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Abstract. Arabic language and its dialects both have
a very rich and complex morphology, and they face
the same challenge, which is called agglutination,
where the words might be attached to one or more
affixes. However, word segmentation has become a
very important preprocessing procedure for many natural
language processing tasks that deal with agglutinative
languages to improve their performance. Besides
Arabic, Arabic dialects are known for their complex
agglutination system, which makes word segmentation
challenging. To address this challenge, this paper
presents an out-of-context full word segmentation
algorithm that is based on weighted directed graph
theory. The main purpose of this algorithm is to
tackle the agglutination phenomena observed in dialectal
Arabic. To illustrate the efficacy of the algorithm, the
Libyan dialect is selected as a case study for testing
its feasibility. A test dataset of 1,200 Libyan dialect
words was used to manually evaluate the algorithm
for accuracy. The experimental results show that the
proposed algorithm achieves good outcomes on the
test dataset.

Keywords. Libyan dialect, word segmentation algo-
rithm, morphological segmentation, weighted directed
graph, Arabic dialects.

1 Introduction

Arabic dialects are now widely used as informal
languages in everyday life, and they have become
the preferred language for Arabic users to

communicate with each other on social media
networks. In contrast, Modern Standard Arabic
(MSA) is used as a formal language in the media,
newspapers, education, and so on [1, 12].

However, compared to MSA, Arabic dialects
are considered low-resourced languages. Re-
searchers in Arabic Natural Language Processing
(NLP) do not take them into account. Very little
work has been done on Arabic dialects in the last
decade, although the situation is changing.

The Arabic dialects are distinct from MSA and
also differ from each other [6]. In fact, there are
considerable lexical and morphological variations
among Arabic dialects. Obviously, Maghrebi
dialects are different from Middle-east dialects. For
example, dual forms are generally generated in
Maghrebi dialects, where the word ”h. ð

�	P” in Libyan

Dialect (LD) or ”h. ñ
�
k. ” in Moroccan Dialect (MD),

which means “pair” or “two” in English, is placed
before the nouns. For instance, the dual form of
the singular noun ”Ñ �ëPX�”, which means “cent” in

English, is generated by placing the word ”h. ð
�	P”

before its plural form “Ñë� @
�PX�”, which translates to

“cents” in English.
Consequently, the resulting phrase “Ñë� @

�PX� h. ð
�	P”

represents the dual form of the singular noun
”Ñ �ëPX�” and conveys the meaning of “two cents”
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in English. In contrast, the suffix “ 	áK
”, quite
commonly used in Levantine dialects, is attached
to the endings of singular nouns to create dual
forms. For example, the suffix “ 	áK
” can be

attached to the singular noun “Ñ �ëPX�” to generate

its dual form “ 	á�

�
Ò
�
ëP

�
X”, which also means “two

cents” in English. Additionally, vocabulary differs
considerably among Arabic dialects.

For example, the Arabic dialect equivalents of
the English word “bottle” can be ” é �«Q

��
¯”, ” �è 	PñK. X”,

” �é ���

�
�”, ”É¢�.”, ” �è �	P@ 	P@


�
” and ” �éK. X” in Morocco, Tunisia,

Libya, Iraq, Egypt, and the UAE, respectively. In
terms of morphology, Arabic dialect words can
be generated by adding different affixes to the
base word, depending on where they are spoken.
For example, the future tense of the Arabic verb
“I.

�
J»”, which means “to write” in English, can be

formed by adding the prefixes “ �
Ië” or “ �

IK.” to the

verb. This gives the words “I.
�
Jº

�
Jë” and “I.

�
Jº

�
JK.”,

respectively, both of which mean “he will write” in
English. The prefix “ �

Ië” is commonly used in the

Egyptian Dialect (ED), while “ �
IK.” is widely used in

the LD. The LD is one of the Arabic dialects that
belongs to the Maghrebi dialect family.

LD is spoken by about six million people in
north Africa. Generally, the LD can be divided by
linguists into three main dialects, which are the
eastern, southern, and western dialects. LD is
influenced by other languages.

Therefore, a sentence in LD might contain
words whose original roots come from other
languages, such as Italian, Turkish, Berber, and
Arabic. Actually, LD is an extremely agglutinative
language, and it tends to have a high rate of affixes.

A single word in LD might be the equivalent
of a whole sentence in other languages. For
example, the LD word “½ËA�êËA

��
®
	
JÓ” can be translated

into a sentence in both English and MSA, which
are “who told you that” and “½Ë 	X ½Ë ÈA

��
¯ ø




	
YË@ 	áÓ”

respectively. Word segmentation, also known
as morphological segmentation, is a crucial
preprocessing step in various NLP tasks, including
machine translation, information retrieval, parsing,

and speech recognition [25]. The process of
word segmentation involves dividing a word into
linguistic units known as morphemes, which carry
meaning. In other words, it is the process of
separating a word into a base word and affixes.

For instance, the LD word “½ËA �ëðQK
YJ
K. ð” repre-
sents a case of agglutination that means “And
they will do it to you” in English. It can also be
segmented into many linguistic units, which are
(”¼”+”È”+” A �ë”+”ð”+”QK
X”++”ø



”++”H. ”+”ð”). Where

“QK
X” is a base word, “ð” and “H. ” are proclitics, “ø


”

is a prefix, “ð” is a suffix, as well as “¼”, “È”, and

“ A �ë” are enclitics. It is clear that a high agglutination
ratio makes word segmentation incredibly difficult.

In situations where languages are both low-
resource and agglutinative, word segmentation
becomes even more exacerbated. In general,
low-resource languages face a shortage of
electronically available data, such as training data,
corpora, lexicons, and dictionaries. This data
is required for machine learning and other NLP
tasks. Arabic dialects, in particular, are considered
low-resource due to limited resources, which
makes research on dialect word segmentation
challenging. To overcome this limitation, an
algorithm is introduced to solve the agglutination
phenomenon by leveraging the advantages of
Weighted Directed Graph (WDG) techniques.

