
Framework to Support Radiologist Personnel
in the Diagnosis of Diseases in Medical Images

Using Deep Learning and Personalized DICOM Tags

Manuel Rodriguez-Contreras, J. Patricia Sánchez-Solı́s* , Gilberto Rivera, Rogelio Florencia

Universidad Autónoma de Ciudad Juárez,
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Abstract. Technological innovations in the healthcare
field have allowed medical images to be widely used in
the diagnostic care of patients since medical personnel
can analyze different body organs to identify any disease
through these images. The analysis of these images is
entirely within the domain of the specialist, who, based
on his/her experience, interprets them and discloses
the results to the patient. This paper presents the
architecture of a framework that seeks to support
the decision-making of medical personnel regarding
the diagnosis of diseases. The framework integrates
custom tags in the metadata of Digital Imaging and
Communications in Medicine(DICOM) files. The tags
contain the classification results of supervised learning
models. Different convolutional neural network (CNN)
architectures trained on medical images were developed
using transfer learning and existing pre-trained CNNs
to evaluate the framework’s performance. A web
viewer was also developed to show medical personnel
the custom tags. Due to the characteristics of the
framework, its use could be extended to patients so that
they could obtain a preliminary diagnosis and go to the
doctor as soon as possible, which could be crucial.

Keywords. DICOM, deep learning, convolutional neural
networks, ML.NET, lung cancer.

1 Introduction

Cancer is a disease that is becoming more
prevalent and is one of the main causes of
death worldwide.

The GLOBOCAN 2018 database shows that
2018 saw 18.1 new million cases, with 9.6 million

deaths. Lung cancer is the most diagnosed cancer.
It has a mortality of 22% in men and 13.8% in
women [6].

According to GLOBOCAN 2020 database,
there were 19.3 million new cases and 10 million
deaths in 2020. The mortality of lung cancer in
men was 14.3%, and in women, it was 8.4% for the
new cases that occurred in 2020 [31]. Radiologists
specializing in medical radiology are the leading
actors in detecting and diagnosing lung cancer.

Mastering the skills of a radiologist takes
many years of practice; they are taught how
to interpret images to diagnose and treat
deseases by integrating extensive knowledge
of clinical concepts [12]. Additionally, technological
advances have allowed artificial intelligence
techniques to be applied to detect these
conditions [24, 16, 13].

In artificial intelligence, machine learning (ML)
plays a leading role due to its high capacity for
data processing. Machine learning is based on
developing and training algorithms that can infer or
predict a result based on a dataset.

Deep learning (DL) is a form of ML based on a
multistage array of neural networks that learn from
analyzing massive amounts of data. DL employs
three main types of learning algorithms:

– Unsupervised learning, where data are not
categorized, and the algorithm finds patterns
that allow the data to be organized in some way;
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Fig. 1. General communication model

Fig. 2. Standard and private DICOM elements

Fig. 3. DICOM file showing patient-identifying data
(patient’s name)

Fig. 4. File from Figure 3 with patient-identifying data
(patient’s name) replaced with “**.**” string

– Semi-supervised learning, which uses partially
labeled datasets;

– Supervised learning, which depends on the
labels given to the training data.

DL includes several supervised learning
techniques, such as recurrent neural networks
(RNNs), convolutional neural networks (CNNs),
and Deep Neural Networks (DNNs) [1]. Among the
applications of CNNs, their extensive application in
diagnosing medical images stands out.

The transfer learning (TL) technique applies
a model pre-trained on millions of images from
one domain to another domain with a smaller
set of images. This technique favors the rapid
development of models that provides the same
performance results as the model trained with the
massive dataset [15].

Some contributions from the scientific
community concerning detecting cancer
automatically using different classification
algorithms are described below. Ramteke
and Monali [26] propose an image classification
method to classify images into two classes, normal
and abnormal, based on the characteristics
of the images and the automatic detection of
abnormalities. The method consists of four main
steps: a) preprocessing, b) feature extraction,
c) classification, and d) post-processing. The
K-nearest neighbor (KNN) algorithm is employed
and is compared with a support vector machine
(SVM) based image classifier. KNN achieves
an accuracy of 80%, much better than the 69%
accuracy obtained by the SVM.

Masood et al. [19] propose a computerized
assistance system to support radiologists in lung
cancer diagnosis based on DL using a dataset
from the Medical Body Area Network (MBAN). This
DFCNet model uses a fully convolutional neural
network (FCNN), which is utilized to classify each
detected spot in four stages of lung cancer. The
effectiveness of the proposed work is assessed on
different datasets with varying scanning conditions.
Overall, the accuracies of CNN and DFCNet were
77.6% and 84.58%, respectively.

The experimental results illustrate the
significance of the proposed method for detecting
and classifying lung cancer nodules. Miah and
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Fig. 5. Shallow neural network and deep neural network

Fig. 6. Branches of deep learning

Yousuf [20] present a lung cancer detection model
using computed tomography (CT) images and
image processing and neural networks. In this
approach, the dataset is preprocessed using digital
image recognition algorithms, the segmentation of
areas of interest, and the classification of these
segments using convolutional neural networks.

In the first step, a binary conversion technique
detects cancer with a comparison value. In the
second step, the image with cancer is segmented,

and a feature extraction method is applied. These
segments are used to train a neural network, and
then, the system is tested with images with and
without cancer. This system achieves an accuracy
of 96.67%.

Sasikala et al. [28] utilize a CNN to categorize
lung tumors as benign or malignant. This approach
is based on taking regions of interest from the
image; then, every slice is segmented to find
tumors. The accuracy obtained with this method is
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Fig. 7. Components of a CNN

Fig. 8. Application of the filter or kernel to the input image

96%; it is more efficient than other traditional neural
network methods.

The dataset is obtained from the Lung Image
Database Consortium (LIDC) and the Image
Database Resource Initiative (IDRI). Shaziya [30]
proposes an automatic classification and detection
system for lung cancer in medical images using DL.
With a CNN model, the proposed method is meant
to categorize spots on the lungs in pulmonary CT
images from the LIDC dataset.

A total of 6,691 images containing nodules
and non-nodules are provided as input to a
four-layer 2D CNN model. The model is trained
on 70% of the dataset, validated on 10% of the
dataset, and tested on 20% of the dataset. The
evaluation conducted on the test data resulted in

an accuracy of 93.58%, a sensitivity of 95.61%,
and a specificity of 90.14%.

On the other hand, the progress of information
technology in the medical sector has required
the development of communication protocols
or standards for managing information in a
simple, secure, and comprehensive manner.
The most widely used protocol in the medical
sector is DICOM. It addresses five general
application areas:

1. Online image management.

2. Online image interpretation.

3. Online image printing.
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Fig. 9. Pooling layer

Fig. 10. Activation function

Fig. 11. Fully connected layer

4. Online image procedure management.

5. Offline storage media management.

This standard is a comprehensive specification
of the elements necessary to achieve a practical
level of automatic interoperability among
biomedical imaging systems. DICOM provides
detailed engineering information that can be used
in interface specifications to enable connectivity
between various pieces of vendor equipment.

