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Abstract. The study of facial expressions in
sign language has become a significant research
area, as these expressions not only convey personal
states, but also enhance the meaning of signs within
specific contexts. The absence of facial expressions
during communication can lead to misinterpretations,
underscoring the need for datasets that include facial
expressions in sign language. To address this, we
present the Facial-BSL dataset, which consists of
videos capturing eight distinct facial expressions used
in Brazilian Sign Language. Additionally, we propose a
two-stream model designed to classify facial expressions
in a sign language context. This model utilizes
RGB images to capture local facial information and
texture map images to record facial movements. We
assessed the performance of several deep learning
architectures within this two-stream framework, including

Convolutional Neural Networks (CNNs) and Vision
Transformers. In addition, experiments were conducted
using public datasets such as CK+, KDEF-dyn, and
LIBRAS. The two-stream architecture based on the Swin
Transformer model demonstrated superior performance
on the KDEF-dyn and LIBRAS datasets and achieved
a second-place ranking on the CK+ dataset, with an
accuracy of 97% and an F1-score of 95%.

Keywords. Facial expressions in sign language, RGBD
data, texture map images, two-stream architecture,
swin Transformer.

1 Introduction

According to data from the World Health Orga-
nization [59], approximately 5% (430 million) of

Computación y Sistemas, Vol. 29, No. 2, 2025, pp. 773–792
doi: 10.13053/CyS-29-2-5119

ISSN 2007-9737



people worldwide have disabling hearing loss,
a number projected to be 700 million people
by 2050. Deaf people who cannot hear or
have limited hearing rely on sign language to
communicate with others. Unfortunately, there
is a communication gap between hearing and
hearing-impaired individuals due to the lack of
knowledge of sign language and interpreters in the
media, public and private institutions, and other
areas [27].

Sign language is defined as nonverbal com-
munication, where a sign is the basic unit
that consists of non-manual parameters such as
movement of the face, eyes, head and torso;
and manual parameters such as configuration,
orientation, location and movement of the hands
[25]. Sign language is similar to spoken language
because it presents grammatical structures that
vary depending on the country or culture where
it is used [52]. There are various sign languages
in the world, such as American Sign Language,
Brazilian Sign Language, Peruvian Sign Language,
among others [14]. Additionally, both oral language
and sign language share similarities in prosody.
In oral language, individuals naturally vary their
tone of voice, volume, and pause, while in
sign language, facial expressions, body postures,
and movements are used during communication.
When interacting with each other within an oral
environment, hearing-impaired individuals adopt
forms of communication that involve gestural
movements and facial expressions, utilizing visual
and other senses [10].

Facial expressions of hearing-impairment indi-
viduals convey information about the emotional
state of a person without any barriers, just as
oral language does [30]. They are also part of
the lexicon, grammar, syntax, and semantics of
sign language, where they serve to emphasize
or intensify signs as needed. In this way, facial
expressions are combinations of facial behaviors
and movements performed by humans during
communication [26, 49].

However, it can be challenging to understand
the nuances of facial expressions in sign language
when learning; along with the absence of facial
expressions during communication, it can produce
an incorrect interpretation of the meaning or

identification of facial expressions in a particular
context, it can lead to inadequate reactions or
misinterpretations because it does not convey the
message, potentially resulting in misunderstand-
ings [10, 14].

Many researchers are interested in research on
sign language to facilitate communication [6, 21,
29, 32, 57]. However, authors sometimes tend to
ignore facial expressions in the recognition task
in the literature, instead focusing on gestures or
splitting the structural components of signs, such
as the configuration of the hand and movement
type [25]. The investigations conducted in [31],
assume that a language recognition system is
incomplete without considering facial expressions.
Therefore, facial expressions in sign language
have become an emerging area of research due to
scientific advances in human-computer interaction,
security, and academia.

The main contributions of this research are
as follows:

— We introduce the Facial-BSL dataset, a
publicly available collection of continuous
videos capturing eight facial expressions in
Brazilian Sign Language (BSL).

— We develop a process to generate texture
map images that encode facial changes
and movements during sign performance.
These texture map images are computed
by analyzing the distances of movements
between adjacent landmarks over time in
isolated videos.

— We propose a two-stream architecture that
uses the Swin-Transformer model as its
backbone. The model inputs consist of both
RGB and texture map images.

The rest of this paper is organized as
follows: Section 2 reviews related works on facial
expressions in sign language, Section 3 presents
the existing facial expressions in sign language
datasets. In Section 4 the proposed dataset
is discussed in detail. Section 5 explains our
proposed methodology. Section 6 presents the
experimental results and discussion conducted
on the proposed dataset and other datasets
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related to facial expressions. Section 7 mentions
the strengths, limitations and future directions
about the research. Finally, Section 8 provides
the conclusions.

2 Related Work

The field of facial expression recognition in sign
language has received significant attention from
researchers. This section presents an overview
of the methodologies proposed in the literature.
Initially, Friesen and Ekman, [22] developed the
Facial Action Coding System (FACS) to categorize
facial movements based on their appearance
on the face. The system identifies 46 facial
action units (FAU), encoded as group or individual
facial muscle movements. Therefore, numerous
research studies have been conducted on facial
expressions [5, 14, 17, 27, 33, 50, 54].

Deshpande et al., [18] identified the basic facial
expressions from German Sign Language videos.
The methodology involved using a pre-trained
model, applying preprocessing techniques, and
using machine learning models with K-fold
cross-validation. The experiments showed no
significant difference between the MobileNet
and EfficientNet models in the recognition task.
Similarly, Mukushev et al., [44] conducted a
study on Kazakh-Russian Sign Language (K-RSL),
focusing on signs with similar manual components
but different non-manual components such as
eyebrow height, facial expression, and head
position. The authors compared the performance
of manual features, and manual features combined
with non-manual features extracted from 20
signs. The results showed that the addition of
non-manual features improved the results by 5%,
achieving 78.2% accuracy for 20 classes and
77.9% accuracy for two classes. Additionally,
Javaid and Rizvi, [28] introduced a framework
for recognizing non-manual features and manual
gestures in American Sign Language using a
multimodal approach. The framework utilizes a
modified version of the YOLOv5 model to detect
faces and hands, followed by a refined C3D
architecture to extract features from both regions.
These features are then concatenated and fed into

an LSTM network. The authors conducted exper-
iments on the RWTH-PHONIX-WEATHER-2014T,
SILFA, and PkSLMNM datasets and obtained
excellent results.