The main contribution of the paper lies in
the application of the WDG model to tackle
the agglutination problem in LD, which has not
been previously investigated. Additionally, the
approach presented in this paper provides an
alternative way to overcome the scarcity of
available training data or corpora. This approach
is particularly advantageous for low-resource
languages because it does not require additional
data resources, such as training data.

The idea of the proposed algorithm is designed
not only for LD but also to be applicable to all
Arabic dialects because they share a common
morphological structure. LD was used as a case
study to identify the strengths and limitations of
the algorithm. The reason for choosing LD as
a case study is that it is the native language of
the first author. This means that the author has

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1117–1132
doi: 10.13053/CyS-29-3-5882

Husien Alhammi, Kais Haddar1118

ISSN 2007-9737



a deep understanding of the LD. This familiarity
with the LD allowed the authors to easily collect
data and conduct a linguistic study. In this
script, it is important to note that the term
“prefix” refers to any component that might be
attached to the beginnings of the base words,
while the term “suffix” refers to any component
that can be attached to the endings of the base
words. Furthermore, the term “word segmentation”
refers to both morphological segmentation and
compound word splitting.

2 Related Work

The work that has been done on Dialectal Arabic
(DA) is limited compared to MSA. NLP for DA
is still in its early stages of development, and
there are many challenges that need to be
overcome, such as the lack of language resources
and tools. However, a limited amount of DA
research has been devoted to morphological
segmentation. A variety of approaches have
been used in word segmentation, including
rule-based, statistical, machine learning, and
hybrid approaches. Significant work that has been
done on segmenting words in DA is listed below.

In 2012, Mohamed et al. [20] developed a word
segmenter for the ED that uses memory-based
learning. A small corpus of 20,022 words in the
ED that were collected from 320 reviews was used
to train the segmenter. These words were divided
into their morphemes and annotated by two native
ED speakers. In terms of segmentation accuracy,
they received a score of 91.90 percent. Pasha et
al. introduced MADAMIRA [24] in 2014, a system
for morphological analysis and disambiguation of
Arabic that includes the best features of two
earlier systems for Arabic, MADA [14] and AMIRA
[10]. MADAMIRA has been developed with
additional features to analyze ED and MSA. In
2014, Monroe et al. segmented MSA and several
Arabic dialects using a single dialect-independent
model [21]. Three different corpora were used
to train and evaluate their Conditional Random
Fields (CRF) model. They claimed that their
segmenter exceeded the existing systems on
newswire, broadcast news, and ED. They achieved
an F1 segmentation score of 95.1% on a recently

published ED corpus, compared to 90.8% for
another segmenter developed specifically for ED.

In 2016, Farasa was presented [9], which is
a fast and accurate Arabic segmenter. The
approach is based on Support Vector Machine
(SVM) to rank the possible legal segmentations of
an Arabic word. Their experimental results show
that the Farasa outperforms state-of-the-art Arabic
segmenters, called QATARA [8] and MADAMIRA.
Eldesouki et al. [11] presented Arabic multi-dialect
segmentation using SVM-based ranking and
bi-LSTM-CRF sequence labeling for segmenting
Egyptian, Levantine, Gulf, and Maghrebi dialects,
using only a few thousand training samples for
each dialect. Both approaches yielded comparable
results, with accuracies ranging from 91% to 95%
for different dialects.

YAMAMA was presented in 2016 [18], a
multi-dialect Arabic morphological analyzer and
disambiguator for MSA and ED. YAMAMA was
created by combining the benefits of two MSA mor-
phological analyzers: MADAMIRA and FARASA.
In fact, they leveraged MADAMIRA component
analysis and FARASA disambiguation modeling.
YAMAMA was compared to MADAMIRA and
FARASA in the context of Statistical Machine
Translation (SMT). Although YAMAMA is about
five times faster than MADAMIRA, its quality is
slightly lower. It provides a rich representation of
outputs that can be used for a broader range of
applications. FARASA, on the other hand, is faster
but gives particular outputs specialized for certain
applications.

In 2019, Tawfik et al. conducted several
experiments on Egyptian Arabic (EA) [29], Lev-
antine Arabic (LA), and Gulf Arabic (GA) to
investigate the impact of the dialectical segmenter
on the quality of the Machine Translation (MT)
system. And they contrasted dialectal segmen-
tation with other segmentation techniques such
as Byte-Pair-Encoding (BPE) [28] and Sub-word
Regularization (SR) [19]. Five word segmentation
tests were used in their experiments: dialectal
segmenter, BPE, SR, dialectal segmenter with
BPE, and dialectal segmenter with SR. In their
work, a retrained version of the Unified Dialectal
Arabic Segmenter (UDAS) [27] was used as
a dialectal segmenter. The experiments were
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carried out using Marian v1.7.6 [17], which is a
public neural machine translation framework. The
results show that using a high-accuracy dialectal
segmenter together with a language-independent
word segmentation approach such as BPE or SR
has some advantages.

Almuhareb et al. in 2019 presented an Arabic
word segmentation method that is based on a
bi-directional long short-term memory deep neural
network [4]. Their method consists of two tasks:
word segmentation only and word segmentation for
nine cases of the rewrite. In Arabic orthography,
when the base word is attached to another unit
(affix), the letters of the base word might be
dropped or changed. A rewrite process is required
in this case to write these letters back to the base
word when the units (a base word and affixes) are
separated as a result of segmentation. In their
work, they achieved an F1 score of 98.03% for
word segmentation only and above 99% for word
segmentation with the rewrite.