The standard describes how to format
and exchange the associated medical image
information within and outside the hospital (e.g.,
teleradiology and telemedicine, among others) [5].
Among the research works that have utilized the
DICOM standard is that of Angarita et al. [2], in
which the MÉDICO MWEB system is described.

This system was developed with a data
structure based on the DICOM standard model,
tools (enhancement tools, measurements tools,
filters) for visualization and analysis, an intuitive
exploration and navigation system for image
collection accessible via the web with any browser,
and other added features.

A three-layer architecture, a design that
introduces an intermediate layer into the process,
was used for project development. In this
type of architecture, each level is given a
simple task, allowing the design of scalable
architectures, i.e., they can be easily expanded if
the requirements change.

Through the application, DICOM files can be
uploaded to the public or private directory of
the user, and it also manages an interface for
managing the fields of the file; fields can be added,
modified, and deleted.

Similarly, DICOM files can be created from JPG
images, registering basic standard data that will
be attached to the image in the DICOM file. All
processes are handled through the JDT library and
with an interface developed in JSP and Ajax.

Archie and Marcus [3] describe the DICOM
browser application as a software system that
views and modifies DICOM file information. Its
installation requires the user to have computer
knowledge beyond primary computer usage. This
application is part of the XNAT software system,
defined as an open-source application available for
generic use in medical applications.

Similarly, installing XNAT requires advanced
computer usage knowledge. XNAT presents
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Fig. 12. Structure of InceptionV3 model

Fig. 13. Structure of MobileNetV2

a series of steps for installing a pre-trained
deep learning model. Doing this requires the
user to learn hardware techniques (NVIDIA) and
advanced configurations.

Castro et al. [8] present a DICOM image
viewer based on a hybrid architecture that
uses client-server, model-view-view-model
(MVVM), and N-layer architectural patterns.
The client-server style defines a relationship
between two applications in which one sends
requests to another for processing.

The fundamental concept of MVVM is to
separate the model from the view by introducing
an abstract layer that allows more accessible and
more scalable management of interaction and
states. For the development of the client-server
application, the HTML5 and JavaScript libraries
were used on the client side, and C# with .NET
Framework version 4 was used on the server side.

Other JavaScript libraries that were used include
WADO and KnockoutJS.

Vellez et al. [33] describe Visilab Viewer as
a web application that adheres to the DICOM
standard. It uses a Flask REST API architecture,
Waitress as a WSGI server, and PyTorch as a
library for deduction using DL techniques due to its
widespread use in both research and commercial
applications and because of the ability to import
models from other systems.

For CNNs to make deductions, it is necessary
to obtain image segments that fit an image with
a specific magnification and divide them into
patches of the size requested by the CNN. Finally,
inference will be achieved by applying a diagnostic
rule. Vellez et al. developed a server that
manages the Difference in Proportions of Labels
(DPL) module using Python 3 and Flask, as it
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Fig. 14. Layers of ResNet50 and ResNet101

Fig. 15. Confusion matrix

natively allows multiple requests to be responded
to simultaneously.

Thus, the system can have numerous users
simultaneously or receive different inquiries from
the same user. This system uses a database
with breast cancer images and three different
models, which are HER2 classification, the Ki67

Table 1. CT scan images of lung cancer dataset class
names and indexes

Name Index Assigned Name

Adenocarcinoma left.lower.
lobe T2 N0 M0 Ib 0 Adenocarcinoma

Benign 1 Benign

Large.cell.carcinoma left.
hilum T2 N2 M0 IIIa 2 Large Cell Carcinoma

Malignant 3 Malignant

Normal 4 Normal

Squamous.Cell.squamous.
cell.carcinoma left.
hilum T1 N2 M0 IIIa

5 Squamous Cell Carcinoma

Table 2. IQ-OTHNCCD Lung Cancer dataset
class names

Name Index Assigned Name

Benign 0 Benign

Malignant 1 Malignant

Normal 2 Normal

proliferation index, and tumor area detection in
H&E WSI using the following neural networks:
AlexNet (AN), GoogLeNet (GN), VGG-16 (VGG),
ResNet-101 (RN), and DenseNet-201 (DN).

Pham et al. [23] present the VinDr system,
which has two branches related to the classification
of CT images of the chest VinDr-ChestCT and
XR images of the chest VinDr-ChestXR. This
system focuses on identifying various parts of the
body; it is a DL classifier that takes an unknown
X-ray as an input image and classifies it into one
of five groups, including abdominal X-rays, adult
chest X-rays, pediatric chest X-rays, spine X-rays,
and others.

From a functional standpoint, a reliable
DICOM image router must ensure two essential
requirements, including (1) an approximately
100% classification accuracy and (2) providing
fast inference.

Mathematically, this supervised multiclass
classification task assigns a class label to
each input sample. In the present work, a
method is proposed to assist the radiologist in
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Fig. 16. Proposed architecture

decision-making concerning the diagnosis of lung
medical images.

This method consists of an architecture that
integrates a) deep learning models, b) custom
private DICOM tags, and c) a viewer for displaying
classification results. This paper is organized as
follows. Section 2 presents the basic theory of
this research. Section 3 describes the proposed
architecture. Section 4 presents the experiments
conducted. Lastly, Section 5 presents the
conclusions and future work.

2 Background

In this section, the related concepts for this
research are presented. Section 2.1 describes
the DICOM standard. Section 2.2 introduces
the concept of “anonymization” which relates to
security and confidentiality for the patient, the

radiologist, and all personnel involved in the review
and classification of medical images.

Section 2.3 describes the architecture of
the convolutional neural networks used in deep
learning. Section 2.4 describes transfer learning.
Section 2.5 discusses the Machine Learning
.NET library (ML.NET). Section 2.6 discusses
deep learning models in ML.NET. Lastly, Section
2.7 discusses evaluation metrics for machine
learning models.

2.1 The DICOM Standard

DICOM1 is a crucial concept in the world of
digital imaging. The absence of a standard inhibits
usability and the exchange of images, forcing users
to deal with many data formats and convert data
from one format to another.
1www.dicomstandard.org
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Table 3. DICOM private element x0055, 0010

Private Tag Description Data

x0055,0010 Private Creator UACJ VISOR

x0055,1010 Model InceptionV3.zip

x0055,1011 Dataset IQ-OTHNCCD Lung Cancer Dataset

x0055,1012 Date 2024 04 21 09:23:52.123

x0055,1013 FileName 000160.png

x0055,1014 FileSize 89.364kB

x0055,1015 Class Prediction(%)

x0055,1016 Malignant 99.01

x0055,1017 Benign 0.99

x0055,1018 Normal 0

x0055,1019 Model MobilenetV2.zip

x0055,101a Dataset IQ-OTHNCCD Lung Cancer Dataset

x0055,101b Date 2024 04 21 09:23:52.665

x0055,101c FileName 000160.png

x0055,101d FileSize 89.364kB

x0055,101e Class Prediction(%)

x0055,101f Malignant 100

x0055,1020 Benign 0

x0055,1021 Normal 0

x0055,1022 Model ResnetV2101.zip

x0055,1023 Dataset IQ-OTHNCCD Lung Cancer Dataset

x0055,1024 Date 2024 04 21 09:23:56.053

x0055,1025 FileName 000160.png

x0055,1026 FileSize 89.364kB

x0055,1027 Class Prediction(%)

x0055,1028 Malignant 99.98

x0055,1029 Benign 0.02

x0055,102a Normal 0

x0055,102b Model ResnetV250.zip

x0055,102c Dataset IQ-OTHNCCD Lung Cancer Dataset

x0055,102d Date 2024 04 21 09:23:57.912

x0055,102e FileName 000160.png

x0055,102f FileSize 89.364kB

x0055,1030 Class Prediction(%)

x0055,1031 Malignant 99.99

x0055,1032 Normal 0

x0055,1033 Benign 0

Any image file, in addition to pixel data, contains
metadata. Metadata describes the image and
plays a significant role in digital imaging. While
in general-purpose image formats, metadata may
be limited to describing the pixel array, in formats
for medical applications, they can describe the
image, instrument configuration, image acquisition
parameters, and any other elements of interest
related to the imaging workflow. The standard
helps define the metadata section for the correct
use and interpretation of the image.