Facial expressions are also considered in sign
language translation, along with manual gestures
and body movements to emphasize the meaning
of the signs. Irasiak et al., [27] proposed the
Avatar2PJM project to translate the Polish Sign
Language. The framework incorporated action unit
recognition for annotating facial expressions, which
served as inputs for machine learning models. Liu
et al., [37] studied Grammatical Facial Expressions
(GFE). They used action units and facial landmarks
of facial expressions as input graphs for Graph
Convolutional Networks (GCN) on two datasets:
BUHMAP and LSE GFE.

The study evaluated three CNN architectures
(VGG, MobilenetV2, and a custom CNN), and
found that GCN was effective for GFE. Guerra et
al., [25] extended the work of [49], which focused
on recognizing of Brazilian Sign Language (BSL)
signs through facial expressions. The researchers
re-labeled videos of ten signs with one of six facial
expressions that closely resembled them.

They conducted experiments to recognize facial
expressions, achieving an average accuracy of
89.33% with the KNN method, while Random
Forest and Support Vector Machine achieved an
average accuracy of 91.33%. Similarly, Cardoso
et al., [11] focused on GFEs in BSL, and proposed
a framework consisting of two modules: a module
that identifies hand shapes, orientations, and
movements; and a grammar module that combines
the outputs of the previous module to give the
meaning of a composition of elements.

A Multilayer Perceptron (MLP) neural network
was used to classify six classes of GFEs among
the eight expressions used in BSL. Other authors
explored FACS to annotate facial actions of
the facial muscles, and identify new FACS in
BSL related to basic emotions; they conducted
experiments using various models, including
CNNs, AlexNet and VGG-16, as well as a hybrid
CNN+LSTM, on a video dataset of twenty-three
BSL sentences [14–16].

On the other hand, it is worth mentioning
that vision transformers models (ViT) have
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demonstrated excellent performance in tasks
such as recognition, segmentation, and object
detection [20, 38]. As a result, many authors
have incorporated them into their research of face
and facial expression recognition [1, 3, 7, 12,
36, 41, 63]. Thus, we proposed to use two
ViT models as the backbone of our proposed
experimental schemes.

In addition, the literature review discusses
facial expressions in sign language and presents
various methodologies, datasets, and techniques
for analyzing RGB images captured by Kinect
sensors or cameras. Each proposal differs in
how it obtains input data, such as landmarks,
AUs, graphs, spatio-temporal data, key points,
and geometric-based features. The authors also
used different pre-trained deep learning models,
CNNs, and SVMs to improve recognition accuracy.
However, there is a lack of research on the use of
vision transformers to study facial expressions in
sign language.

Finally, sign language varies across countries
and cultures, which limits the available datasets.
Additionally, the meaning of a word can differ
when used in a sentence. Most research focuses
solely on recognizing basic emotions, omitting
other types of facial expression present in sign
language. In some research, the authors separate
facial expressions from hand movements, forcing
their recognition to be independent of the original
meaning. This can result in relabeling them as
basic emotions. Therefore, the research on facial
expressions in sign language is an ongoing field
of study. So, we will explore additional types of
facial expressions in sign language beyond the
basic emotions.

3 Facial Expressions in Sign Language
Datasets

Table 1 displays the datasets related to facial
expressions in sign language that are available in
the literature. Some of these datasets are available
for free download, while others require contacting
the authors. The datasets listed in Table 1 provide
RGB videos [2, 4, 11, 14, 25, 44], facial action units
(FACs) [14, 47] and facial landmarks [14, 31, 47].

Some authors labeled facial expressions in
manual signs to better understand the meaning of
a sign [25, 31, 44]. Meanwhile, datasets proposed
by [11, 14, 47] used grammatical facial expressions
with FACs in sentences or phrases to convey
desired meaning in discourse. In contrast, Aran
et al., [4] labeled facial expressions in videos that
include basic emotions with head movements to
differentiate signs with similar manual components.
Alaghband et al., [2] extracted facial images
of seven basic emotions from the public TV
station PHOENIX, including semi-blurry facial
images with different head poses, orientations, and
movements. However, the authors did not define
any subjects.

These datasets provide different approaches
to studying facial expressions in sign language.
However, some are not accessible for free due
to broken download links or non-functional email
contacts. Additionally, in some cases, facial
expressions have been isolated from the original
sign, resulting in an incomplete representation of
their meaning. It is important to note that not
all of these datasets have been validated by a
sign language expert. Furthermore, many datasets
lack a clear categorization criterion and are often
based on daily usage. In most cases, the datasets
have low intra-class variance and high inter-class
variance. However, Silva and Severo, [14]
classifies Brazilian facial expressions associated
with FACs and added some facial expressions
that are not documented in the literature. To
address these limitations, we propose a publicly
available dataset for recognizing facial expressions
in Brazilian Sign Language. The dataset shows
both intra-class and inter-class variation. It
has been validated by a sign language expert
and provides data extracted from the Microsoft
Kinect V1, including RGB-D data, to support
future research.

4 Proposed Facial-BSL Dataset

We propose a new facial expression sign language
dataset. The proposed Facial-BSL dataset
includes recordings of ten subjects performing
eight facial expressions in Brazilian Sign Language
(angry, laugh, surprise, yawn, full, agree, cry
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Table 1. Facial expressions in sign language datasets

Dataset author Data provided Vocabulary Subjects Type of
sign language Availability

RGB FACs Facial
landmarks

Aran et al. [4] ✓ ✓
8 non-manual
signs 11 Turkish Contact to

the authors

Rezende et al. [49] ✓
10 facial expressions
of signs 1 Brazil Contact to

the authors

Kumar et al. [31] ✓
51 sign
word gestures 10 India Contact to

the authors

Cardoso et al. [11] ✓ 9 GFEs 1 Brazil Contact to
the authors

Alaghband et al. [2] ✓
8 facial
expressions not defined Germany Free to

download

Mukushev et al. [44] ✓ 20 signs 5 Kazakh
Russian

Free to
download

da Silva et al. [14] ✓ ✓ ✓
23
sentences 10 Brazil Request to

the authors

Porta-Lorenzo et al. [47] ✓ ✓ 6 GFEs 106 Spanish Free to
download

Fig. 1. An RGB video sample of angry facial expression
from Facial-BSL dataset

and empty), showcasing both intra-class and
inter-class variation of facial expressions that
belong to signs. Each subject recorded six videos,
each approximately 33 seconds long, with an
average of 15 facial expressions per video. The
facial expressions are repeated in different orders
within the sequence of a video, and the subjects
have no restrictions on recording the dataset.
Moreover, subjects performed the same sign at
different speeds in the videos, resulting in a varying
number of frames per facial expression class. This
enhances the diversity of our proposed dataset.