In 2022, Camelira was presented [23], a
web-based Arabic multi-dialect morphological dis-
ambiguation tool that supports MSA as well as
three major Arabic dialects: Egyptian, Gulf, and
Levantine. And it provides linguistic information
such as part-of-speech, tokenization, and lemmas
to academics and language learners via a
user-friendly web interface. The web interface
allows users to explore the deep linguistic analysis
of a given sentence by taking a sentence as
input and offering automatically disambiguated
interpretations for each word in both context and
its out-of-context alternatives. Generally, Camelira
combines Arabic morphological disambiguation
and the Dialect Identification (DID) system. Actu-
ally, it integrates a state-of-the-art morphological
disambiguator described by [16] with the most
efficient fine-grained Arabic DID system presented
by [26].

3 Linguistic Study

Linguistically, the LD has a complex agglutination,
which makes it a challenge for word segmentation.
Consequently, a comprehensive linguistic study of
affixation is required. Affixation can be defined
as the process of adding an affix to a base word

to form a new word [7]. To conduct the linguistic
study, a recent LD Twitter corpus of 5000 tweets
was used as a study dataset [3]. Moreover,
episodes from the Libya Al-Ahrar TV program on
YouTube for LD, titled ”hA

�
j�Ë@ Q¢Ó”1, were utilized

to gather valuable information regarding the LD.
All the information discussed in Section 3 was
collected during the linguistic study.

3.1 Orthographic Variations

Due to the oral nature of LD, words can be
written in different forms with no orthographic
standardization. For example, the English word
“much” can be written either “ �éJ. Êë” or “ A�J. Êë” in LD.
Furthermore, in some cases, the letter’s order
of the words can be changed to produce their
synonyms. For instance, the order between letters
three and two of the word “ 	QÒ �ª�¯”, which means
“seat” in English, can be exchanged to produce
the other word with the same meaning, which
is “ 	Q �ªÔ

�
¯”. Likewise, the LD words “Õ» A�Ô

�
«” and

“Õ» A �ªÓ”, which mean “with you” in English, have the
same meaning but different spelling because of the
change in order between letters one and two.

Occasionally, there is no rule for writing letters
that have a similar sound. The letters “�” and

“�” have a similar sound. Therefore, they can
be used alternatively to write the same word. For
example, the words “ø



Q¢J
ÖÞ

�” and “ø


Q¢J
ÖÞ

�” are
the same word, which both translate to “cold” in
English, but they are written with different first
letters: “�” and “�”. Also, the letters “ 	X” and “X”,

and the letters “h. ” and “ 	P” have a similar sound and
can be used alternatively to write the same word.
Furthermore, the letter “ @” can be optionally added
to the beginning of some words. For example, the
English word “trainers” might be written in LD in two
different forms: “ðPYJ
�.�” and “ðPYJ
�.�@”.

1https://www.youtube.com/playlist?app=desktop&

list=PL1NMeupVTOlhL_F13HOQN-2e-pTegg20W
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3.2 Lexical Variations

The LD can be mainly classified into eastern,
western, and southern dialects based on where
it is spoken. For example, the English word
“much” has many equivalents in LD, which are
respectively “ �éJ. Ê

�
ë”,”Yg. @

�
ð”, and “Qå�A�K
” in the west,

east, and south of the country. LD is characterized
by the usage of synonyms, where different words
convey the same meaning. For example, the words
“ 	á �

�”, “ñ	J ��”, and ”ú



	
æ
�
�”, which mean in English

“what”, have the same meaning but are written and
pronounced differently.

Homophones are also used in LD when words
have the same pronunciation and spelling but have
different meaning. For example, the word “ �é 	J�K.” has
two meanings. It means “a smell” in the east and
“a taste” in the west of the country. The word
is pronounced and spelled the same but has two
different meanings.

3.3 Morphological Variations

Since LD has a rich morphological system, a
single word within the language can have multiple
morphological forms within the same grammatical
case. For example, the feminine plural pronouns
“ 	à” and “ð” are suffixes that can be attached
to the verbs based on the areas or regions of
speakers. The suffix “ 	à” is used in the eastern

region, whereas the suffix “ð” is used in the rest
of the country. For example, the English word “they
dance” can be written either “ 	á��

Q̄K
” in the eastern

region or “ñ��
Q̄K
” in the western region, which are

both feminine plural forms of the verb “��
Q̄K
” that

means “to dance” in English. In the eastern region,
the feminine plural suffix is similar to Nūn-Niswa
( �èñ� 	

�Ë @
	
àñ

	
K) in classical Arabic.

The grammar of LD has been influenced by both
the Arabic and Amazigh languages. The Amazigh
language is also known as the Berber language.
The LD numbers system uses singular, dual, and
plural forms. The dual form in the LD is expressed
in two different ways. In the first method, the suffix
“ 	áK
” can be attached to the singular nouns in order

to convert them to dual forms. For example, the
suffix “ 	áK
” is attached to the singular noun “P@ �X”,
meaning “room”, to change it to the dual form
“ 	áK
P@

�
X”, which means “two rooms”. In the second

method, the word “ 	Pð 	P”, which means “pair” or
“two” in English, must precede the nouns to convert
them to dual forms. For example, the dual noun
”PA�K
X 	Pð 	P”, which also means “two rooms”, can be

created by placing the word ” 	Pð 	P” before the plural

noun “PA�K
X”, which means ”rooms”.

The second method of dual form is commonly
used in LD. These differences have resulted
in some unique features in the LD grammar.
Furthermore, some LD nouns have many plural
forms. For example, the LD equivalent of the
English word ”a cup” is ” �é�A �£”, which comes from

the Italian word ”tazza”. The word ” �é�A �£” has

three plural forms, which are “��
£”,”ú


æ�@

�
ñ£”, and

“ �
HA

�
�A

�
£”, all of which mean ”cups” in English.

3.4 Space Omission Problem

Due to the lack of standardized orthographic
rules, LD words are usually spelled as they are
pronounced. Therefore, spaces between words
might be omitted. Compound words, which
are combinations of two or more words, are
created when spaces between words are omitted.
Space omission poses a challenging task for word
segmentation because the identification of word
boundaries in merged or compound words is very
complicated.

