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Gerardo Villegas-Cerón3
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Abstract. An analysis is presented in this paper for
benign and malignant diagnosis of tumors, biopsies
have shown an increase of nuclear size, and changes
in the texture of the tumor nucleus. In this article,
an analysis is made using the unsupervised learning
algorithm Expectation-Maximization (EM). Two variables
are analyzed: the mean of the radius and texture of
the tumors, being the former a measure of the average
distances from the center of the tumor to its perimeter,
and the latest is the variance of gray-scale values.
Since the behavior of the said variables is similar to the
mixture of normals in two opposing categories. The EM
algorithms demonstrates ability to categorize the dataset
into two different labels (malignant and benign). This
model projects a classification with a high percentage of
coincidence with the observed data.

Keywords. Maximum likelihood estimators, breast
cancer, EM algorithm, Gaussian mixture model.

1 Introduction

In the descriptive analysis of the combined
distribution of the variables radius mean and

texture, it is noticed that these variable cannot
be described or studied by only one statistical
distribution, as shown in the bar graphs.

Such situation force us to use some method
of distribution combination that can describe to
a large degree the data of the variables under
study. This study type for these variables has
not been realized using the unsupervised learning
algorithm, expectation-maximization (EM), which
we think largely describes the sample data for
these two attributes.

One iterative method used to obtain the
maximum likelihood estimation of a set of
parameters in a statistical model is the EM
algorithm. Initially introduced by Arthur Dempster,
Nan Laird, and Donald Rubin in a 1977 publication
in the Royal Statistical Society [5], this algorithm
also relies on a set of unobserved parameters.

For achieving this, two types of data are
considered, the observed and a set of hidden data,
the unions of these form the set of complete data.
The introduction of the hidden data is an artificial
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Table 1. Sample data of data base

ID
Diagnosis
Benign (B)

Malignant (M)
radius mean texture

862989 B 10.49 19.29

863030 M 13.11 15.56

863031 B 11.64 18.33

863270 B 12.36 18.54

86355 M 22.27 19.67

864018 B 11.34 21.26

864033 B 9.777 16.99

86408 B 12.63 20.76

86409 B 14.26 19.65

864292 B 10.51 20.19

864496 B 8.726 15.83

864685 B 11.93 21.53

864726 B 8.95 15.76

864729 M 14.87 16.67

864877 M 15.78 22.91

865128 M 17.95 20.01

construction that, although seem surprising, favors
the estimation of the parameters.

Finite mixture distributions have been applied
for representing heterogeneous data, mainly
because, generally it is not enough to only describe
the distribution of information using an unique
statistical distribution.

Hence the combination of distributions is
needed to represent these kind of data. Obtaining
these components lead to the estimate of
proportions and parameters, where each of said
components has a level of contribution to the
general distribution [8, 9]. Thus, clustering the
observations in different factions that share certain
characteristics is required.

As one common iterative tool for maximizing
the likelihood estimation of the mixture distributions
[6, 7], the main aim of the EM algorithm is to
use a multinomial variable that can determine the
membership of each data point in the dataset
to a specific group.

The main goal of this work is to classify whether
a tumor presents cancer cells(malignant) or shows
absence of these cells (benign). To achieve
this, we consider that in previous works machine
learning classification methods have been used to
adjust a function that can predict the diagnosis of
tumor with a new entry [4, 10, 1, 12].

However, previous works considered take into
account the variables that generate the computer
program that uses the curve fitting algorithm. In
contrast, this algorithm computes ten features for
each sample. It then calculates the mean and
extreme values, along with the standard error for
each feature of the image.

Finally, it returns a real-valued vector consisting
of 30 variables, many of which are correlated
and provide redundant information. In this work,
a minimum of variables are considered with low
correlation, and considering that data of these
variables present a normal behavior, expectation?
maximization algorithm is used for Gaussian
densities that in previous works has not been
analyzed and that can discriminate breast cancer
with a reasonable security.

2 Data Examination

The dataset was taken from the data provided by
Dr. William H. Wolberg, who works at the Hospital
of the University of Wisconsin in Wisconsin, U.
S. A. [12], who reviewed 569 cases of tumors in
women. All records have an unique ID along with
the diagnosis (malignant or benign), as well as
other variables related to the tumor.

For this study, the variables considered where
the mean of the radius and its texture, Breast
cancer is characterized by a solid tumor, and,
according to GLOBOCAN, the fourth cause of
dead related to cancer in general and is the
type of cancer most frequent in women and
the most lethal.