Figure 1 shows an RGB video sample of angry
facial expression, and Figure 2 displays a depth
sample of a surprised facial expression, including

Fig. 2. Depth data for the surprised facial expression
from Facial-BSL dataset

three views for the appreciation of facial features.
Figure 3 shows the eight facial expressions
included in the Facial-BSL dataset. The facial
expressions share facial muscle movements, i.e.
angry with cry, laugh with agree, and surprise
with yawn. This indicates that the samples exhibit
inter-class and intra-class variations, which present
a challenge for the recognition task.

Table 2 shows the distribution of video samples
across different facial expression classes in the
Facial-BSL dataset. The dataset comprises 996
videos that have been manually labeled with the
start and end times for each facial expression. The
goal of this dataset is to provide both isolated and
continuous facial expression videos, offering color
and depth information along with precise labeling
by an expert in Brazilian Sign Language.
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Fig. 3. Eight facial expressions in the Facial-BSL dataset

Table 2. Distribution of the number of samples for each
type of facial expression

Type of facial
expression

Number of
video samples

0). Angry 121
1). Laugh 123
2). Surprise 125
3). Yawn 121
4). Cry 121
5). Full 121
6). Agree 122
7). Empty 142

To increase the number of samples in the
dataset, we applied data augmentation techniques,
which involved using various filters, rotations, and
transformations on the videos. Consequently, the
total number of videos increased significantly to
996 + 4979 = 5975. This augmentation is essential
for training deep learning models to ensure the
generalization of the recognition task [35].

Table 3 shows the distribution of facial expres-
sion samples per class and subject before and
after the data augmentation. Each class number
is associated with the type of facial expression
in Table 2. The dataset is partially imbalanced;
however, data augmentation increases the number
of samples available for the training stage.

5 Proposed Methodology

The proposed methodology pipeline comprises
three stages: data preprocessing, texture map
generation, and two-stream architecture design, as
illustrated in Figure 4. Each stage will be explained
in detail in the following subsections.

5.1 Data Preprocessing

The videos demonstrate the dynamic movement
of facial muscles that represent facial expressions.
To preprocess the videos, we extracted facial
landmarks using the MediaPipe library [40]. The
location of landmarks aids in segmenting faces
from the background. In order to improve the
processing speed, we selected 290 landmarks
out of the 468 landmarks available. This
resulted in creating separate sub-videos of faces
corresponding to each facial expression. The
subvideos contained different numbers of frames
due to variations in the speed at which the subjects
recorded their facial expressions. To ensure
consistency, we have used an average of 30
frames per video. If the original subvideo contains
a different number of frames, we adjust the frame
count accordingly by decreasing or increasing the
number of frames.

5.2 Texture Map Image Generation

Considering the findings of [19], we put forth a
texture map method to capture facial movements
in video. The researchers in [19], encoded the
motion of 3D body joint landmarks into RGB texture
images. In this study, we propose to use facial
landmarks instead of body joints, since the goal is
to capture facial motion. In contrast to body joints,
landmarks are two-dimensional points extracted
from faces in each frame and map subtle changes
in features such as the eyes, eyebrows, mouth,
among others. Accordingly, the landmarks were
classified into three regions for computing texture
map images (see Figure 5):

— Region 1 (R1) encompasses the forehead,
eyes, and the upper portion of the nose.
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Table 3. Distribution of samples per class before and after data augmentation

Subject
Video samples before the

data augmentation
Video samples after the

data augmentation
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

p1 11 12 12 12 12 12 12 15 55 60 60 60 60 60 60 75
p2 13 12 13 12 12 12 12 14 65 60 65 60 60 60 60 70
p3 10 10 10 11 11 9 10 10 51 51 52 50 51 47 51 51
p4 12 13 13 12 12 12 12 15 60 65 65 60 60 60 60 75
p5 11 11 12 11 11 13 12 14 55 55 60 55 55 65 60 70
p6 12 12 12 12 12 12 12 13 60 60 60 60 60 60 60 65
p7 11 12 12 11 12 12 12 15 55 60 60 55 60 60 60 75
p8 17 16 16 16 15 15 16 21 85 80 80 80 75 75 80 105
p9 12 13 13 12 12 12 12 12 60 65 65 60 60 60 60 60
p10 12 12 12 12 12 12 12 13 60 60 60 60 60 60 60 65

Total per
class 121 123 125 121 121 121 122 142 606 616 627 600 601 607 611 711

Total 996 4979

— Region 2 (R2) extends from the eyes to the
lower part of the nose.

— Region 3 (R3) includes the area from the
bottom of the nose to the jaw.

These three types of features are calculated from
all combinations of points as follows (Figure 6):

(a) Point-to-Point Distance (PoP) calculates the
Euclidean metric between two landmarks.
Equation 1 uses pl and pk to represent
the landmark points, with t representing the
frame number:

PoP = ||ptl − ptk||. (1)

(b) Point-to-Line Distance (PoL) calculates the
Euclidean metric between a landmark and
a line formed by two adjacent landmarks.
Equation 2 represents the landmark point Pl

and t represents the frame number. Lk

represents the line formed by two adjacent
landmark points:

PoLd = dist(P t
l − Lt

k). (2)

(c) Line-Line Distance (LoL) calculates the angle
formed by two lines in a region. Equation 3,
Ll and Lk represent two lines, each formed

by two adjacent landmarks, and t is the
frame number:

LoLd = acosd(Lt
l − Lt

k). (3)

The metric used to compute the distances
between landmarks points was the Euclidean
metric, following the approach of [19] who achieved
better results in their proposal. In this study,
we considered the possibility of using other
well-known metrics in mathematics. However,
we chose to use the Manhattan metric and the
Euclidean metric for simplicity. After calculating
the distance for each region (R1, R2, R3), the
feature vectors are encoded into an RGB image.
This is because the spatial feature vectors capture
temporal information that represents facial motion.
The RGB image has columns that represent the
feature space at one frame and rows that represent
the sequence of a particular feature. Next, the
feature vectors are concatenated with PoP in the
R channel, PoL in the G channel, and LoL in
the B channel. Subsequently, the texture maps
from each region (R1, R2, R3) were merged to
create a single 224×224 texture map, as illustrated
in Figure 5.