In the early 1980s, an association of users and
healthcare professionals, the American College
of Radiology (ACR), and the National Electrical
Manufacturers Association (NEMA) began defining
a new standard for encoding and exchanging
digital medical images. In 1993, the ACR-NEMA
committee presented DICOM as a standard with
more functionality and long-term vision than
previous standardization attempts [18].

Since then, DICOM has been strengthened
by including and collaborating with other
standards, such as the European Committee
for Standardization (CEN) and ISO TC 215
Health Informatics. Figure 1 presents the general
communication model for the storage of medical
information on any removable media [21].

Applications can use any of the following
transport mechanisms: The DICOM message
and upper-layer service provides independence
from specific physical network support and
communication protocols such as TCP/IP.

The DICOM web service API and HTTP
service allow the use of common hypertext and
the associated protocols for transporting DICOM
services. The basic DICOM file service provides
access to storage media regardless of specific
media storage formats and file structures.

Real-time DICOM communication provides the
real-time transport of SMPTE and RTP-based
DICOM metadata. The current version of
the DICOM standard is composed of the
following 22 parts2:

– PS3.1 Introduction and overview.
– PS3.2 Conformance.
2www.dicomstandard.org/current
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Fig. 17. DICOM x0055, 0010 tag in the panel of
the viewer

Fig. 18. Aliza MS with 0055—0010 predicted results

– PS3.3 Information object definitions.
– PS3.4 Service class specifications.
– PS3.5 Data structures and encoding.
– PS3.6 Data dictionary.
– PS3.7 Message exchange.
– PS3.8 Network communication support for

message exchange.
– PS3.9 Retired.
– PS3.10 Media storage and file format for

media interchange.
– PS3.11 Media storage application profiles.
– PS3.12 Formats and physical media.
– PS3.13 Retired.
– PS3.14 Grayscale standard display function.
– PS3.15 Security and system

management profiles.
– PS3.16 Content mapping resource.
– PS3.17 Explanatory information.
– PS3.18 Web services.
– PS3.19 Application hosting.
– PS3.20 Imaging reports using HL7 clinical

document architecture.
– PS3.21 Transformations between DICOM and

other representations.
– PS3.22 Real-time communication

(DICOM-RTV).

This research focuses on Part 5, Data
Structures and Encoding, for accessing standard
and private data elements. A data element tag
uniquely identifies a data element. Data elements
in a dataset shall be ordered by increasing the data
element tag number and shall appear at most once
in a dataset.

Two types of data elements are defined: 1)
standard data elements have an even group
number that is not 0000, 0002, 0004, or 0006,
and 2) private data elements have an odd group
number that is not 0001, 0003, 0005, 0007, or
FFFF. The DICOM standard allows the use of
standard and private elements as long as they are
not already in use.

The reserved elements, both standard and
private, are those mentioned above. Figure
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2 depicts the structure of two standard data
elements, with the group field having even values
of 0002 and 0008, and a standard private data
element, with the group field having an odd
value of 0009.

2.2 DICOM Anonymization

DICOM emphasizes the security and protection of
the information of the radiologist, patient, and all
equipment related to the review and classification
of medical images. DICOM establishes in part
PS3.153 the elements and actions to be executed
when anonymizing pertinent information—Table
E.1-1a. De-identification Action Codes state the
actions on these elements in Table E.1-1.

Application-Level Confidentiality Profile
Attributes define the elements and attributes
for this purpose. Our proposal adheres to this
directive, and to do this, it automatically executes
this process when accessing any file with this
format. Anonymization consists of removing or
replacing all tags specified in Table E.1-1.

Our proposal does not request or store the
personal information of any patient, radiologist,
doctor, or anyone related to this type of medical
activity. If, for any reason, the provided DICOM
file contains any of the tags listed in this table, the
value of each of these is replaced with a string
of the form “**.**”; this indicates that there was a
previous value that was replaced by this string.

This string is used only for demonstrative
purposes. The application fulfills the directions in
Table E.1-1a. None of these tags are removed
from the original file. If this framework application
updates any of these tags, a new file is generated
by adding the following name ending:

“-Anonymous”, between the original name and
its extension type. Figure 3 displays an original
DICOM file with some patient information in it.
Figure 4 shows the result from this framework,
which shows that confidential patient information
was replaced with the dummy string “**.**”.

3dicom.nema.org/medical/dicom/current/output/chtml/part15/
chapter\ E.html\#table\ E.1-1

Fig. 19. MicroDICOM panel with (0055,0010)
classification results

Fig. 20. Selection of the image classification task
through model builder

Fig. 21. Selection of the development environment
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Fig. 22. Data selection

Fig. 23. Model selection and training

Fig. 24. Evaluation of the trained model and test image

Fig. 25. Options for reusing the trained model

2.3 Deep Learning

Deep learning, a branch of ML and AI, is
regarded today as a core component of the current
Fourth Industrial Revolution (4IR or Industry 4.0).
DL technology originated from artificial neural
networks (ANN), and due to its ability to process
and learn from data, it has become a significant
topic in computer science; it has been widely
applied in various areas such as healthcare,
visual recognition, text analysis, and cybersecurity.
However, building a reasonable DL model is
difficult due to the constantly changing nature
and variations in real-world problems and data.
Sarker et al. [27] illustrate the difference between
a shallow neural network (SNN) and a DNN,
where an SNN has only one layer. The DNN
consists of multiple layers, as shown in Figure 5.
Similarly, Sarker et al. [27] define the following
categories of DL:

1. Supervised: Uses labeled training data.
2. Unsupervised: Utilize unlabeled datasets.
3. Semi-supervised: Combines both supervised

and unsupervised.
4. Reinforcement: Approach focused on the

context of the considered problem.

Deep learning is divided into the following
three branches:

1. DNN with supervised/discriminative learning.
2. DNN with unsupervised/generative learning.
3. Hybrid learning combining the above models, as

shown in Figure 6.