Cancer is a transformative cell process and
this way, cancer cells can morphologically differ
from the cells that originated them [5]. On the
other hand, cancer cells present genomic
instability, which gives place to mutations and
rearrangements in the chromatin (packaged DNA
by the action of histone pro-teins), these changes
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Fig. 1. An estimated probability density function of malignant tumors

allow that cancer cells develop capabilities to
survive, proliferate and disseminate [3].

The analysis of the texture of the nucleus
is found in the varia-tion of the intensity of the
grayscale in the pixels and is employed since
changes are reflected in the chromatin, allowing to
determine that exists a significant difference in the
values of the nuclear texture among patients with
benign and malignant diagnosis. This suggests
that changes in the chromatin exist in nuclear cells
of malignant diag-nosis in comparison to benign.
From the dataset, 357 benign are present, as well
as 212 malignant cases [12]. A short example of
the information available is shown in Table 1.

The following frequency histograms of the
sample demonstrate an estimate of the density
function form. Nevertheless, it is not the density,
but, from the non-parametric perspective, it also
can be interpreted as a equitable estimate.

Thus by considering the mwan of the radius
and texture variables, considering that from the
total observations (569), 357 indicate a benign
case, meanwhile 212 cases indicate a malignant

tumor, the histogram presents the distribution
of a two normals mixture as shown in the
following figures (1, 2).

Looking at the frequency histogram, it
can be considered a behavior of mixture of
normals, hence the work will be developed
considering that the radius mean and texture
variables have a probability distribution
completely specified, that is to say, a two normal
distribution mixture. By applying the algorithm of
expectation-maximization (EM), an estimate of
parameters can be found, where:

1 [9.71, 11.12), 9 [20.99, 22.4), 17 [32.27, 33.68),= = =

2 [11.12, 12.53), 10 [22.4, 23.81), 18 [33.68, 35.09),= = =

3 [12.53, 13.94), 11 [23.81, 25.22), 19 [35.09, 36.5),= = =

4 [13.94, 15.35), 12 [25.22, 26.63), 20 [36.5, 37.91),= = =

5 [15.35, 16.76), 13 [26.63, 28.04), 21 [37.91, 39.32),= = =

6 [16.76, 18.17), 14 [28.04, 29.45), 22 [39.32, 40.73).= = =

7 [18.17, 19.58), 15 [29.45, 30.86),= =

8 [19.58, 20.99), 16 [30.86, 32.27),= =
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Once having the estimates, we will analyze
to what extent the previous variables can
contribute to predict whether the diagnosis
confirms or denies the presence of cancer cells,
by using said algorithm which can categorize these
data into groups.

2.1 Expectation-maximization Algorithm

When implementing the EM algorithm, the
Y = (Y1, Y2, . . . , Yn) variable will denote
a random sample of size n, where Yi is a
p−dimensional random vector with a density
function f(yi) where yi ∈ Rp. So y = (y1, y2, ..., yn)
is an observed sample of Y .

Definition 1. If the density function of a random
variable Yi is:

f(yi|ψ) =
g∑

k=1

πk fk(yi|θk), yi ∈ Rp. (1)

It has a finite mixture distribution with g
components, with a parameter vector:

ψ = (π1, . . . , πg, θ1, . . . , θg). (2)

Here, fk(yi|θk), k = 1, 2, ..., g, denotes the
densities of the components of the mixture with
parameters θk and weight parameters π1, ...,πg.
In the most general case, it is also assumed
that the functions fk(yi|θk) can belong to different
parametric families.

To tun the mixture into a density function of the
weight, it needs the following conditions:

0 ≤ πk ≤ 1, k = 1, . . . , g and
g∑

k=1

πk = 1. (3)

Note that in the last expression, one weight is
defined in terms of the others, and turns redundant.

Definition 2. Let y = (y1, y2, . . . , yn) be
independent observations of a random variable,
whose density function f(y|ψ) is a mixture, then
the function:

L(ψ|y) =
n∏

i=1

f(yi|ψ) =
n∏

i=1

g∑
k=1

πkfk(yi|θk). (4)

Table 2. Estimator values

θk Value of θ̂k θk Value of θ̂k
π1 0.72 ρxy 0.14

π2 0.28 µu 17.70

µx 12.75 µv 24.54

µy 17.69 σu 3.85

σx 2.15 σv 4.21

σy 3.16 ρuv -0.33

Is called maximum likelihood function. Taking
the natural logarithm in L(ψ|y), its log−likelihood
function is derived:

l(ψ|y) = logL(ψ|y) =

log

n∏
i=1

g∑
k=1

πkfk(yi|θk)
n∑

i=1

log

g∑
k=1

πkfk(yi|θk).
(5)