5.3 Proposed Two-stream Architecture

This paper presents an architecture for recognizing
facial expressions in Brazilian sign language
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Fig. 4. Pipeline of the proposed methodology

Fig. 5. Texture map image generation

videos (Figure 4). Unlike previous works, we
used two types of images: an RGB image
of the last frame of the video (224 × 224 × 3
pixels) to extract local information about the facial
expression, and a texture map image (224 ×
224 × 3 pixels) to extract information about the

Fig. 6. a) PoP distance, b) PoL distance, and c) LoL
distance from region R1 using some landmarks

movement of the facial landmarks. These two
images are input to a two-stream architecture.
Each stream in the architecture is comprised
of a Swin Transformer [38], which hierarchically
represents non-overlapping small patches of raw
pixels from an image. These patches undergo
processing through multiple Transformer blocks
with modified self-attention calculations, allowing
for the handling of spatial and semantic information
data. As the network deepens, the patches
are merged. Subsequently, Swin Transformer
blocks are applied to transform features, marking
the initial stage of image patch fusion and
feature transformation. This process is repeated
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twice, resulting in stages designated as stage
3 and stage 4. Collectively, these stages
yield a hierarchical representation with feature
map resolutions equivalent to those of typical
convolutional networks. This makes it suitable
for image classification, which is relevant to our
proposed model. Finally, the outputs of each
stream are combined in a fully connected layer to
classify the facial expression corresponding to the
input images.

6 Experimental Results and
Discussion

This section presents the experiments conducted
to validate the proposed methodology. The
evaluation protocol is defined in section 6.1, and
the results of the experiments are presented in
section 6.2.

6.1 Evaluation Protocol

We used two state-of-the-art datasets related to
facial expressions: CK+ from [39] and KDEF-dyn
from [9] that provided sequences of frames related
to basic emotions. In addition, we used a Brazilian
Sign Language dataset proposed in [49], referred
to as LIBRAS in this paper. Our proposed
dataset, Facial-BSL, was also included. The
remaining datasets in Table 1 were excluded from
the experiments because they focused on FACS
of grammatical facial expressions or non-manual
signs. Additionally, the dataset from [2] was
excluded because the partition was on gender.

To generate the texture map images, two
distance metrics were employed: the Euclidean
and Manhattan. Experiments were conducted for
each metric to ascertain which one improved the
performance of the proposed architecture. More-
over, five experimental schemes were compared to
determine the optimal deep learning architecture:

— M2S RESNET200 represented a two-stream
architecture that took in input an RGB image
and a texture map image. It employed the
resnet200d.ra2 in1k model proposed by [58],
as its backbone.

— M2S GOOGLE VIT represented a two-stream
architecture that took in input an RGB image
and a texture map image. It employed the
google/vit-base-patch16-224 model proposed
by [60], as its backbone.

— SWIN BASE 224 represented a two-stream
architecture that took in input an RGB image
and a texture map image. It employed the
swin-base-patch4-window7-224-in22k model
proposed by [38], as its backbone.

— TM GOOGLE VIT was a single-stream archi-
tecture that took a texture map image as
input. It used the google/vit-base-patch16-224
model proposed by [60], as its backbone.

— TM SWIN BASE 224 was a single-stream
architecture that took a texture map image
as input. It used the swin-base-patch4-
window7-224-in22k model proposed by [38],
as its backbone.

— IM SWIN BASE 224 was a single-stream
architecture that took the last frame image
as input. It used the swin-base-patch4-
window7-224-in22k model proposed by [38],
as its backbone.

All schemes used the same experimental
configuration, which consisted of a batch size of
225 with the Adam optimizer and a learning rate
of 0.001. The ReduceLROnPlateau method was
applied if there was no improvement after four
epochs, and the learning rate was reduced by a
factor of 0.1. Early stopping was implemented
if there was no improvement after 10 epochs
in the training stage. To prevent overfitting in
the fully connected layers, a dropout ratio of 0.4
was applied. The models were trained for 50
epochs, although this may vary depending on
early stopping. The layers were partially unfrozen
by 20% for fine-tuning. The model performance
was evaluated using accuracy, precision, recall,
and F1-score metrics. All experiments were
carried out on Google Colab, using a GPU Testla
V100-SXM2-16GB.

The models were evaluated on datasets with
10-fold person-independence cross-validation ex-
periments (except for the KDEF-dyn dataset, which
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had 40 folds). This ensured a fair division and
prevented subjects from the training set appearing
in the test set. The data augmentation technique
was used in the training samples.

6.2 Experimental Results

This section presents the results obtained from
the proposed methodology. The experimental
schemes were used to determine the best
deep learning architecture and to evaluate the
contribution of each type of information considering
the RGB image and the texture map image
generated by two different metrics, the Euclidean
and Manhattan. Furthermore, experiments were
conducted to demonstrate which metric enhanced
the performance of the proposed architecture. The
following sections will present the results for each
dataset, applying the experimental configurations
outlined in section 6.1.

6.2.1 Facial-BSL Dataset Experiments

Table 4 presents the results of the five evaluated
schemes, including accuracy, precision, recall,
and F1-score, for the 10-fold person-independence
cross-validation. Additionally, it presents the
average and standard deviation of each metric of
the Facial-BSL dataset.

The SWIN BASE 224 scheme performed better
than the other schemes with an average precision
of 95% and an average accuracy, recall, and
F1-score of 94%. The average standard deviation
for accuracy, precision, and recall was 0.08, and
for F1-score was 0.09, indicating no variability in
results for each fold. The proposed architecture
took an RGB image and a texture map image
(generated by the Euclidean metric) as input.
Our analysis leaded us to conclude that the
SWIN BASE 224 scheme was the most effective
for this image classification task. This is due to
its hierarchical Swin Transformer backbone, which
reduced computational complexity.

As previously stated, we conducted the same
experiments by changing the type of texture map
image generated by the Manhattan metric. Table 5
displays the results of the five schemes, and once
again, the SWIN BASE 224 scheme outperformed

the others with 95% accuracy, recall, and F1-score,
and 96% precision. The average standard
deviation for accuracy, recall, and F1-score was
0.07, and for precision was 0.05. We concluded
that the Manhattan metric slightly improved the
performance of the scheme by 1%.

The outcomes of both experiments demon-
strated that the F1-score metric was well-suited
for the analysis of imbalanced datasets, such
as Facial-BSL. The F1-score exhibited high
values and exhibited slight differences in both
experiments, as did the accuracy, precision,
and recall. This indicated that the model was
efficacious in recognizing facial expressions within
their respective classes.