CNNs are based on multi-layer neural networks
that can identify, recognize, and classify objects
and detect and segment objects in images. The
CNN is a well-known architecture of discriminative
DL that can learn straight from the input object
without requiring human involvement for feature
extraction. Figure 7 shows the basic structure of a
CNN [32]. A convolutional neural network consists
of a convolutional layer, poling, an activation
function, and a fully connected layer.
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Fig. 26. Open-source software used

Fig. 27. Interaction between the client and the server

Fig. 28. Server-side classes

Fig. 29. DICOM viewer GUI

– Convolutional layer: This step applies filters to
the input data (input image). The kernel is a set
of integer values. The CNN filter weights are
a set of randomly chosen integers. The kernel
learns to extract significant features because
these weights are modified during training. It
calculates the inner product of the images of all
data pairs in the feature space. This mechanism
is shown in Figure 8.

– Pooling: This is used to reduce the size
of the feature map once the filter has been
applied. Down-sampling is an essential part of
pooling, which helps decrease the upper layers’
complexity. The number of filters is not affected
by it. The max pooling method is one of the most
used methods.

The image is divided into rectangular
subregions, and the maximum value within each
subregion is selected. A standard max pooling
size is 2 × 2. As shown in Figure 9, when pooling
is applied in the upper-left corner, the operation
shifts to the upper-right corner and moves by
two steps. The filter moves in 2×2 steps to
perform pooling.

– Activation function: The non-linearity layer
allows the generated output to be changed. This
layer is used to limit or oversaturate the output.
Each activation function in a neural network
fulfills the essential process of mapping the input
to the output.

The input value is calculated as the weighted
sum of the neuron’s input and its bias. This
bias implies that the activation function decides
whether a neuron is activated in response to
a given input, generating the corresponding
output. Figure 10 shows the most common
activation functions.

– Fully connected layer: This step arranges
neurons in groups. As shown in Figure 11,
every node in every layer is connected directly to
another node in the previous layer and next layer.

2.4 Transfer Learning

DL has two types of TL: feature extraction and
fine-tuning. A dataset like ImageNet is used
for feature extraction, but the top layer used for
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Table 4. InceptionV3 CT scan images of lung cancer
image distribution

Class Train Test Total

Adenocarcinoma 147 48 195

Benign 55 25 80

Large Cell Carcinoma 81 34 115

Malignant 316 144 460

Normal 316 139 455

Squamous Cell Carcinoma 115 40 155

Total (Images) 1030 430 1460

Size (MB) 134.36 59.07 193.43

Table 5. InceptionV3 IQ-OTHNCCD lung cancer
image distribution

Class Train Test Total

Benign 90 30 120

Malignant 393 168 561

Normal 293 123 416

Total (Images) 776 321 1097

Size (MB) 111.12 46.52 157.63

Table 6. InceptionV3 CT scan images of lung
cancer metrics

Metric Value

Accuracy 0.9942

microAccuracy 0.9163

macroAccuracy 0.8471

LogLoss 0.3053

LogLossReduction 0.8047

classification purposes will be removed. In addition
to the pre-trained model, a new classifier is trained
to complete the classification task.

The pre-trained model is considered an
arbitrary feature extractor that extracts valuable
features from the new dataset. For fine-tuning, the
weights of the pre-trained model are taken as the
initial values for the latest training and are reworked
and fine-tuned in the process.

In this case, the weights are adjusted from
generic feature maps to specific attributes related
to the new dataset. Fine-tuning aims to adapt
the generic features to a particular task instead
of overriding generic learning [29]. The work [25]
describes how Resnet50V2 was trained using
the ImageNet dataset. Databases from different
sources are used to retrain existing models like the
ones mentioned here. One of these sources is
Kaggle, where there are datasets with CT medical
images of various types of cancer. Additionally,
there are open-source libraries such as Microsoft’s
Machine Learning .NET (ML.Net) library, which
provides support for applying transfer learning from
an application developer’s standpoint.

2.5 Machine Learning .NET Library

ML.NET is a cross-platform library tool designed to
build and train ML models within .NET applications.
ML.NET aims to provide the same capabilities data
scientists and developers can find in the Python
ecosystem. ML.NET is based on the classic
ML operation concept: gather data, configure the
algorithm, train, and deploy.

ML.NET allows the use of deep learning models
such as TensorFlow and Open Neural Network
Exchange (ONNX), enabling developers to train
CNN classification models. The entire ML.NET
library is built on the .NET Core framework [11].

2.6 Deep Learning Models with ML.NET

Below are descriptions of the deep learning models
InceptionV3, MobileNetV2, ResNetV2101, and
ResNetV250:

– InceptionV3: The InceptionV3 model [7] utilizes
convolutional filters of different sizes, allowing
it to obtain receptive fields of other areas. To
reduce the design space of the network, it
embraces a modular system followed by a final
union, thus completing the fusion of features
from different scales. This model considers
typical congestion and performance problems;
better results can be obtained using asymmetric
kernels and bottlenecks and by replacing large
filters with smaller ones [9]. The configuration of
the InceptionV3 model is shown in Figure 12.
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Fig. 30. InceptionV3 accuracy and loss plots

– MobileNetV2: This model targets portable
devices. It is distinct from other CNN
architectures, where its links are between
bottleneck layers. The middle layer expansion
also employs deep levels to filter out non-linear
attributes. The MobileNetV2 platform includes
32 convolution layers followed by 19 bottleneck
layers. For small datasets, it is not easy
to train, and the image classification task
becomes challenging.

This model mitigates this effect by
preventing overfitting, and it is a fast and
successful architecture that optimizes memory
consumption with a low error margin.
Additionally, the design of MobileNetV2
provides fast transaction execution during
experimentation and optimization of
parameters [17]. This model is depicted in
Figure 13.

– ResNetV2101 and ResNetV250: The Microsoft
research team developed ResNet to ease the
difficulty of training deeper neural networks. The
main idea of ResNet is to learn the additive
residual function using shortcut equivalence
mappings. It has versions with 18, 34, 50,
101, and 152 weight layers. Instead of learning
non-discriminative functions, it utilizes residual
functions by adopting skip connections. Unlike
VGG, ResNet uses shortcut connections in
feedforward neural networks. Figure 14 depicts
the layers of these models [4].

2.7 Evaluation Metrics for ML Models

Below, we describe the concepts and metrics used
to assess the performance of machine learning
models. Most metrics use relevant information
from the confusion matrix about the algorithm
and classification rules. This matrix registers
the differences between the actual (rows) and
predicted (columns) classifications [14] , as shown
in Figure 15. The following metrics are calculated
using values from the confusion.

Precision: It is the fraction of true positive (TP)
parts divided by the total number of units predicted
positively (column sum of predicted positives).