Consequentially, considerable work is needed to
deal with the space omission issue.

Because of space omission, LD words were
written in a variety of forms in the study dataset.
For instance, the English question “What did you
do to it?” can be expressed in LD in two forms.
The first form is “ A�êÊ�KPX 	á

�
�”, which consists of the

two separate words “ A�êÊ�KPX. ” and “ 	á �
�”, where “ A�êÊ�KPX”

means in English “You did something to it” and
“ 	á �

�” means in English “what”. While the second
form merges or combines two words together to
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produce one word “ A�êÊ�KPY	J ��”, the space between the

two words “ A�êÊ�KPX” and “ 	á �
�” is omitted in this case.

In the linguistic study, they found that some
interrogative pronouns, such as “ 	áÓ” and “ 	á �

�”,
which respectively mean in English “who” and
“what”, can be connected to other words to
form compound words. Moreover, the most
frequent combinations in the study dataset are
preposition+pronoun, which can be added to the
endings of words to create compound words.
For example, the preposition+pronoun combination
“½Ë”, meaning in English “to you” can be attached

to the ending of the word “ A�î �DÊ�¯”, which means
in English “I say it” to make up the compound
word “½ËA�î �DÊ�¯”, meaning “I say it to you”. In
contrast, interjections are sometimes attached to
the beginning of words to form compound words.
For instance, the interjection “ú




�
G”, which means in

English “Psst”, might be attached to the beginning
of the word “ù



ëA
�
K.”, meaning in English “ok” to

form the compound word “ù


ëA
�
J. �

�
K”, which means in

English “Psst, it’s ok”. Table 1 shows examples of
the number of space omissions for LD words that
can be translated to the English phrase “Psst, who
will say it to you?”. Notice that all forms of LD in
Table 1 were found in the study dataset.

Table 1. Possible number of space omissions for the
same LD words

Usage Number of space omission LD words

less commonly 0 ½Ë A
�
êËñ

�
®J
K.

	áÓ ú



�
G

more commonly 1 ½ËA
�
êËñ

�
®J
K.

	áÓ ú



�
G

commonly 2 ½ËA
�
êËñ

�
®J
�.

	
JÓ ú




�
G

rarely 3 ½ËA
�
êËñ

�
®J
�.

	
JÒJ


�
K

Here are other types of compound words that
are created by joining two words. Firstly, subject
personal pronouns might be attached to the
endings of adverbs. For example, the LD word
“ @ �ñîD�� 	� A

�
¿”, which means in English “maybe he”.

The word can be split into two words: “ @ �ñë” +

“ �
�

	
�A
�
¿”, which are a personal pronoun and an

adverb, respectively. Additionally, prepositions

might be connected to the beginnings of nouns.
For example, the LD word “ A �£ñËA �«” which means in
English “on the ground”. It can be segmented into a
pair of words: “ A �£ñË@” + “

�
¨”. Where “ A �£ñË@” is a noun

that means “the ground” and “
�
¨” is a preposition

that means “on”.
Furthermore, the beginnings of nouns might be

attached to demonstrative pronouns. For example,
the LD word “ñm.Ì'A

�
ë” which means in English “this

weather”. It can be segmented into two separate
words: “ñm.Ì'@” + “ è”, where “ñm.Ì'@” is a noun and

“ è” is a demonstrative pronoun. Also, personal
pronouns can be negated by adding a negator
word to their beginnings. For example, the LD word
“ A
�	
Jj

�
�Ó”, which means “not us” in English, can be

split into two words: “ A
�	
Jk” + “ �

�Ó”, where “ A
�	
Jk” is

a personal pronoun and “ �
�Ó” is a negator word.

Additionally, the word “ �
�Ó” can also be attached to

the beginnings of adjectives to create their negated
forms. For example, the word “ù



ëA
�
J.
�
�Ó”, which

means “not good” in English, is made up of two
words: the negator word “ �

�Ó” and the adjective

word “ù


ëA
�
K.”.

3.5 Affixation in Libyan Dialect

In linguistics, an affix is a morpheme that is
attached to a word in order to change its
meaning. Generally, affixes can be classified into
several types, depending on their position and
morphology. As for their position, affixes can be
prefixes, suffixes, infixes, or circumfixes. While
the morphological classifications are inflection,
derivation, and enclitization. In this work, the
definitions of the two terms “prefix” and “suffix”
need to be modified. The term “prefix” is modified
to indicate any part that can be attached to the
beginnings of the base words, whereas the term
“suffix” can be defined as any part that can be
attached to the endings of the base words.

Thus, the work aims to segment all prefixes
and suffixes that might be attached to the
base word, including verbs, nouns, and function
word affixes. Many cases of agglutination that
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were encountered in the linguistic study required
meticulous and thorough analysis in order to
extract fundamental insights about how they are
constructed. Table 2 shows some words that were
selected from the study dataset to demonstrate
different types of agglutination of affixes along with
their segmentation.

Affixes of negation are commonly used in LD
to make negated forms of the words. Affixes of
negation usually appear as circumfixes. A prefix
and a suffix must be added to a word in order
to negate it. Some cases of negation are shown
in Table 2. For example, the fifth row of Table
2 illustrates the negated form of the word ” 	PP

	
Yë”,

which means ”he talks” in English. The negation
form is created by adding the prefix ”Ð” to the

beginning and the suffix ” �
�” to the end of the word

” 	PP
	
Yë”. This results in the negated word ” �

� 	PP
	
YêÓ”,

which means ”he does not talk” in English.
The second row in Table 2 shows the long

LD word ”½ËA�êËñ�®J
�.
	