Table 6 presents the confusion matrix of the
average results of all folds of the Facial-BSL
dataset, calculated using the Manhattan metric.
The class ‘cry’ exhibited the highest number of
errors, with the model incorrectly identifying it
with ‘angry’, ‘yawn’, and ‘agree’, despite the
distinctiveness of their facial movements. ‘Agree’
also was misclassified with ‘full’. Furthermore, the
labels ‘surprise’ and ‘yawn’ were confused due
to their shared mouth opening. Additionally, the
labels ‘laugh’ and ‘yawn’ were confused due to their
similar mouth openings. Finally, the labels ‘yawn’,
‘full’, and ‘empty’ exhibited a few errors.

We conducted experiments on the other
datasets using the SWIN BASE 224 scheme
and its variants (TM SWIN BASE 224 and
IM SWIN BASE 224). Additionally, we evaluated
the schemes using two types of texture map
images generated by the Euclidean and Manhattan
metrics separately. Finally, we compared our
results with the state-of-the-art methods.

6.2.2 LIBRAS Dataset Experiments

The dataset proposed in [49] consists of 100
videos of facial expressions extracted from 10
signs, recorded by a single subject. The
dataset was balanced, with 100 videos in total.
Table 7 shows the results of the dataset using
10-fold cross-validation, employing the Euclidean
and Manhattan metric for the generation of
texture maps.
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Table 4. Results of the 10-fold person-independence cross-validation on the Facial-BSL dataset using the Euclidean
metric to generate texture maps

FACIAL-BSL dataset -Euclidean metricScheme Evaluation metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean std
Accuracy 1.00 0.92 0.91 0.95 0.98 0.72 0.99 0.95 1.00 0.99 0.94 0.08
Precision 1.00 0.93 0.91 0.96 0.98 0.74 0.99 0.95 1.00 0.99 0.95 0.08
Recall 1.00 0.92 0.91 0.95 0.98 0.72 0.99 0.95 1.00 0.99 0.94 0.08SWIN BASE 224

F1-score 1.00 0.92 0.90 0.95 0.98 0.69 0.99 0.95 1.00 0.99 0.94 0.09
Accuracy 0.98 0.88 0.99 0.86 0.84 0.99 0.91 0.78 0.79 0.90 0.89 0.08
Precision 0.99 0.92 0.99 0.79 0.89 0.99 0.92 0.73 0.85 0.94 0.90 0.09
Recall 0.98 0.87 0.99 0.86 0.85 0.99 0.91 0.77 0.79 0.90 0.89 0.08M2S GOOGLE VIT

F1-score 0.98 0.87 0.99 0.81 0.84 0.99 0.90 0.73 0.77 0.88 0.88 0.09
Accuracy 0.85 0.86 0.95 0.85 0.96 0.99 0.95 0.82 0.91 0.94 0.91 0.06
Precision 0.88 0.90 0.95 0.85 0.96 0.99 0.95 0.84 0.92 0.94 0.92 0.05
Recall 0.85 0.87 0.95 0.84 0.96 0.99 0.95 0.82 0.91 0.93 0.91 0.06M2S RESNET200

F1-score 0.85 0.86 0.95 0.83 0.96 0.99 0.95 0.81 0.91 0.94 0.91 0.06
Accuracy 0.71 0.43 0.64 0.71 0.64 0.68 0.69 0.56 0.63 0.65 0.63 0.08
Precision 0.71 0.43 0.65 0.72 0.65 0.66 0.72 0.57 0.65 0.66 0.64 0.09
Recall 0.71 0.42 0.63 0.71 0.63 0.69 0.70 0.56 0.63 0.64 0.63 0.09TM SWIN BASE 224

F1-score 0.69 0.39 0.63 0.71 0.61 0.64 0.69 0.56 0.63 0.64 0.62 0.09
Accuracy 0.98 0.86 0.89 0.99 0.97 0.76 0.98 0.95 0.99 0.98 0.94 0.08
Precision 0.99 0.90 0.90 0.99 0.98 0.79 0.98 0.95 0.99 0.98 0.95 0.06
Recall 0.98 0.85 0.89 0.99 0.97 0.76 0.98 0.95 0.99 0.98 0.93 0.08IM SWIN BASE 224

F1-score 0.98 0.85 0.89 0.99 0.97 0.75 0.98 0.95 0.99 0.98 0.93 0.08

Table 5. Results of the 10-fold person-independence cross-validation on the Facial-BSL dataset using the Manhattan
metric to generate texture maps

Facial-BSL - Manhattan metricScheme Evaluation metric Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8 Split 9 Split 10 Mean std
Accuracy 1.00 0.89 0.93 1.00 0.98 0.78 0.98 0.97 1.00 0.98 0.95 0.07
Precision 1.00 0.91 0.94 1.00 0.98 0.85 0.98 0.97 1.00 0.98 0.96 0.05
Recall 1.00 0.89 0.93 1.00 0.98 0.78 0.98 0.97 1.00 0.98 0.95 0.07SWIN BASE 224

F1-score 1.00 0.89 0.93 1.00 0.98 0.77 0.98 0.97 1.00 0.98 0.95 0.07
Accuracy 0.98 0.93 0.94 0.86 0.96 0.99 0.88 0.84 0.84 0.97 0.92 0.06
Precision 0.98 0.93 0.95 0.89 0.96 0.99 0.91 0.75 0.87 0.97 0.92 0.07
Recall 0.98 0.93 0.93 0.86 0.96 0.99 0.88 0.83 0.83 0.97 0.92 0.06M2S GOOGLE VIT

F1-score 0.98 0.93 0.94 0.86 0.96 0.99 0.87 0.78 0.82 0.97 0.91 0.07
Accuracy 0.91 0.85 0.98 0.84 0.98 0.98 0.93 0.80 0.90 0.96 0.91 0.07
Precision 0.93 0.91 0.98 0.84 0.98 0.99 0.93 0.82 0.91 0.96 0.93 0.06
Recall 0.90 0.85 0.97 0.83 0.99 0.98 0.92 0.80 0.89 0.96 0.91 0.07M2S RESNET200