True positives are the parts that have been
labeled as positive by the model and are
positive. False positives (FP) are the parts
labeled as positive by the model that are actually
negative [14]:

Precision =
TP

TP + FP
. (1)

Recall: This is the fraction of true positives
divided by the total number of positive elements
(sum of rows of true positives). Specifically, false
negatives (FN) are the elements labeled as false
by the model that are actually positive [14]:

Recall =
TP

TP + FN
. (2)

Accuracy: The sum of true positives (TP)
and true negatives (TN) in the numerator is
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Table 7. InceptionV3 IQ-OTHNCCD lung cancer metrics

Metric Value

Accuracy 0.9923

microAccuracy 0.9657

macroAccuracy 0.9373

LogLoss 0.1309

LogLossReduction 0.8589

Table 8. InceptionV3 CT scan images of lung lancer
confusion matrix

Class-Truth 0 1 2 3 4 5 Recall LogLoss

0 37 0 3 2 1 5 0.7708 0.8114

1 0 19 0 2 4 0 0.76 0.6629

2 3 0 28 0 0 3 0.8235 0.905

3 0 0 0 144 0 0 1 0.0363

4 0 3 0 0 136 0 0.9784 0.0997

5 7 0 2 0 1 30 0.75 0.6467

Precision 0.7872 0.8636 0.8485 0.973 0.9577 0.7895

Table 9. InceptionV3 CT scan images of lung cancer
classification report

Class Precision Recall F1-score Support

Adenocarcinoma 0.7872 0.7708 0.7789 48

Benign 0.8636 0.76 0.8085 25

Large Cell Carcinoma 0.8485 0.8235 0.8358 34

Malignant 0.973 1 0.9863 144

Normal 0.9577 0.9784 0.968 139

Squamous Cell Carcinoma 0.7895 0.75 0.7692 40

Accuracy 0.9163 430

Macro avg 0.8699 0.8471 0.8578 430

Weighted avg 0.914 0.9163 0.9148 430

Table 10. InceptionV3 IQ-OTHNCCD lung cancer
confusion matrix

Truth Class 0 1 2 Recall LogLoss

0 Benign 26 0 4 0.8667 0.6534

1 Malignant 0 167 1 0.994 0.0163

2 Normal 6 0 117 0.9512 0.1599

precision 0.8125 1 0.959

Table 11. InceptionV3 IQ-OTHNCCD lung cancer
classification report

Column1 Precision Recall F1-score Support

Benign 0.8125 0.8667 0.8387 30

Malignant 1 0.994 0.997 168

Normal 0.959 0.9512 0.9551 123

Accuracy 0.9657 321

Macro avg 0.9238 0.9373 0.9303 321

Weighted avg 0.9668 0.9657 0.9662 321

Table 12. MobileNetV2 CT scan images of lung cancer
image distribution

Class Train Test Total

Adenocarcinoma 143 52 195

Benign 52 28 80

Large Cell Carcinoma 86 29 115

Malignant 324 136 460

Normal 313 142 455

Squamous Cell Carcinoma 112 43 155

Total (Images) 1030 430 1460

Size (MB) 133.47 59.96 193.43

Table 13. MobileNetV2 IQ-OTHNCCD lung cancer
image distribution

Class Train Test Total

Benign 86 34 120

Malignant 404 157 561

Normal 286 130 416

Total (Images) 776 321 1097

Size (MB) 111.05 46.59 157.63

Table 14. MobileNetV2 CT scan images of lung
cancer metrics

Metric Value

Accuracy 0.997

microAccuracy 0.9116

macroAccuracy 0.8422

LogLoss 0.2656

LogLossReduction 0.8314
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divided by all entries in the confusion matrix. TP
and TN, found on the main diagonal, represent
correctly classified instances. Accuracy reflects
the probability that the model’s prediction is
correct [14]:

Accuracy =
TP+ TN

TP+ TN+ FP + FN
. (3)

F1-score (binary case): It is the weighted
average between precision and recall, where the
best value of the F1-score is one and its worst
value is zero. The contribution of precision and
recall are the same int the F1-score, and the
harmonic mean helps find the best proportion
between the two quantities [14]. The F1-score will
detect any weaknesses in the prediction algorithm
if any such weaknesses exist:

F1-score = 2× Precision × Recall
Precision + Recall

. (4)

F1-score (multiclass case): For multiclass
cases, the F1-score involves all classes. To
achieve this, we need a multiclass measure
of precision and recall to be inserted into the
harmonic mean. These metrics can have
two distinct specifications, resulting in two other
metrics: the micro F1-score and macro F1-score.

For the calculation of the macro and micro
F1-score, the precision and recall are now needed
for all classes. Formulas (5) and (6) illustrate the
calculation of precision and recall for a generic
class k [14]:

Precisionk =
TPk

TPk +FPk
, (5)

Recallk =
TPk

TPk +FNk
. (6)

Macro F1-score: The macro average precision
and macro average recall are needed to calculate
this parameter. Formulas (7) and (8) describe
these metrics; they are calculated as the arithmetic
mean of the metrics for individual classes.

Formula (9) presents the macro F1-score
function. Macro Average precision (MAP),

Macro Average recall (MAR) and MacroF1-score
(MF1-score) are defined as:

MAP =

K∑
k=1

precisionk

k
, (7)

MAR =

K∑
k=1

recallk

k
, (8)

MF1−score = 2× MAP×MAR

MAP+MAR
. (9)

Micro F1-score: To obtain the micro F1-score,
micro-average precision, and micro-average
recall should be calculated first. It considers
all units together without regard to possible
class differences.

These metrics are calculated as follows: It is
observed that equations (10) and (11) have the
same values; therefore, the average F1 precision
is calculated in the same way [14]. Micro
Average precision(uAP) and Micro Average recall
are defined as:

uAP =

K∑
k=1

TPk

K∑
k=1

TotalColumnk

=

K∑
k=1

TPk

GrandTotal
, (10)

uAR =

K∑
k=1

TPk

K∑
k=1

TotalRowk

=

K∑
k=1

TPk

GrandTotal
, (11)

MicroAverageF1 =

K∑
k=1

TP k

GrandTotal
. (12)

LogLoss: This represents the average
logarithmic loss of the classifier. It measures the
performance of a classifier based on how much
the predicted probabilities diverge from the true
class label. A lower value indicates a better model.
A perfect model, which predicts a probability of
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Table 15. MobileNetV2 IQ-OTHNCCD lung
cancer metrics

Metric Value

Accuracy 0.999

microAccuracy 0.9595

macroAccuracy 0.887

LogLoss 0.1247

LogLossReduction 0.8693

Table 16. MobileNetV2 CT scan images of lung cancer
confusion matrix

Class-Truth 0 1 2 3 4 5 Recall LogLoss

0 45 1 3 0 0 3 0.865 0.416

1 0 18 0 0 10 0 0.643 0.776

2 3 0 22 0 0 4 0.759 0.5

3 0 1 0 131 4 0 0.963 0.157

4 0 2 0 0 140 0 0.986 0.071

5 6 0 1 0 0 36 0.837 0.578

precision 0.833 0.818 0.846 1 0.909 0.837

Table 17. MobileNetV2 CT scan images of lung cancer
classification report

Class Precision Recall F1-score Support

Adenocarcinoma 0.8333 0.8654 0.8491 52

Benign 0.8182 0.6429 0.72 28

Large Cell Carcinoma 0.8462 0.7586 0.8 29

Malignant 1 0.9632 0.9813 136

Normal 0.9091 0.9859 0.9459 142

Squamous Cell Carcinoma 0.8372 0.8372 0.8372 43

Table 18. MobileNetV2 IQ-OTHNCCD lung cancer
confusion matrix

Class Column2 0 1 2 Recall LogLoss

0 Benign 23 0 11 0.676 0.824

1 Malignant 0 157 0 1 0.002

2 Normal 2 0 128 0.985 0.089

precision 0.92 1 0.921

one for the true class, will have a logarithmic loss
of zero.