For calculating the maximum likelihood
estimator (ψ̂) , it is customary using the logarithm
of the likelihood function, well, let us remember that
the logarithm of the function and the function under
certain regular conditions have their maximum
in the same point. Hence, we must solve the
likelihood equation:

∂

∂ψ

n∑
i=1

log

g∑
k=1

πkfk(yi|θk) = 0. (6)

Owing to the existence of the logarithm of a
sum, the solution of the equation is difficult. Thus,
another approach that allows the maximization of
the log-likelihood function is required. This new
procedure was first introduced by Dempster [2].

It was a mechanism to handle missing
information and involves defining a new
expectation that facilitates maximization, such that
the parameters that maximize this ”expectation”
in each iteration converge to the parameters that
maximize the likelihood function.

Let y = (y1, y2, . . . , yn) be an observed sample
of size n, which we will denote as the incomplete
data vector, corresponding to a realization of Y ,
with density function f(y|ψ), where ψ is the vector
of parameters to be estimated. Next, consider
the variable Z = (Z1, Z2, . . . , Zn), called latent,
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Fig. 2. An estimated probability density function distribution of benign tumors

which represents the unobserved data, and whose
realization is z = (z1, z2, . . . , zn).

Thus, the random vector X = (Y , Z),
called the complete data vector, has realization
x1 = (y1, z1), x2 = (y2, z2), . . . , xn = (yn, zn),
such that each yi realization always corresponds
to zi. In this regard, we assume that Zi represents
a g−dimensional binary indicator variable, where
the j−th element Zij indicates the membership of
the observation yi to the j−th component of the
mixture, with i = 1, 2, . . . , n and j = 1, 2, . . . , g.
Therefore, we can define Zij as:

Zij = zij =

{
1 if yi stems from the j − th component,
0 in any other case.

(7)

Due to the categorical nature of the Zi variable,
which indicates the membership of the sample
points to a component (or any other part) of the
mixture, the πk weights can be interpreted as the a
priori probability that the yi observation belongs to
the k-th population. This makes the assumption
that Zi follows a multinomial distribution, with

just one realization across g categories and
probabilities π = (π1, Aπ2, . . . , πg):

P (Zi = zi) =(
1

zi1, zi2, . . . , zig

)
πzi1
1 πzi2

2 . . . πzig
g =

g∏
k=1

πzik
k ,

(8)

where:
g∑

k=1

zik = 1

g∑
k=1

n∑
i=1

zik = n. (9)

Then:

P (zik = 1) = πk k = 1, 2, . . . , g. (10)

2.2 Gaussian mixture model

From the observation of the elections made,
information about the missing data can be
obtained. Hence, the density of this missing data
is h(z|y,ψ), which is conditioned to the perceived
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Fig. 3. Mixture of normal distribution

decisions in the sample. Therefore, by using
Bayes’ theorem:

h(z|y,ψ) = P (zik = 1|Yi = yi) =

P (zik = 1)P (Yi = yi|zik = 1)

P (Yi = yi)
=

πkfk(yi|θk)
g∑

k=1

πkfk(yi|θk)
.

(11)

Building on the previous points, we define the
new expectation, or “hope,” in ψ, which is linked
to a likelihood function but utilizes the conditioned
distribution h(z|y,ψ). For the EM procedure,
an initial value of the parameter ψ0 is needed
at the beginning. The algorithm then iterates,
updating ψ in each step. As we observe the
successive maximization of this new function, it
converges to the same maximum value as the
original likelihood function:

ε(ψ|ψ0) = E
[
l(ψ|y, z)|Y = y,ψ0)

]
, (12)

ε(ψ|ψ0) = E

[
n∑

i=1

g∑
k=1

zik log[πk fk(yi|θk)]|Y = y, ψ0

]
=

n∑
i=1

g∑
k=1

E
[
zik|Yi = yi,ψ

0
]
[log πk + log fk(yi|θk)] .

(13)

However:

E
[
zik|Yi = yi,ψ

0] = P (zik = 1|Yi = yi,ψ
0) =

fk(Yi = yi|zik = 1)P (zik = 1)

P (Yi = yi)

∣∣∣∣
ψ0

=

πkfk(yi|θk)
g∑
k=1

πkfk(yi|θk)

∣∣∣∣∣∣∣∣∣∣
ψ0

= τ̂
(0)
ik .