F1-score 0.90 0.85 0.97 0.82 0.98 0.98 0.92 0.80 0.89 0.96 0.91 0.07
Accuracy 0.71 0.39 0.61 0.72 0.69 0.69 0.71 0.54 0.66 0.61 0.63 0.10
Precision 0.70 0.46 0.64 0.73 0.68 0.66 0.73 0.54 0.69 0.65 0.65 0.09
Recall 0.71 0.38 0.61 0.72 0.68 0.69 0.71 0.54 0.67 0.61 0.63 0.11TM SWIN BASE 224

F1-score 0.69 0.40 0.58 0.72 0.67 0.64 0.71 0.53 0.67 0.61 0.62 0.10
Accuracy 1.00 0.87 0.89 0.96 0.99 0.76 0.99 0.93 1.00 0.99 0.94 0.08
Precision 1.00 0.90 0.89 0.97 0.99 0.84 0.99 0.94 1.00 0.99 0.95 0.06

Recall 1.00 0.87 0.89 0.96 0.99 0.76 0.99 0.93 1.00 0.99 0.94 0.08IM SWIN BASE 224

F1-score 1.00 0.87 0.89 0.96 0.99 0.74 0.99 0.93 1.00 0.99 0.94 0.08

The SWIN BASE 224 scheme represented a
two-stream architecture that took in input an RGB
image and a texture map image; this scheme
outperformed the other variants in both types
of texture map images (Table 9). In the case
of the texture map generated by the Euclidean
metric, this scheme obtained an average accuracy
and recall of 94%, an average precision, and an
F1-score of 92%. The average standard deviation

was 0.05 for accuracy and precision, 0.07 for
F1-score, and 0.08 for precision. Similarly, in
the case of the texture map generated by the
Manhattan metric, the SWIN BASE 224 scheme
outperformed the other variants. The accuracy
and recall were 94%, while the average precision
and F1-score were 93%. The average standard
deviation was 0.05 for accuracy and recall, 0.06
for F1-score, and 0.07 for precision. Based on
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Table 6. Confusion matrix on Facial-BSL dataset

Facial

expre-

ssions

angry laugh
sur-

prise
yawn cry full agree empty

angry 0.90 0.00 0.00 0.00 0.07 0.01 0.03 0.00

laugh 0.00 0.98 0.00 0.02 0.00 0.00 0.00 0.00

sur-

prise
0.00 0.00 0.93 0.07 0.00 0.00 0.00 0.00

yawn 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.00

cry 0.07 0.00 0.00 0.03 0.87 0.00 0.02 0.00

full 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.01

agree 0.00 0.00 0.00 0.00 0.00 0.04 0.95 0.00

empty 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.99

the results of both experiments, we concluded that
the Manhattan metric improved the performance of
the SWIN BASE 224 scheme by 1% in terms of
average precision and F1-score.

Table 7. The average results on the LIBRAS dataset
of 10-fold cross-validation using the Euclidean and
Manhattan metric for generating texture maps

Scheme Evaluation Metric
Euclidean metric Manhattan metric

Average std Average std

SWIN BASE 224

Accuracy 0.94 0.05 0.94 0.05
Precision 0.92 0.08 0.93 0.07
Recall 0.94 0.05 0.94 0.05
F1-Score 0.92 0.07 0.93 0.06

TM SWIN BASE 224

Accuracy 0.79 0.10 0.83 0.09

Precision 0.80 0.10 0.81 0.12

Recall 0.79 0.10 0.83 0.09

F1-Score 0.77 0.11 0.81 0.11

IM SWIN BASE 224

Accuracy 0.94 0.05 0.92 0.06

Precision 0.91 0.07 0.91 0.07

Recall 0.94 0.04 0.92 0.06

F1-Score 0.93 0.06 0.91 0.07

Table 8 displays the confusion matrix of the
average results of all folds of the LIBRAS
dataset using the Manhattan metric. The
SWIN BASE 224 scheme was confused between
the facial expressions ‘to annihilate’, ‘to accuse’,
‘to gain weight’, and ‘angry’, as they shared similar
movements of the cheeks, mouth, and furrowed
eyebrows. The facial expression ‘to annihilate’
had the highest number of errors. Also, ’to gain
weight’ involved inflating the cheeks with mouth
movements, and the model misclassified it with
‘slim’ and ‘angry’. The facial expression ‘to accuse’
was misclassified as ‘angry’, ‘to gain weight’, and
‘to calm down’. The facial expression ‘to calm

down’ was misclassified as ‘surprise’ due to the
similarity between the two expressions, and as
‘slim’ despite exhibiting distinct facial movements.
‘Surprise’ was misclassified as ‘happiness’ due to
the movement of the mouth, smile, and eyebrows.
‘Slim’ was misclassified as ‘to calm down’ despite
involving different facial movements. ‘Lucky’
was confused with ‘slim’ despite the significant
differences between the two. ‘Love’ was only
confused with ‘happiness’ because they both share
a smile and mouth movement. Finally, there were
no predicted errors in the class ‘happiness’.

We compared the proposed scheme with the
original paper proposed by [49] and found that
our scheme outperformed theirs with an average
accuracy of 94%, while the authors obtained an
average accuracy of 84%.

6.2.3 CK+ Dataset Experiments

The CK+ dataset proposed by [39] contained 327
sequences of frames from 118 subjects labeled
with seven basic expressions (angry, contempt,
disgust, fear, happiness, sadness, and surprise).
We followed the 10-fold person-independence
cross-validation, as explained in section A,
according to [42].

In Table 9, the SWIN BASE 224 scheme
obtained an average accuracy of 96%, an average
precision, recall, and an F1-score of 94% when
employing the Euclidean metric to generate the
texture maps. The average standard deviation was
0.04 for accuracy, 0.06 for precision, recall, and
F1-score, indicating no variability in the data. No-
tice that the IM SWIN BASE 224 scheme slightly
outperformed the SWIN BASE 224 scheme; the
IM SWIN BASE 224 scheme took an RGB image
as input to the single stream with Swin Transformer
as its backbone. This scheme achieved an average
accuracy and precision of 96%, an average recall
of 95%, and an average F1 score of 94%. We
used the F1-score to compare both schemes
because the CK+ dataset was unbalanced, so both
schemes achieved 94%.

Similarly, in the case of the texture map
generated by the Manhattan metric, the
SWIN BASE 224 scheme outperformed the
other variants. The average accuracy was 97%,
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Table 8. Confusion matrix on the LIBRAS dataset.