Macro-accuracy: It represents the average
macro precision of the model. The precision of
each class is calculated, and the macro precision
is the average of these precisions (macro-average
= macro-F1-score).

Micro-accuracy: It represents the average
micro precision of the model (micro-average).

Table 19. MobileNetV2 IQ-OTHNCCD lung cancer
classification report

Class Precision Recall F1-score Support

Benign 0.92 0.6765 0.7797 34

Malignant 1 1 1 157

Normal 0.9209 0.9846 0.9517 130

Accuracy 0.9595 321

Macro avg 0.947 0.887 0.9104 321

Weighted avg 0.9595 0.9595 0.9571 321

Table 20. ResNetV2101 CT scan images of lung cancer
image distribution

Class Train Test Total

Adenocarcinoma 138 57 195

Benign 57 23 80

Large Cell Carcinoma 84 31 115

Malignant 319 141 460

Normal 324 131 455

Squamous Cell Carcinoma 108 47 155

Total (Images) 1030 430 1460

Size (MB) 137.8 55.63 193.43

Table 21. ResNetV2101 IQ-OTHNCCD lung cancer
image distribution

Class Train Test Total

Benign 90 30 120

Malignant 396 165 561

Normal 290 126 416

Total (Images) 776 321 1097

Size (MB) 111.18 46.45 157.63

Table 22. ResNetV2101 CT scan images of lung
cancer metrics

Metric Value

Accuracy 0.993

microAccuracy 0.907

MacroAccuracy 0.8242

LogLoss 0.2478

LogLossReduction 0.8435
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Fig. 31. MobileNetV2 accuracy and loss plots

3 Proposed Architecture

In this section, the proposed architecture for
integrating different CNNs with the custom
tags introduced in the DICOM communication
standard to support decision-making in lung
cancer diagnosis is presented. Two public Kaggle
databases containing CT images were used to
train the CNN algorithms. The predictions of the
algorithms are stored in custom DICOM tags.
Section 3.1 presents the proposed architecture.
Section 3.2 describes the dataset. Section 3.3
outlines the implementation of DICOM private tags.

Section 3.4 describes the implementation of
deep learning models. Lastly, Section 3.5
discusses the interaction between learning models
and DICOM.

3.1 Description of the Proposed Architecture

The blocks composing our proposal are shown
in Figure 16. Three main blocks interact with
each other to provide recommendations to the
radiologist. The Deep Learning Models block trains
the model using the desired algorithm and makes
predictions based on the provided image. The
DICOM Parser/Updater block facilitates access
to the input file to be predicted. It can be a
simple image in the JPEG or PNG format or a file
containing the entire DICOM standard dataset in
addition to the image. This framework does not
constrain the file type, size, quality, or consistency.

The User Interface (radiologist/patient) block
allows the raiologist or patient to interact with the
complete application. It is worth mentioning that
the training and prediction tasks are performed on
the server where the application runs, while the
tasks of displaying results, selecting a DICOM file
or image, and executing instructions are performed
from the client application. The application code is
available at GitHub 4.

3.2 Dataset Description

Two different datasets were obtained from the
public Kaggle repository: CT 5 Scan Images of
Lung Cancer and IQ-OTHNCCD6 Lung Cancer
Dataset. These datasets contain CT medical
images of various types of cancer and of
healthy individuals. The images are labeled based
on the type of disease.

Table 1 shows the original class names of the
CT Scan Images of Lung Cancer dataset and the
names and index assigned for this research. Table
2 shows the names and index assigned to the
IQ-OTHNCCD Lung Cancer dataset that will be
used in the remainder of the paper.

4github.com/mrodc/uacj-mca-dicom-viewer
5www.kaggle.com/datasets/dishantrathi20/
ct-scan-images-for-lung-cancer

6www.kaggle.com/datasets/hamdallak/
the-iqothnccd-lung-cancer-dataset
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Fig. 32. ResNetV2101 accuracy and Loss plots

3.3 Implementation of DICOM Private Tags

DICOM private tags are elements that do not have
any meaning or encoding in the standard. This
self-registration scheme allows each developer to
define their own set of private data, the meaning
of which must be published in the provider’s
DICOM documentation.

Developers can document essential values in
a structured way in these private elements [10].
The DICOM standard defines private elements
and establishes an effective way to use them.
These private elements contain information
not in standard data elements, such as
manufacturer-specific information [22].

In our proposal, the DICOM standard was
applied to use these private tags to store the
prediction of each pre-trained model in a different
private data element. The tag x0055 was defined
as a private element for registering the prediction
results of the trained models.

It is worth mentioning that the framework
verifies whether this tag is in use; if it is, a new one
is calculated by incrementing by two until another
tag is available. Table 3 shows the element x0055,
0010 added to the DICOM private elements.

These added custom tags are used to show
the percentage probability of each class, predicted
by each deep-learning model. This information is
shown for each model in the implemented viewer.

In Table 3, the tag x0055, 0010 is a private
element with the value UACJ VISOR, which
reserves a block of ele-ments. The element x0055,
1010 is part of this block; the “10” in the label of

element x0055, 10xx corresponds to the “10” in the
label of the private element x0055, 0010.

The predicted results and model are stored
starting from private element x0055, 1010. Once
the predicted results are stored in these private
tags, they are displayed in the viewer’s DICOM tag
panel, as shown in Figure 17.

Because the predicted results are stored under
the DICOM standard, these are also available to
other DICOM viewers. Figure 18 shows these
values in the Aliza MS application. The Figure 19
shows them in the MicroDicom viewer.

3.4 Implementation of Deep Learning Models

In this section, the implementation of CNNs using
transfer learning is presented. The implemented
models were InceptionV3, MobileNetV2,
Res-NetV2101 and ResNetV250, which are
available in the ML.NET library. The models were
trained with the following parameter settings,
Epoch-100, BatchSize-25, LearningRate-0.01,
TestFraction-0.3, and TrainFraction-0.7.

This parameter configuration is done in ML.NET
code. With these TestFraction and TrainFraction
parameters, the subsets for testing and training
contain 430 images and 1030 images, respectively.
The Microsoft Visual Studio 2022 Community
version was used to perform the transfer learning
process, which integrates the Model Builder option
to leverage pre-trained machine learning models
included in ML.NET.

The tasks performed in ML.NET include
binary classification, multiclass classification,
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Fig. 33. ResNetV250 accuracy and loss plots

image classification, text classification, regression,
recommendation, and forecasting. The transfer
learning process was performed for the four
models and involved the six steps described below:

1. Selection of the scenario: The first step in
initiating the transfer learning process was to
select the task. Figure 20 shows the selection
of the image classification task locally through
Model Builder.

2. Selection of the training environment: In
this step, the following options are available:
local graphics processing unit (GPU), local
central processing nit (CP), and the cloud with
Microsoft Azure services, as shown in Figure
21. The local option was selected.

3. Add dataset: In this step, we select the path
where the database containing the CT medical
images with lung cancer is stored, as illustrated
in Figure 22.

