 36.85 19.27 4.39 1.22

Coffee 54 136.45 11.68 8.86 6.92 116.6 36.85 0.89 0.94 0.30

Fridge 317 3.003 1.73 1.50 1.46 2.89 36.85 0.05 0.22 0.19

Micro wave oven 314 87.64 9.36 1.84 1.72 87.85 36.85 0.001 0.04 0.006

Coffee 37 230.5 15.18 5.57 6.33 195.55 36.85 0.02 0.14 0.02

Boiler 233 640.08 25.29 12.63 13.19 661.94 36.85 5.30 2.30 0.34

Kitchen Micro wave oven 147 344.20 18.55 8.30 8.990 348.87 36.85 195.00 13.96 3.01

Frige 284 236.48 15.3 8.69 8.69 237.3 36.85 0.34 0.58 0.46

Coffee 97 183.74 13.55 12.38 11.51 169.6 36.85 2.63 1.62 1.10

Fridge 98 243.31 15.59 8.46 7.43 241.83 36.85 4.93 2.22 0.63

Boiler 217 756.5 27.5 12.8 13.01 755.30 36.85 9.18 3.03 0.48

Freezer 249 1358.3 36.8 32.23 32.68 1351.08 36.85 10.7 3.27 2.51

Fridge 207 24.83 4.98 3.33 4.29 25.39 36.85 0.54 0.73 0.63

Cooling Fan 215 2592.3 50.91 46.48 17.67 476.5 36.85 0.46 0.68 0.28

Air conditioner 22 36.44 6.03 5.24 2.11 10.61 36.85 0.018 0.13 0.06
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Table 2. Criteria and tests for Android app quality

Criteria and test for basic app quality Checklist

Visual Experience: The app follows standard Android design patterns, using Material

Design components for a modern and consistent look and feel.

✓

User Interface and Graphics: The app supports different screen orientations, maintains

good visual quality and adapts correctly to different screen sizes.

✓

Accessibility: The application is accessible to all users and displays adequate contrast

between text and background.

✓

Functionality: The application meets the intended functions or minimum requirements. ✓

Performance and Stability: The app loads properly, has good stability and is compatible

with the latest versions of Android.

✓

Privacy and Security: The app protects user data, requests only necessary permissions,

stores data securely, and complies with privacy policies.

✓

Notifications: Notifications follow design guidelines and are relevant to the user. ✓

Testing and Test Environment Configuration: Extensive testing was performed on different

Android devices and versions, using emulators and real devices.

✓

4.3 Impact of Personalized Recommendations
and Gamification

The mobile application developed as part of

this research provided users with personalized

energy-saving recommendations and gamification

elements to motivate behavior change. Users

received notifications about their energy consump-

tion patterns, along with suggestions for reducing

unnecessary consumption. The gamification

elements included rewards and challenges that en-

couraged users to adopt energy-saving practices.

The impact of these features on user behavior

was assessed through surveys and usage data

analysis. The results indicated that users

who received personalized recommendations and

participated in gamification activities showed a

significant reduction in their energy consumption

compared to users who did not.

The findings suggest that personalized rec-

ommendations and gamification can effectively

motivate users to adopt energy-saving behaviors,

contributing to overall energy efficiency and

sustainability.

The prototype represents an initial phase in

the development of the mobile application for

residential energy consumption, therefore, the

fundamental quality of the application is evaluated

through a series of criteria and tests established

by the Android developer community [23]. These

criteria and tests ensure a reliable and high quality

user experience, as detailed in Table 2.

Users who interacted with the application

showed a tendency to reduce their energy

consumption, influenced by the personalized rec-

ommendations and gamification incentives. This

suggests that personalization and gamification

elements can be effective in motivating changes in

energy consumption behavior.

4.4 Discussion

The results of this research demonstrate the

potential of IoT technology and machine learning

algorithms to manage and reduce residential

energy consumption. The successful imple-

mentation of the data collection system and

the development of accurate predictive models

highlight the feasibility of using these technologies

to promote energy efficiency in homes. While other

research has used traditional energy monitoring

methods [24, 7, 18], this study is notable

for the integration of IoT devices for real-time

data collection, providing a more accurate and

up-to-date view of energy consumption.

The research analyzed specific energy con-

sumption patterns of various household appli-

ances, identifying those with the greatest impact

and proposing more efficient usage strategies.

Unlike studies that address energy consumption
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in aggregate [1, 3, 19], this research provides a

detailed analysis by appliance type, allowing for

the identification of specific areas for improvement

and optimization.

Previous studies have used simpler models such

as linear regression or rule-based techniques to

predict energy consumption [39, 27, 35]. The

present research, by employing advanced models

such as the LSTM Autoencoder, provides greater

accuracy and ability to capture complex patterns,

thus overcoming the limitations of traditional

methods by highlighting the importance of using

advanced machine learning techniques to capture

complex patterns in energy consumption data.The

model’s ability to predict future consumption

with high accuracy provides valuable information

that can serve as a basis for energy manage-

ment strategies.

Much research has focused only on the technical

aspect of energy consumption prediction without

considering user interaction [16, 28, 42]. The

combination of personalized recommendations

and gamification in this research addresses the

behavioral dimension, offering a more holistic

and effective solution for energy management.The

positive impact of personalized recommendations

and gamification on user behavior further under-

scores the need for user-centric approaches to

energy management. By engaging users and

providing them with practical information, it is

possible to foster a culture of energy conservation

and achieve significant reductions in household

energy consumption.

Overall, this research contributes to the de-

velopment of innovative solutions for energy

management, leveraging the power of IoT and

machine learning to create more sustainable and

efficient homes.

5 Conclusion and Future Work

The development of a mobile architecture for

managing residential electricity consumption data

using IoT smart plugs and machine learning

algorithms has demonstrated significant potential

to improve energy efficiency and promote sustain-

able consumption practices. The implementation

of the data collection system, coupled with

the development of predictive models, has

provided valuable insights into household energy

consumption patterns.

The use of the Holt-Winters, XGBoost, and

LSTM Autoencoder models has shown varying

degrees of success in predicting energy con-

sumption patterns, with the LSTM Autoencoder

model demonstrating the highest accuracy. This

suggests that advanced machine learning tech-

niques can effectively capture the complexities of

energy consumption data, providing accurate and

reliable predictions.

Moreover, incorporating personalized recom-

mendations and gamification elements within the

mobile application has proven effective in motivat-

ing users to adopt energy-saving behaviors. Users

who received personalized recommendations and

participated in gamification activities showed a

significant reduction in their energy consumption,

highlighting the importance of user engagement in

achieving energy efficiency.

This research underscores the importance of

integrating IoT and machine learning technologies

in residential energy management systems. By

leveraging these technologies, it is possible to

develop innovative solutions that not only improve

energy efficiency but also actively involve users in

the process. The results of this research contribute

to the ongoing efforts to promote sustainability

and reduce the environmental impact of energy

consumption in residential settings.

Future work will focus on further refining the

predictive models and expanding the dataset

to include a broader range of appliances and

user behaviors. Additionally, exploring the

integration of renewable energy sources and

smart grid technologies into the system will be

a key area of future research. By continuing

to develop and enhance these technologies, it

will be possible to create more effective and

comprehensive energy management solutions for

residential environments.
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