Facial

expressions

to calm

down

to

accuse

to calm

annihilate
to love

to gain

weight
happiness slim lucky surprise angry

to calm down 0.91 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.08 0.00

to accuse 0.03 0.88 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.02

to annihilate 0.00 0.09 0.87 0.00 0.01 0.00 0.00 0.00 0.00 0.03

to love 0.00 0.00 0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00

to gain weight 0.00 0.00 0.00 0.00 0.97 0.00 0.02 0.00 0.00 0.01

happiness 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

slim 0.03 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00

lucky 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.97 0.00 0.00

surprise 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.96 0.00

angry 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88

the average precision was 96%, and the average
recall and F1 score were 95%. The average
standard deviation was 0.03 for accuracy and
precision, 0.05 for recall and F1-score.

Table 9. The average results on the CK+ dataset of
10-fold cross-validation experiments using the Euclidean
and Manhattan metric for generating texture maps

Scheme Evaluation Metric
Euclidean metric Manhattan metric

Average std Average std

SWIN BASE 224

Accuracy 0.96 0.04 0.97 0.03
Precision 0.94 0.06 0.96 0.03
Recall 0.94 0.06 0.95 0.05
F1-Score 0.94 0.06 0.95 0.05

TM SWIN BASE 224

Accuracy 0.77 0.06 0.76 0.05

Precision 0.70 0.07 0.68 0.10

Recall 0.68 0.08 0.67 0.07

F1-Score 0.68 0.07 0.66 0.08

IM SWIN BASE 224

Accuracy 0.96 0.04 0.96 0.03

Precision 0.96 0.04 0.96 0.03

Recall 0.95 0.05 0.94 0.04

F1-Score 0.94 0.05 0.94 0.04

The results of both experiments indicated that
the Manhattan metric enhanced the performance
of the SWIN BASE 224 scheme by 1% in terms
of average accuracy, recall, and F1-score, and by
2% in terms of average precision. Consequently,
the SWIN BASE 224 scheme was employed in
conjunction with the Manhattan metric to facilitate
a comparative analysis with other methodologies
proposed within the existing literature.

Table 10 displays the confusion matrix of the
average results of all folds of the CK+ dataset
using the Manhattan metric. ‘Fear’ had the highest
number of errors. The model confused it with
‘happy’ despite the distinct facial movements, and
with ‘sad’ due to shared facial movements. ‘Sad’
was confused with ‘contempt’ and ‘angry’ due to
shared facial movements such as the mouth and
cheeks. ‘Angry’ was only confused with ‘disgust’.
Finally, ‘contempt’, ‘disgust’, ‘happy’, and ‘surprise’
had no predictive errors.

Table 10. Confusion matrix on the Ck+ dataset

Facial
expressions angry contempt disgust fear happy sad surprise

angry 0.98 0.00 0.02 0.00 0.00 0.00 0.00
contempt 0.00 1.00 0.00 0.00 0.00 0.00 0.00
disgust 0.00 0.00 1.00 0.00 0.00 0.00 0.00
fear 0.00 0.00 0.00 0.83 0.03 0.13 0.00
happy 0.00 0.00 0.00 0.00 1.00 0.00 0.00
sad 0.02 0.07 0.00 0.00 0.00 0.92 0.00
surprise 0.00 0.00 0.00 0.00 0.00 0.00 1.00

The CK+ dataset did not include the train-
ing/testing splits. Most literature papers divided
the data into three types of experiments: train/test
comparison [43, 48], 10-fold person-independence
cross-validation, k-fold subject-independent cross-
validation [43, 56], and 10-fold cross-validation of
randomly sampled data [3, 23, 37, 51, 55, 56, 61].
Additionally, some authors chose to use the 6
classes by removing the contempt class [13, 34,
45, 48], while others used 7 classes (standard),
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and still others used 8 classes by adding neutral
facial expressions.

To ensure a fair comparison, the training data
samples differed from those in the test data. For
instance, each fold was constructed by using 10
subsets of sampling ID in ascending order with
a step size of 10, as proposed by [42]. We
conducted a comprehensive search of papers
published between 2018 and 2024 that utilized
the same experimental protocol for recognizing
the seven standard facial expressions from the
CK+ dataset. Table 11 compares our model with
previous works on the extended CK+ dataset. Our
proposed scheme ranked among the top methods.

6.2.4 KDEF-dyn Dataset Experiments

The KDEF-dyn dataset, proposed in [9], consisted
of videos of six facial expressions: ‘laugh’, ‘sad’,
‘angry’, ‘fear’, ‘disgust’, and ‘surprise’. The videos
display only the face without ears against a black
background, with the expression starting from
neutral and progressing to the peak expression.
This dataset was balanced, with 40 subjects
recording one video of each of the six facial
expressions, resulting in a total of 240 videos.

We employed 40-fold person-independent cross-
validation to ensure a fair comparison with
state-of-the-art methods. Two experiments
were conducted as in the previous subsections,
differentiating by Euclidean and Manhattan metrics
for generating texture map images.

Table 12 shows the results of the 40-fold
person-independent cross-validation using the
Euclidean and Manhattan metrics for generating
texture maps. In the case of the Euclidean
metric, the SWIN BASE 224 scheme achieved an
average accuracy and recall of 95%, an average
precision of 93%, and an average F1-score of
94%. The average standard deviation was 0.07 for
accuracy and recall, 0.11 for precision, and 0.09
for F1-score, indicating no variability in the data.
Note that the IM SWIN BASE 224 scheme slightly
outperformed the SWIN BASE 224 scheme. The
IM SWIN BASE 224 scheme used the RGB image
as input to the single stream with the Swin
Transformer as its backbone. The scheme
achieved an average accuracy, precision, and

recall of 95% and an average F1 score of 94%.
The only difference was in the average precision,
which was 2% lower in the IM SWIN BASE 224.
This difference can be attributed to the dataset
containing only facial expressions without any
head movement.

Whereas in the Manhattan metric for generating
texture maps, the SWIN BASE 224 scheme
achieved an average accuracy, precision, and
recall of 94% and an average F1-score of
93% as shown in Table 12. The average
standard deviation was 0.07 for accuracy and
recall, 0.09 for precision and F1-score, indicating
no variability in the data. It is worth noting
that the IM SWIN BASE 224 scheme slightly
outperformed the SWIN BASE 224 scheme. The
IM SWIN BASE 224 scheme took as input an
RGB image to the single stream with Swin
Transformer as its backbone. The scheme
achieved an average accuracy, precision, and
recall of 95% and an average F1-score of 94%.
Based on the experiments, the Euclidean metric
slightly outperformed the Manhattan metric in
terms of accuracy, recall, and F1-score by 1%
in this dataset. However, the precision of the
Manhattan metric is 1% higher than that of the
Euclidean metric.