4. Train the model: In this step, the pre-trained
model will now be trained with the selected
database. The training process takes place
once the model is chosen, as shown in
Figure 23.

5. Evaluation model: Once the model is trained,
its evaluation is carried out. Figure 24 presents
an example of how the results of a model
are shown; this model reached an accuracy
of 88.81%. It also shows the percentage

probability of having the diseases represented
by each class: 94% Squamous.Carcinoma, 4%
Adenocarcinoma, 2% Large.Cell.Carcinoma,
less than 1% Malignant, and less than 1%
Normal. The label is not displayed when the
probability is too small, as with Benign.

6. Code: Once the model is trained and its
performance is known, it can be re-used. For
this, Model Builder provides three options: (1)
Console App, which allows it to be reused in a
console application, (2) Web API, which allows
it to be reused in a web application, and (3)
the generation of a Notebook. This is shown
in Figure 25. The developer determines the
option to use. The chosen option was the
Console App.

3.5 Interaction Between Learning Models
and DICOM

The architecture implementation relies on
open-source software such as Microsoft’s .NET
libraries, C# libraries from fo-dicom on the
server-side, and JavaScript libraries like jQuery.js
and Dojo.js for client-side development, as shown
in Figure 26. The server and client interaction
is established through a web socket, allowing
bidirectional communication.

This means that the server can send
notifications to the connected user without
waiting for the client to send a communication
request. In this structure, the server trains the
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Table 23. ResNetV2101 IQ-OTHNCCD lung
cancer metrics

Metric Value

Accuracy 0.981

microAccuracy 0.9377

MacroAccuracy 0.8631

LogLoss 0.1675

LogLossReduction 0.82

Table 24. ResNetV2101 CT scan images of lung cancer
confusion matrix

Class-Truth 0 1 2 3 4 5 Recall LogLoss

0 47 0 3 0 0 7 0.825 0.476

1 0 14 0 1 8 0 0.609 0.834

2 4 0 21 1 0 5 0.677 0.948

3 0 0 0 140 1 0 0.993 0.039

4 0 4 0 0 127 0 0.97 0.076

5 4 0 1 1 0 41 0.872 0.328

precision 0.854 0.778 0.84 0.979 0.934 0.774

Table 25. ResNetV2101 CT scan images of lung cancer
classification report

Class Precision Recall F1-score Support

Adenocarcinoma 0.8545 0.8246 0.8393 57

Benign 0.7778 0.6087 0.6829 23

Large Cell Carcinoma 0.84 0.6774 0.75 31

Malignant 0.979 0.9929 0.9859 141

Normal 0.9338 0.9695 0.9513 131

Squamous Cell Carcinoma 0.7736 0.8723 0.82 47

Accuracy 0.907 430

Macro avg 0.8598 0.8242 0.8382 430

Weighted avg 0.9055 0.907 0.9046 430

selected TensorFlow model and makes predictions
of image pathologies; the client displays the image
and the model prediction results to the viewer. The
interaction between the server and the client is
shown in Figure 27.

The server-side application is composed of
three classes: the Model class, BuildDicom class,
and Server class, as shown in Figure 28. The

Table 26. ResNetV2101 IQ-OTHNCCD lung cancer
confusion matrix

Truth Class 0 1 2 Recall LogLoss

0 Benign 20 1 9 0.667 0.677

1 Malignant 1 164 0 0.994 0.038

2 Normal 8 1 117 0.929 0.215

precision 0.69 0.988 0.929

Table 27. ResNetV2101 IQ-OTHNCCD lung cancer
classification report

Class Precision Recall F1-score Support

Benign 0.6897 0.6667 0.678 30

Malignant 0.988 0.9939 0.9909 165

Normal 0.9286 0.9286 0.9286 126

Accuracy 0.9377 321

Macro avg 0.8687 0.8631 0.8658 321

Weighted avg 0.9368 0.9377 0.9372 321

Table 28. ResNetV250 CT scan images of lung cancer
image distribution

Class Train Test Total

Adenocarcinoma 136 59 195

Benign 62 18 80

Large Cell Carcinoma 90 25 115

Malignant 331 129 460

Normal 316 139 455

Squamous Cell Carcinoma 95 60 155

Total (Images) 1030 430 1460

Size (MB) 136.03 57.4 193.43

Table 29. ResNetV250 IQ-OTHNCCD lung cancer
image distribution

Class Train Test Total

Benign 87 33 120

Malignant 392 169 561

Normal 297 119 416

Total (Images) 776 321 1097

Size (MB) 112.3 45.34 157.63
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Table 30. ResNetV250 CT scan images of lung
cancer metrics

Metric Value

Accuracy 0.991

microAccuracy 0.9163

macroAccuracy 0.8633

LogLoss 0.262

LogLossReduction 0.8333

Table 31. ResNetV250 IQ-OTHNCCD lung
cancer metrics

Metric Value

Accuracy 0.991

microAccuracy 0.9626

macroAccuracy 0.8934

LogLoss 0.1156

LogLossReduction 0.877

Table 32. ResNetV250 CT scan images of lung cancer
confusion matrix

Class-Truth 0 1 2 3 4 5 Recall LogLoss

0 46 0 1 1 1 10 0.78 0.654

1 0 14 0 1 3 0 0.778 0.839

2 2 0 20 0 0 3 0.8 0.545

3 0 0 0 127 2 0 0.984 0.048

4 0 3 0 1 135 0 0.971 0.072

5 6 0 2 0 0 52 0.867 0.487

precision 0.852 0.824 0.87 0.977 0.957 0.8

Model class contains the methods and logic for
training the desired model.

The BuildDicom class contains the methods for
interpreting DICOM tags. This class implements
editing both standard tags and private tags. It also
incorporates the ability to process more than one
image per file, known as multi-frame imaging.

The Server class describes the multiprocessing
method that serves each user connected through

Table 33. ResNetV250 CT scan images of lung cancer
classification report

Class Precision Recall F1-score Support

Adenocarcinoma 0.8519 0.7797 0.8142 59

Benign 0.8235 0.7778 0.8 18

Large Cell Carcinoma 0.8696 0.8 0.8333 25

Malignant 0.9769 0.9845 0.9807 129

Normal 0.9574 0.9712 0.9643 139

Squamous Cell Carcinoma 0.8 0.8667 0.832 60

Accuracy 0.9163 430

Macro avg 0.8799 0.8633 0.8707 430

Weighted avg 0.9161 0.9163 0.9157 430

Table 34. ResNetV250 IQ-OTHNCCD lung cancer
confusion matrix

Truth Class 0 1 2 Recall LogLoss

0 Benign 23 2 8 0.697 0.63

1 Malignant 0 169 0 1 0.025

2 Normal 2 0 117 0.983 0.102

Precision 0.92 0.988 0.936

Table 35. ResNetV250 IQ-OTHNCCD lung cancer
classification report

Class Precision Recall F1-score Support

Benign 0.92 0.697 0.7931 33

Malignant 0.9883 1 0.9941 169

Normal 0.936 0.9832 0.959 119

Accuracy 0.9626 321

Macro avg 0.9481 0.8934 0.9154 321

Weighted avg 0.9619 0.9626 0.9604 321

Table 36. Metrics of deep learning methods on CT scan
images for lung cancer dataset