JÒJ


�
K”, which means ”Psst, who

will say it to you?” in English. This word
is made up of seven affixes added to the
base word ”Èñ�¯”, which can be segmented

into (¼+È+ A �ë+Èñ�¯+ø


+H. + 	áÓ+ú




�
G). Obviously, the

examples in Table 2 illustrate the complex
agglutinative morphology of LD, which makes the
word segmentation process extremely difficult and
poses one of the major challenges to NLP tasks
for LD. The main objective of the linguistic study is
to construct lists of LD affixes, including prefixes
and suffixes, that can be segmented using the
algorithm. Table 3 shows a total of 26 prefixes
and 23 suffixes that were manually identified and
collected during the linguistic study.

4 Word Segmentation in NLP

Arabic, along with its dialects, is characterized by a
root-based morphology where words are formed by
combining prefixes, suffixes, and infixes to a base
root, resulting in the generation of many possible
word forms [13]. Generally, the boundaries among
word components are often unclear, which poses
significant challenges in accurately dividing words

into meaningful morphemes, including both affixes
and roots. These morphemes are essential for
many NLP tasks, such as information retrieval,
machine translation, and sentiment analysis, to
improve their performance. Here is an example
to illustrate how word segmentation improves MT
systems.

Consider translating the LD word ” �
�A

��
J�.
�
JºÓ” into

English. The MT system first tries to find a word
in its data or dictionary. If the word does not exist,
then the word segmentation is used to break down
the word ” �

�A
��
J�.
�
JºÓ” into its constituent morphemes:

( �
�+ A

��
K+I.

�
J»+Ð). After that, the MT system can

recognize each of these morphemes as individual
units of meaning and maps each morpheme into
its corresponding word in English. It converts the
“I.

�
J»” to “write”, “ �

�” to “not” and so on. Finally, the

translation of the LD word ” �
�A

��
J�.
�
JºÓ” is generated,

which is ”I didn’t write it” in English.

5 Graphs in NLP

Graphs are powerful computational models for
NLP. Graph-based models are able to represent
complex relationships and dependencies that can
be found in linguistic constructs [15]. Graphs can
contain nodes for representing entities (people,
places, concepts, and events) and edges for
representing relationships (born in, worked in,
and married to) among entities. Graphs are
applied in various NLP tasks to provide a deeper
understanding of language for performing more
sophisticated systems. For example, graphs can
provide a structured way to represent knowledge
in Question Answering (QA) systems. If a
user asks, “Where was William Shakespeare
born?” and the knowledge graph of QA systems
contains information “William Shakespeare—born
in–¿ England,” where “William Shakespeare” and
“England” are entities and “born in” is a relationship
between them.

The answer can be obtained through many
steps by navigating the graph. First, the QA
system analyzes the question and identifies the
entities and their relationships. In this case,
the entity is ”William Shakespeare” and the
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Table 2. Some affixes that can be attached to LD words

POS Segmentation English meaning LD word No

interrogative word +verb+ preposition +pronoun Ñë+ú



	
¯+PA ��+ 	á

�
� what did happen to them ÑîD


	
P̄ A

�
�
	
J
�
� 1

interjection + interrogative word +tens marker+ gender and number marker +verb+ ¼+È+ A �ë+Èñ�¯+ø


+H. + 	áÓ+ú




�
G psst, who will say it to you? ½ËA

�
êËñ

�
®J
�.

	
JÒJ


�
K 2

conjunction + negator prefix + verb+ pronoun+ pronoun+ negator suffix �
�+ A �ë+ �

H+iJ.
�
�+ A �Ó I did not see it �

�A
�
î
�
DjJ.

�
�A

�
Óð 3

negating word+ noun+ pronoun ¼+Pñ �
�+ �

�Ó it is not your business ¼Pñ
�
�
�Ó 4

negator prefix + verb+ negator suffix �
�+ 	PP

	
Yë+Ð he does not talk �

� 	PP
	
YêÓ 5

tens mark+ gender and number marker +verb+ gender and number marker + preposition+ pronoun Ñë+È+ð+ 	QÒ
�
ª
�
¯+ 	

à+H. we will stay with them ÑêËð 	QÒ
�
ª
�
®
	
JK. 6

Table 3. Lists of the prefixes and suffixes that can be attached to LD words

ú



	
¯ A

�
ªÓ

�
�Ó A

�
K
 A

�
Ó 	áÓ 	á

�
� ú




�
G ú

�
Î
�
« Y

	
J
�
« É¿

	
à@ ú



Í ÉË È@ È Ð h

�
¨ ø




	
à

�
H

	
¬ è H. ð Prefixes

B
�
A
�
Òë ù



ë ñë 	áë 	áK
 @

�
ð ú




�
G ú




	
G

�
H@ A

�
ë Õ» A

�	
K Ñë

�
�

�
è ¼ È ø



ð

	
à

�
H è Suffixes

relationship is ”born in”. In the next step, the
system navigates the graph, starting from the
”William Shakespeare” node, to find an edge
or relationship matching ”born in”. The node
”England” which is directly connected to the ”born
in” edge, represents the answer. Obviously, the
use of graph representations enables QA systems
to efficiently answer questions. As graphs offer
significant advantages in NLP, this paper aims to
use a graph as an effective computational model
to tackle the agglutination problem in agglutinative
and low-resource languages, which is one of the
NLP challenges.

6 Word Segmentation Algorithm

Affixes can be a chain or a sequence of
morphemes. A sequence means a set of
morphemes next to each other in a set order. Thus,
the ordering of morphemes is considered a key
idea for solving word segmentation. In this case, a
special data structure for representing the ordering
of affixes and their relationships is needed. To this
end, WDG can be used as a linear-chain model to
solve word segmentation problem. Graphs are a
type of data structure that can be used to model a
wide range of scientific challenges, including NLP
problems [22]. WDG can be defined as a triple G =
(V, E, w), where V is the set of nodes, E is the set
of edges, and w: E → N is a function that assigns
a weight w(e) to each edge e ∈ E. Typically, w(e)
≥ 0 [5].