Table 13 displays the confusion matrix of the
average results of all folds of the KDEF-dyn dataset
using the Manhattan metric. Facial expressions
were analyzed based solely on facial motion,
excluding head movements. The facial expression
‘fear’ had the highest number of errors, as the
model often confused it with ‘surprise’ and ‘sad’
due to shared facial movements. Similarly, ‘angry’
was often confused with ‘sad’ and ‘disgust’ due to
shared movements of the mouth, eyebrows, and
cheeks. ‘Disgust’ was confused with several other
facial expressions, including ‘angry’, ‘surprise’,
‘sad’, and ‘fear’. ‘Sad’ was confused with ‘angry’
and ‘disgust’. Finally, ‘surprise’ was only confused
with ‘fear’, while ’laugh’ had no errors.

We compared our proposed scheme with the
work proposed by [46]. We followed the same
experimental protocol as the authors to make a fair
comparison. Table 14 shows the obtained results,
and both the Euclidean and Manhattan metrics
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Table 11. Comparison with the state-of-the-art methods on the CK+ dataset

Proposed Method Features Accuracy (%)

Spatial-temporal RNN [62] Multi-channel EEG signals 95.40

Island loss CNN [8] Facial images 94.35

Score fusion (base line) [42] Fixed dimension 94.80

Frame Attention networks [42] Feature representation 99.69

The algorithm combines gentle boost

decision trees and neural networks [24]
Local binary features 96.48

Hybrid 3D-CNN and ConvLSTM [53] Aligned facial images 95.10

SWIN BASE 224 two-stream model (our)
Texture map images

generated by Manhattan

metric and RGB images

97.00

Table 12. The average and std results on the KDEF-dyn
dataset of 40-fold person-independence cross-validation
experiments using the Euclidean and Manhattan metric
for generating texture maps

Scheme Evaluation Metric
Euclidean metric Manhattan metric

Average std Average std

SWIN BASE 224

Accuracy 0.95 0.07 0.94 0.07
Precision 0.93 0.11 0.94 0.09
Recall 0.95 0.07 0.94 0.07
F1-Score 0.94 0.09 0.93 0.09

TM SWIN BASE 224

Accuracy 0.49 0.14 0.55 0.13

Precision 0.46 0.18 0.56 0.18

Recall 0.49 0.14 0.55 0.13

F1-Score 0.44 0.16 0.52 0.15

IM SWIN BASE 224

Accuracy 0.95 0.07 0.95 0.07

Precision 0.95 0.09 0.95 0.09

Recall 0.95 0.07 0.95 0.07

F1-Score 0.94 0.09 0.94 0.09

Table 13. Confusion matrix on the KDEF-dyn dataset

Facial
expressions angry happy surprise sad fear disgust

angry 0.93 0.00 0.00 0.03 0.00 0.05
happy 0.00 1.00 0.00 0.00 0.00 0.00
surprise 0.00 0.00 0.99 0.00 0.01 0.00
sad 0.01 0.00 0.00 0.96 0.00 0.03
fear 0.00 0.00 0.08 0.01 0.91 0.00
disgust 0.03 0.00 0.02 0.01 0.01 0.94

of the SWIN BASE 224 scheme outperformed
the results.

Table 14. Comparison of the proposed method with
others on the KDEF-dyn dataset

Proposed Method Features Accuracy (%)

Deep stacked
autoencoder (DSA) [46]

Fusion of local
neighborhood
patterns and LBP.

88.50

SWIN BASE 224
Two-stream model (our)

Texture maps
generated by
Manhattan metric.

94.00

Texture maps
generated by
Euclidean metric.

95.00

7 Strengths, Limitations and Future
Directions

Our research has strengths like the proposed
Facial-BSL dataset validated by an expert.
The videos depicted various facial expressions
executed continuously, contributing to the state of
the art. We also propose a new method called
texture map image, which uses the Pop, PoL,
and LoL distances to detect variations between
adjacent landmarks over time. The study tested the
Euclidean and Manhattan metrics to calculate the
distance between landmarks. The results indicated
that the Manhattan metric improved the quality of
the results.

Finally, the experiments conducted with differ-
ent schemes demonstrated that the two-stream
approach based on the Swin Transformer model
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achieved better results. This approach was ex-
cellent for recognizing facial expressions involving
facial movement.

The work is limited to using literature recommen-
dations for transfer learning and data augmentation
in our pipeline due to the limited number of
samples in the datasets. Additionally, we only
compared our approach with different versions of
the schemes using the Facial-BSL dataset. Future
developments in this work will explore the depth
data of facial movement in the Facial-BSL dataset
and test other fusion methods. Moreover, other
attention models should be modified and tested to
improve the recognition of facial expressions that
share similar movements, such as anger, sadness,
and crying. Finally, the dataset should increase
the number of subjects, samples, and various
categories of facial expressions.

8 Conclusion

The research proposed a two-stream architecture
based on Swin Transformer model for the
recognition of facial expressions in sign language.
The proposed architecture takes as input an RGB
image and a texture map of facial expressions in
sign language. Moreover, the Facial-BSL dataset
was introduced for the purpose of recognizing
facial expressions in Brazilian Sign Language. It
should be noted that the videos in the Facial-BSL
dataset exhibited significant movements of the
head, jaw, and mouth, while the images in
the CK+ and KDEF-dyn dataset showed minimal
movements of the mouth and jaw, but not of
the head.

Several experimental schemes were tested on
the Facial-BSL dataset, including the use of both
Euclidean and Manhattan metrics for generating
texture maps. The SWIN BASE 224 scheme
exhibited superior performance relative to the
other schemes employing the Manhattan metric.
Moreover, it demonstrated superior performance to
M2S GOOGLE VIT and M2S RESNET200. The
SWIN BASE 224, which employs the Manhat-
tan metric, demonstrated superior performance
relative to the other schemes and the original
paper on the LIBRAS dataset. Furthermore,
it outperformed the other schemes on the CK+

dataset, although it was ranked second in
terms of state-of-the-art results. Nevertheless,
the IM SWIN BASE 224 demonstrated a 1%
improvement in performance compared to the
SWIN BASE 224 in the KDEF-dyn dataset due to
the absence of head movements and outperformed
the original paper.

These findings indicated that the
SWIN BASE 224 with the Manhattan metric
exhibited enhanced recognition performance and
outperformed CNN models.
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