Metric InceptionV3 MobileNetV2 ResNetV2101 ResNetV250

Accuracy 0.994 0.997 0.993 0.991

microAccuracy 0.9163 0.9116 0.907 0.9163

MacroAccuracy 0.8471 0.8422 0.8242 0.8633

LogLoss 0.3053 0.2656 0.2478 0.262

LogLossReduction 0.8047 0.8314 0.8435 0.8333
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Table 37. Metrics of deep learning methods on
IQ-OTHNCCD lung cancer dataset

Metric InceptionV3 MobileNetV2 ResNetV2101 ResNetV250

Accuracy 0.992 0.999 0.981 0.991

microAccuracy 0.9657 0.9595 0.9377 0.9626

MacroAccuracy 0.9373 0.887 0.8631 0.8934

LogLoss 0.1309 0.1247 0.1675 0.1156

LogLossReduction 0.8589 0.8693 0.82 0.877

Fig. 34. Prediction results of pre-trained InceptionV3 and
MobileNetV2 models

Fig. 35. Prediction results of pre-trained ResNetV2101
and ResNetV250 models

Fig. 36. DICOM viewer user interface

a web socket. The user interface of the developed
viewer shows the private elements (0055, xxxx)
described in Table 3. Figure 29 shows the user
interface of the viewer.

4 Results

This section presents the results obtained from the
proposed architecture. Section 4.1 describes the
results obtained by each of the models. Section
4.2 shows the structure of the DICOM viewer.
Lastly, Section 4.3 describes the steps to classify
a medical image or DICOM file.

4.1 Results Obtained

The performance achieved by each of the trained
models is presented below. The reported metrics
are AccuracyMacro, AccuracyMicro, Recall,
Precision, LogLoss, and the Confusion Matrix and
the Classification Report are also provided.

For all trained models, the LogLoss value is
better the closer it is to zero. For Precision and
Recall, a value closer to one is better. We ran each
model ten times per dataset.

The results with higher microAccuracy values
are presented below. It is worth mentioning that the
tables and figures of the results presented in this
section were generated by the viewer developed
in this work. Tables 4 and 5 present InceptionV3
image distribution files. Tables 6 and 7 display the
metrics for the training accuracy (Accuracy) and
test accuracy (microAccuracy).

Figure 30 shows the plots obtained for the
accuracy and loss. Tables 8 and 10 display
confusion matrices. Tables 9 and 11 show the
classification reports. Tables 12 and 13 present
MobileNetV2 image distribution files. Tables 14
and 15 display the metrics for the trainig accuracy
(Accuracy) and test accuracy (microAccuracy).

Figure 31 shows the plots obtained for the
accuracy and loss. Tables 16 and 18 display
confusion matrices. Tables 17 and 19 show the
classification reports. Tables 20 and 21 present
ResNetV2101 image distribution files.

Tables 22 and 23 display the metrics for the
training accuracy (Accuracy) and test accuracy
(microAccuracy). Figure 32 shows the plots
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obtained for the accuracy and loss. Tables 24 and
26 display confusion matrices. Tables 25 and 27
show the classification reports.

Tables 28 and 29 present ResNetV250 image
distribution files. Tables 30 and 31 display the
metrics for the training accuracy (Accuracy) and
test accuracy (microAccuracy). Figure 33 shows
the plots obtained for the accuracy and loss. Tables
32 and 34 display confusion matrices.

Tables 33 and 35 show the classification
reports. Tables 36 and 37 summarize the model
metrics. We observe that for CT Scan Images for
the Lung Cancer dataset, the positive prediction
percentage is above 90.0%.

The ResNetV2101 model obtained the
lowest value of 90.7%, while the ResNetV250
model achieved the highest value of 91.63%,
InceptionV3 obtained 91.63%; and MobileNetV2
obtained 91.16%. Even though InceptionV3 and
ResNetV250 have the same value, the difference
in the accuracy value is bigger for InceptionV3.
Thus, we can conclude that these models have a
good prediction performance.

For the IQ-OTHNCCD Lung Cancer dataset,
the positive prediction percentage is above
93.70%. The InceptionV3 model obtained the
highest value of 96.57%, and ResNetV2101 had
the lowest value of 93.77%. MobileNet ob-tained
95.95%, while ResNetV250 obtained 96.26%.

4.2 Medical Image DICOM Viewer

After the training and evaluation phase, the
predictions of the models are displayed using
the DICOM standard. Figure 34 shows the
prediction results of the pre-trained InceptionV3
and MobileNetV2 models. Figure 35 shows the
prediction results of the pre-trained ResNetV2101
and ResNetV250 models.

4.3 DICOM Viewer User Interface

The DICOM viewer user interface is easy to use. It
does not require users to have deep knowledge of
deep learning, data science, or computer science.
Figure 36 shows the DICOM viewer user interface.
The basic steps to perform a prediction task are
given below:

1. Type in the web address of the viewer.

2. Click the Load File button to load an image
file (JPG/PNG format) or a DICOM file
(.dcm extension).

3. Select the model or models for the prediction
task. This is achieved by clicking on the check
box on the model task bar.

4. Click the Predict button to run the prediction
process. This will take a few seconds to finish.

5. This step involves reading the reported values.
The closer they are to 100%, the higher the
probability that the pathology is present for
this image.

6. Click on the disk icon to save the obtained
results. This creates or updates a
DICOM-format file, which including the
private element x0055, 0010.

7. The DICOM file tags are available on the
DICOM Standard Data panel.

5 Conclusion

In this research, we present the architecture of
a decision support method to assist radiologists
in diagnosing pathologies in medical images,
focusing on detecting lung cancer with six different
pathology classes. Our proposed architecture
integrates a) deep learning models, b) custom
private DICOM tags, and c) a viewer that displays
classification results stored in DICOM private
tags. The DL models InceptionV3, MobileNetV2,
ResNet2101, and ResNetV250 were trained using
TensorFlow ML algorithms supported in Microsoft’s
ML.NET library on the CT Scan Images for Lung
Cancer and IQ-OTHNCCD Lung Cancer datasets.
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The CT Scan Images for Lung Cancer dataset
consists of 1,460 images, with 70% (1030 images)
used for training and 30% (430 images) for
testing. The IQ-OTHNCCD Lung Cancer dataset is
composed of 1,097 images, providing 776 images
for training and 321 images for testing using a test
fraction of 0.3.

The results show that all the models have
an excellent prediction performance above 90%.
We added the DICOM private element x0055 to
store the prediction results of each trained DL
model. The prediction results are displayed for
the radiologist and patient through a graphical
interface. The graphical interface consists of
two main code blocks, one for the client-side
application implemented in JavaScript and the
other for the server-side application implemented
in C#. The proposed architecture shows that it can
support radiologists as a second opinion.

In future work, we consider extending
the architecture to datasets related to other
pathologies. Additionally, algorithms for image
analysis can be integrated to perform analysis
and add annotations to the image, plus evaluate
image quality, resolution, blur, and visibility, among
other characteristics. An important future step is
to get support and feedback from domain experts
(radiologist personnel), as this is necessary to
validate the generated prediction results, which
should match radiologist’s expected results.
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