The algorithm used WDG to model a word
segmentation problem for representing the affixes
and their ordering relationships. Where WDG
nodes are used to represent affixes, each node
represents one affix. While directed edges or
arrows from one node to another are utilized to
represent ordering relationships, weighted edges
are also used to represent three relationships:
prefix-to-prefix, suffix-to-suffix, and prefix-to-suffix
relationships.

The prefix-to-prefix relationship is used to
represent the relationship between two prefixes
with an edge weight of 1, while an edge weight
value of 2 is used to indicate the suffix-to-suffix
relationship, which represents the relationship
between two suffixes. The prefix-to-suffix
relationship, which can be represented by a weight
value of 3, is used to represent a relationship
between the last prefix and the last suffix in a word.
Figure 1 shows three relationships for the LD word
”½ËA�êËñ�®J
�.

	
JÓ”.

In order to separate affixes from words, it is
necessary to correctly identify the location of
affixes in a given word. The starting point of
prefixes can be easily identified, as it is always
at the beginning of the words. In contrast, the
starting point of suffixes is always unknown and
difficult to identify, but the end of suffixes can be
easily identified because it is always at the end of
the word. For this reason, the direction of dividing
suffixes in this algorithm is to start from the end to
the beginning of the word, while the direction from
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the beginning to the end is for splitting prefixes.
Obviously, both directions are opposite. Figure 1
shows the starting points of prefixes and suffixes
for segmenting the word “½ËA�êËñ�®J
�.

	
JÓ”.

A given word in the algorithm can be easily
segmented by matching its affixes to the graph
nodes. The first step in the segmentation process
is to match the first affix to the starting nodes in
the graph. Therefore, the starting nodes in the
graph are distinguished from the other nodes. The
segmentation process starts if there is a match
between the first affix and any starting nodes.
Then it keeps matching between word affixes and
graph nodes until it either reaches the end node
or no matching takes place. The path between
the starting node and the end node represents
word affixes. However, a given word only includes
prefixes if the segmentation path only has edge
weights with values of 1. While the given word
would only contain suffixes if all edge weights in
a segmentation path had a value of 2. In contrast,
if the edge weights in the path contained values of
1 followed by 3, and zero or more values of 2, then
the given word would have prefixes and suffixes.
Figure 1 illustrates three ordering relationships with
their edge weights for the word ”½ËA�êËñ�®J
�.

	
JÓ”.

Fig. 1. Directions and relations for segmenting the word
“½ËA�êËñ�®J
�.

	
JÓ”

To illustrate how the algorithm works, Figure 2
shows a graph that can be used as an example
for segmenting different word forms. The node
numbers with a red color were added to the graph
to clarify how the algorithm works.

Word segmentation in the algorithm can be done
by following a certain path in a graph. For example,

Fig. 2. WDG example for splitting some word affixes

Table 4 includes different word forms that can be
segmented by using the WDG in Figure 2. The
word ” 	QÒ �ª�® 	JK.” in the first row, which means ”I want
to sit” in English, can be segmented by matching
the first letter ”H. ” to node number one, which is
the starting node in the graph. After that, the
matching between node two and the second letter
” 	à” will take place. Obviously, at node number
two, the segmentation process terminates upon no
further matches. At this point, the segmentation
path would then have two nodes, numbers one and
two. These nodes represent the word affixes. As
a result of segmentation, the base word ” 	QÒ �ª�¯” as

well as the two prefixes “ 	à” and “H. ” are obtained.

The last row in Table 4 shows a special case
when both the first letter “ð” and the last two letters

“Ñë” of the word “ÑêËñjJ.
�
�
	
�K. ð”, which means in

English “and we will see them”, would match node
numbers eight and five, respectively. The question
here is: what is the starting node? If there were two
starting nodes, one for a prefix and the other for a
suffix, the algorithm would begin from the node that
represents a prefix.

In this case, the starting node would be
node number eight. Consequently, there will be
matching between node eight and the first prefix
“ð”. Next, node number one will match the next

prefix “H. ”. Then it keeps matching until it reaches
node number two. In this situation, when the
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last suffix “Ñë” matches the node number five, the
relationship of prefix-to-prefix will be immediately
changed into a prefix-to-suffix relationship with an
edge weight value of 3.

Then it moves from node two to node five.
Likewise, when the next suffix “È” matches the
node number seven, it moves from node five to
node seven, and the prefix-to-suffix relationship
will be changed into a suffix-to-suffix relationship
with an edge weight value of 2. It would then
keep following until it reached node number eight,
which is the end node. The starting and finishing
nodes are obviously the same node, which is node
number eight.

The segmentation path would finally include six
nodes, numbered 8, 1, 2, 5, 7, and 8, which
represent the word affixes: ”Ñë+È+ð+ 	

à+H. +ð” with
edge weights of 1, 1, 3, 2, and 2, respectively.
The types of affixes can be identified by their edge
weight values. The segmentation result would
eventually be the basic word “iJ.

�
�”, the prefixes

“ 	à+H. +ð” and the suffixes “Ñë+È+ð”.

The algorithm can also deal with negation. The
graph in Figure 3 shows an example of how
negation circumfixes can be segmented. The
nodes “ð” and “Ð” are distinguished as starting
nodes in the graph. The segmentation of the word
“ �
�B

�
ñËA

��
®Óð”, which means “they did not say it to him”

in English, would begin by matching the first prefix
“ð” to the graph node “ð”, which is the starting
node. The next step would be to match the next
node “Ð” to the next prefix “Ð”. After that, match the

next node “ �
�” to the suffix “ �

�”. Then it would move

on to the next node “B
�
”, and it would keep matching

until it reached node “ð”, which is the end node.

The final result of segmenting would be ”Ð” and ”ð”

are prefixes, ”ÈA
��
¯” is the base word, and “ �

�”, ”B
�
”,

and ”ð” are suffixes. In Figure 3, the nodes of the
segmentation path are highlighted in red.