(14)

Therefore:

ε(ψ|ψ0) =

n∑
i=1

g∑
k=1

τ̂
(0)
ik [log πk + log fk(yi|θk)] =

n∑
i=1

g∑
k=1

τ̂
(0)
ik log πk +

n∑
i=1

g∑
k=1

τ̂
(0)
ik log fk(yi|θk).

(15)

After the previous calculus, the maximization
of the ε function is done according to ψ. This
maximization is performed in two steps because
πk appears only in the first summand, while θk
appears only in the last summand. We begin with
the maximization of the first summand that does
not depend on the density functions fk(yi|θk). For
that reason, we use the Lagrange multipliers:

∂
∂k

(
n∑

i=1

g∑
k=1

τ̂
(0)
ik log πk + λ

[
g∑

k=1

πk − 1

])
= 0, (16)

n∑
i=1

τ̂
(0)
ik

1

πk
+ λ = 0, (17)

n∑
i=1

τ̂
(0)
ik = −λπk. (18)

By summing over k on both sides of the final
equality, we obtain:

n =

n∑
i=1

g∑
k=1

τ̂
(0)
ik =

g∑
k=1

−λπk = −λ. (19)

Which implies that:

τ̂
(1)
ik = πk =

1

n

n∑
i=1

τ̂
(0)
ik . (20)
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Table 3. Sample data of the distribution of mixture of normals

ID

Diagnosis

radius mean texture

Mixture of Normals

Benign (B) (1) Benign

Malignant (M) (2) Malignant

862989 B 10.49 19.29 1

863030 M 13.11 15.56 1

863031 B 11.64 18.33 1

863270 B 12.36 18.54 1

86355 M 22.27 19.67 2

864018 B 11.34 21.26 1

864033 B 9.777 16.99 1

86408 B 12.63 20.76 1

86409 B 14.26 19.65 1

864292 B 10.51 20.19 1

864496 B 8.726 15.83 1

864685 B 11.93 21.53 1

864726 B 8.95 15.76 1

864729 M 14.87 16.67 1

864877 M 15.78 22.91 2

865128 M 17.95 20.01 2

865137 B 11.41 10.82 1

86517 M 18.66 17.12 2

865423 M 24.25 20.2 2

865432 B 14.5 10.89 1

866714 B 12.19 13.29 1

8670 M 15.46 19.48 1

86730502 M 16.16 21.54 1

867387 B 15.71 13.93 1

For the maximization of the second summand
with regard to θk, ir depends on the density function
fk(y|θk), and in our case, it corresponds to the
Gaussian mixture:

fk(y|θk) =
1

(2π)
p
2 |Vk|

1
2

exp

[
−1

2
(y − µk)

TV −1
k (y − µk)

]
.

(21)

Using the estimate of µk, we obtain an
estimate of Vk.

2.3 Start Values

The first values used for starting the algorithm,
and which are also used in many other examples,
are obtained by partitioning the sample in g parts,
and with each, the mean of the observations is
calculated: µ̂(0)

1 , µ̂
(0)
2 , ..., µ̂

(0)
g .

As for the weights, they are similar following
π
(0)
1 = π

(0)
2 = ... = π

(0)
g = 1/g. In [11], another

form to obtain the initial values exist is presented
since there are multiple ways to do it.
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2.4 Halt Conditions

The ratio of difference is considered to stop
the iterations:

∣∣l(ψ(t+1)|y)− l(ψ(t)|y)
∣∣∣∣l(ψ(t)|y)

∣∣ . (22)

It is utilized due to its dimensionlessness. When
the maximum value of this difference is less than
10−6, the algorithm stops.

3 Application of the EM Algorithm

To demonstrate that this algorithm can efficiently
classify whether the tumor is benign or malignant
through the attributes of mean of radius and
texture, we must consider a mixture of normals with
two components, each composed by two variables,
radius mean and texture. Thus the density function
(21) can be defined as:

f(x, y) =
1

2π
√
1− ρ2

exp

(
− 1

2(1− ρ2)

[(
x− µx

σx

)2

−

2ρ

(
x− µx

σx

)(
y − µy

σy

)
+

(
y−?y
?y

)2
])

,

(23)

where:
ρ =

σxy
σxσy

. (24)

The database was divided into two groups, for
this we calculated the mean of both variables in
each register, ordered the means from smallest
to largest and took the first group with the first
n1 = 285 registers and the second with the last
n2 = 284 registers, since the base consists of
n = 569 registers. For the first group, the initial
values calculated according to the average radius
and texture variables:

π
(0)
1 = π

(0)
2 =

1

2
, (25)

µ̂(0)
x =

1

n1

n1∑
i=1

xi = 12.06, (26)

µ̂(0)
y =

1

n1

n1∑
i=1

yi = 16.22, (27)

σ̂(0)
x =

(
1

n1 − 1

n1∑
i=1

(
yi − µ̂(0)

x

)2)1

2
= 1.82, (28)

σ̂(0)
y =

(
1

n1 − 1

n1∑
i=1

(
yi − µ̂(0)

y

)2)1

2
= 2.36, (29)

ρ̂
(0)
xy =

n1∑
i=1

(
xi − µ̂(0)

x

)(
yi − µ̂(0)

y

)
n1∑
i=1

(
xi − µ̂(0)

x

)2 n1∑
i=1

(
yi − µ̂(0)

y

)2 = −0.25. (30)

For the second group, the initial values
calculated based on the values of the radius mean
and texture variables were:

µ̂(0)
u =

1

n2

n2∑
i=1

ui = 16.20, (31)

µ̂(0)
v =

1

n2

n2∑
i=1

vi = 22.37, (32)

σ̂(0)
u =

(
1

n2 − 1

n2∑
i=1

(
ui − µ̂(0)

u

)2) 1
2

= 3.56, (33)

σ̂(0)
v =

(
1

n2 − 1

n2∑
i=1

(
vi − µ̂(0)

v

)2) 1
2

= 3.53, (34)

ρ̂
(0)
xy =

n2∑
i=1

(
ui − µ̂(0)

u

)(
vi − µ̂(0)

v

)
n2∑
i=1

(
ui − µ̂(0)

u

)2 n1∑
i=1

(
vi − µ̂(0)

v

)2 = −0.15. (35)

The algorithm starts to iterate and stops in the
iteration where it is fulfilled (see Table 2):∣∣l(ψ(t+1)|y)− l(ψ(t)|y)

∣∣
|l(ψ(t)|y)|

< 10−6. (36)
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Table 4. Hypothesis for tests

Hypothesis H1: Malignant Tumor Hypothesis H0: Benign Tumor

Positive in test True positive (TP), H1|H1 False positive (FP), H1|H0

Negative in test False negative (FN), H0|H1 True negative (TN), H0|H0

Table 5. Distribution of hypothesis

TP FP FN TN

Patients 127 27 85 330

Percentage 22.32% 4.75% 14.94% 58.00%

With these values, we obtain the distribution of
the mixture of normals, some results can be seen
in Table 3. As seen, there are differences in the
results, for example, in the registers 2, 14, 22 and
23, the model classifies them in component one
(benign), but the diagnosis is labeled as malignant.

Figure 3 shows the distribution of the mixture of
normals. Utilizing the results of the EM algorithm
to perform hard clustering of the observations, and
to analyze the produced errors, Table 4 and 5 are
obtained. We represent PTP as the probability
that an individual with a malignant tumor has a
positive result:

PTP =
TP

TP+FN
= P (H1|H1), (37)

PTP =
127

212
= 0.5991. (38)

And we represent PFP as the probability that a
healthy individual has a positive result:

PFP =
FP

TP+FP
= P (H1|H0), (39)

PFP =
330

357
= 0.9244. (40)

For this particular study, patients with malignant
tumor are detected in approximately 60%, however,
patients with benign tumor are detected in 92%.

4 Conclusions

We can observe that, from a total of 569
observations, 62.7%, 357 cases, show the
absence of cancer cells, that is benign tumors.
On the other hand, 212 cases are malignant, that
is to say, 37.3% manifest cancer cells. Using
the model made with the mixture of normals, a
coincidence of about 80% of the total cases was
found having a mayor difference of coincidences in
the malignant tumors.

The results obtained from the mixture of
normals reveal a coincidence of approximately
92% of the total benign cases. On the contrary,
for the malignant cases the coincidence is about
60% of the total of cases for malignant tumors.
We can conclude that the presented model has a
good acceptance for benign tumors, however, for
malignant cases the prediction is not as satisfying.

In this last case, we can argue that the data
provided by Dr. Wolberg does not represent a
typical distribution of medical analysis. Moreover,
the distribution of benign versus malignant cases
is unbalanced, with more benign tumors than
malignant ones. Thus that could explain why there
is a higher coincidence with benign cases than for
malignant tumors.
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