To enhance the performance of the algorithm, a
language resource called an exception list is used,
which is a list of words that have no affixes but
whose original letters appear as affixes. It is used

to match a given word to the words in a list. If there
is a match, no segmentation is done; otherwise, the
affixes would be split. The list was collected from
two different language resources: the LD Twitter
corpus [3] and the LD-MSA bilingual dictionary [2].

The augmentation of the list size results in
an enhancement of the algorithm’s efficiency.
Finally, the affixes graph was transformed into
an adjacency matrix, and the PHP programming
language was used to implement the algorithm.
The algorithm steps are shown in Algorithm 1.

In this algorithm, many symbols are used as
variables. Where the “GW” symbol represents
a given word, “AF” denotes an affix that can be
segmented from a given word. Furthermore, the
“CN” symbol indicates the active or current node in
the graph. The number of direct successor nodes
of the “CN” node is represented by the “m” symbol,
while “n” stands for the number of starting nodes.
The “DN(i)” represents direct successor nodes of
the current node “CN”. The “Prefixes list” and
“Suffixes list” symbols are used to save prefixes
and suffixes that can be split from a given word,
respectively. Finally, “SN(i)” represents the starting
nodes in the graph. The demo version of the
algorithm is available online2. .

7 Scalability and Complexity

The algorithm utilizes WDG to represent affixes.
The WDG can be represented by an adjacent
matrix, which is a square 2D array. The size of
the adjacent matrix is NxN, where N is the number
of nodes or affixes. The time complexity of this
algorithm was measured using the big O notation
metric. Time complexity is used to estimate the
time required to execute the return output. The
algorithm has a time complexity of O(nˆ2). The time
complexity of the algorithm can be changed based
on the data structure that is used to represent a
WDG. Moreover, the algorithm has a simple and
flexible structure that separates code from data
(graph data), making the code more scalable.

This separation enables the algorithm to
effectively handle different scales of data, from
small to large graphs, without diminishing its

2http://dra.net.ly/segment/segmenting.php
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Algorithm 1 Pseudo-code of the Word Segmentation Algorithm
1: Input: a word
2: Output: affixes and a remaining word
3: Read adjacency matrix of affixes graph
4: Read exception words list
5: Let Prefixes list, Suffixes list, and AF← Null
6: GW ← the given word
7: if GW /∈ exception words list and length(GW ) > 2 then
8: Get a list of all starting nodes SN(i = 1, 2, . . . ,n) in the graph
9: for i← 1 to n do

10: if beginning of GW matches SN(i) then
11: AF ← SN(i)
12: end if
13: if ending of GW matches SN(i) then
14: AF ← SN(i)
15: end if
16: end for
17: if AF ̸= Null then
18: if AF is a prefix then
19: Prefixes list← AF
20: end if
21: if AF is a suffix then
22: Suffixes list← AF
23: end if
24: Remove AF from GW
25: Let CN be the starting node
26: Move to CN in the graph
27: while true do
28: Get list of all direct successors DN(i = 1, 2, . . . ,m) of node CN
29: for i← 1 to m do
30: W ← weight between CN and DN(i)
31: if W = 1 and beginning of GW matches DN(i) then
32: Prefixes list← Prefixes list+DN(i)
33: else if W ̸= 1 and ending of GW matches DN(i) then
34: Suffixes list← Suffixes list+DN(i)
35: end if
36: if there is a match then
37: Remove DN(i) from GW
38: CN ← DN(i)
39: end if
40: end for
41: if no match or successor list is empty then
42: exit while
43: end if
44: end while
45: end if
46: end if
47: Print: Prefixes list, GW , Suffixes list
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Table 4. Examples of segmenting different word forms

Path weights Suffixes Prefixes Base word Segmentation path English meaning LD word No

1 Null 	
à+H. 	QÒ

�
ª
�
¯ 1,2 I want to sit 	QÒ

�
ª
�
®
	
JK. 1

1,1,3 ð ø


+H. 	PPYë 1,3,8 and they will talk ð 	PPYîD
K. 2

2 Ñë+ A
�	
K Null qJ.Ê

�
� 5,4 we beat them 	áëA

�	
J
	
jJ. Ê

�
� 3

1,3 	áK
 È@+ð lÌ'A
�	
¯ 8,9,10 and the smart ones 	á�
m

Ì'A
�	
®Ë @

�
ð 4

1,1,3,2,2 Ñë+È+ð 	
à+H. +ð iJ.

�
� 8,1,2,5,7,8 and we will see them ÑêËñjJ.

�
�
	
�K. ð 5

Fig. 3. WDG example for segmenting negation affixes

performance or efficiency. WDG is well-suited for
word segmentation because it is a relatively simple
task that can be represented by a small number
of nodes. In this work, only 43 nodes were used
to represent affixes, which is a relatively small
number.

8 Evaluation and Discussion

Languages with limited resources, such as LD,
face challenges in obtaining standard evaluation
datasets. Consequently, a new test dataset of
1,200 words has been mainly created from the
LD Twitter corpus [24] and other resources. This
dataset includes a diverse collection of words
that have been formed with different affixes.
Furthermore, in the absence of any existing LD
work that can be used for comparative evaluation
of the algorithm, the authors decided to conduct a
manual evaluation of their algorithm.

First, the test dataset was manually segmented
by linguists, and then the segmented data was

compared to the results of the algorithm to assess
its accuracy.

The test dataset was divided into three portions.
50% of the test dataset contains words with affixes,
while words without affixes make up 25%. The
last 25% includes words that have no affixes, but
some of the original letters appear as affixes. The
test dataset finally included words with affixes and
clitics, as well as some compound words.

However, the performance of the algorithm was
measured using precision, recall, and F1 score
metrics. The algorithm achieved a perfect F1
score of 0.886 on the test dataset. Table 5 shows
examples of the algorithm’s results.

8.1 Error Analysis

For more details, see Table 6, which includes some
examples that have been selected to demonstrate
various types of the algorithm failures. The first
row shows the wrong segmentation of the letter
“È”. Although it is an original letter of the base
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word “Èñ�¯”, this letter was segmented because the

matching took place between the letter “È” and a
node in the segmentation path.

The second row shows a special case where
one node contains the value of the combination of
two other nodes. The mistake occurred when the
node “ 	áÓ” was segmented instead of segmenting

the node “Ð” followed by the node “ 	à”.

The third row shows the wrong segmenting
case, which occurs when there is more than
one relationship between two nodes. The nodes
”ø


” and ” �

�” actually have two relationships: the
prefix-to-suffix and the suffix-to-suffix relationships.
Only one relationship between any two nodes can
be defined in this algorithm. In this case, the
prefix-to-suffix relationship was predefined. As
a result, the algorithm generated this mistake
because it was unable to handle the suffix-to-suffix
relationship.

The last row of the table contains the word
”ñk. XA

�
J
K.”, which means ”trip” in English. The word

was imported from Italian. Although it had no
affixes, it was segmented because its original
letters appeared as affixes.

The overall accuracy of the algorithm could be
improved by adding words whose original letters
appear as affixes to the exception list. Moreover,
the failures in the second and third rows in Table
6 can be addressed by dividing the entire graph
into many smaller graphs. Additionally, the failures
in the third row can also be solved by introducing
a new graph weight that encompasses both the
prefix-to-suffix and the suffix-to-suffix relationships.
Furthermore, despite the success of segmentation,
Out-Of-Vocabulary (OOV) or unknown words were
obtained in some cases. For example, the
segmentation result of the word ”ú




�
G 	P@

�
ñk”, which

means “my farm” in English, is ” 	P @ �ñk”, which is an
OOV word.

9 Pros and Cons of the Algorithm

They conducted a theoretical comparison of
the algorithm to other approaches for word
segmentation in order to demonstrate its strengths

and weaknesses. The algorithm has several
advantages over a rule-based approach. It is more
scalable because it separates code from data. It
can also be visually displayed in a variety of ways,
such as graphs and plots. A rule-based approach
requires more manual work to write and generate
rules, and it can be time-consuming. Furthermore,
the algorithm shares some drawbacks with a
rule-based approach, such as the inability to
handle unknown cases. If the graph is incomplete
or wrong, the algorithm may not provide accurate
or complete results. In addition, a machine learning
approach can learn from new data, making it
more scalable and adaptable than the algorithm.
On the other hand, the algorithm does not rely
on training data for word segmentation, thereby
providing a reliable solution for low-resource
languages. Moreover, it is simple and can
be readily implemented using any programming
language that supports a 2D array to represent a
graph, and no additional code libraries are needed.

10 Applicability of the Algorithm

The proposal algorithm was designed to use
a graph for addressing agglutinative problems,
particularly in low-resource languages. The
algorithm was implemented and evaluated on LD, a
member of the Arabic dialect family. The algorithm
showed effective performance in segmenting
LD words. It also theoretically exhibits more
applicability due to its capacity for easy adaptation
and maintaining consistent performance across
different languages, where their affixes can be
represented in WDG format. For example, in
addition to LD, the proposed algorithm can be
readily applied and adapted to efficiently segment
words from other Arabic dialects, as their affixes
resemble those of LD and can be represented
as WDG.

11 Conclusion and Future Work

This paper introduces an algorithm for segmenting
LD words by modeling the word segmentation
problem as a WDG. A Twitter corpus of 5,000
tweets was used to conduct a deep linguistic study
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Table 5. Correct word segmentation examples in the algorithm

Correct segmentation The algorithm English meaning LD word
�

�+¼+Y	J �«+Ð+ð �
�+¼+Y	J �«+Ð+ð and you do not have �

�»Y
	
J
�
ªÓð

�
�+ A

�	
K+ 	PP

	
Yë+ A �Ó �

�+ A
�	
K+ 	PP

	
Yë+ A �Ó we did not talk �

�A
�	
K 	PP

	
YëA

�
Ó

¼+ñk.+H. ¼+ñk.+H. in your mood ¼ñm.
�'
.

Yg. @
�
ð Yg. @

�
ð much Yg. @

�
ð

Õ»+�ñ¢
�
¯ Õ»+�ñ¢

�
¯ your cat Õº�ñ¢

�
¯

Table 6. Examples of words that were incorrectly segmented by the algorithm

Correct segmentation The algorithm English meaning LD word
�

�+ø


+Èñ�¯+ �

H+Ð �
�+ø



+È+ñ�¯+ �

H+Ð you do not say to me �
��
Ëñ

�
®
�
JÓ

�
�+I. k+ 	

à+Ð �
�+I. k+ 	áÓ I do not like �

��.j
	
JÓ

ø


+ �
�+ú




	
¯+Ð ø



+ �
��


	
¯+Ð there is not ú



æ
�
�J

	
®Ó

ñk. XA
�
J
K. ð+h. X@+ø
 +H. trip ñk. XA

�
J
K.

to identify and collect a set of affixes that can be
segmented by the algorithm. A new test dataset
of 1,200 unique words was created to evaluate the
performance of their algorithm.

The algorithm was manually examined to
determine its accuracy on the test dataset. The
results showed that the algorithm achieved an
overall accuracy of 88.6%, which is satisfactory.
The algorithm achieved promising results without
the need for external data resources, making it a
viable solution for not only Arabic dialects but also
agglutinative languages, such as MSA, Turkish and
Finnish.

As for future work, they intend to provide a
training dataset for LD word segmentation for
machine learning applications. They also plan to
develop several crucial NLP tools for the LD in the
near future, such as the Named Entity Recognition
(NER) and Part of Speech (POS) tagger.
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