
Computación y Sistemas Vol.4 No.2 pp.124 -142
@ 2000, CIC -IPN. ISSN 1405-5546 Impreso en México

Meta- ViPIOS: Harness Distributed I/O Resources with

ViPIOS*

Thomas Fuerte, Oliver Jorns, Erich Schikuta and Helmut Wanek
Institute for Computer Science and Business Infonnatics
Departament ofData Engineering, University of Viena

Rathausstr. 19/4, A-I0I0 Viena, Australia
E-mail: fuerle@vipios.pri.univie.ac.at

Article received on Februarv 15. 2000: accevted on Auf!ust 23. 2000

Abstract Introduction1

Two factor8 8trongly inftuenced the re8earch in high perfor-
mance computing in the la8t few year8, the 1/0 bottleneck
and clu8ter 8y8tem8. Fir8tly, for many 8upercomputing ap-
plication8 the limiting factor i8 not the number of available
CPU8 anymore, but the bandwidth of the di8k 1/0 8y8tem.
Secondly, a 8hift from the cla88ical, co8tly 8upercomputer 8y8-
tem8 to affordable clu8ter8 of WOrk8tation8 i8 apparent, which
allow8 problem 8olution8 to a much lower price.

A8 a re8ult we pre8ent in thi8 paper the Vienna Parallel In-
put Output Sy8tem (ViP1OS), which harne88e8 1/0 re8ource8
available in clu8ter type 8y8tem8 for high performance (par-
allel and/o'f' di8tributed) application8. ViP1OS i8 a client-
8erver ba8ed 8y8te11i to increa8e the bandwidth of di8k acce88e8
by (re-)di8tributing the data among available 1/0 re8ource8
and parallelizing the execution 8cheme. 1t follow8 a data en-
gineering. approach by combining characteri8tic8 of parallel
1/0 runtime librarie8 and parallel file 8y8tem8 with a 8mart
admini8tration module.

Keywords:

distributed 1/0, parallel 1/0, MPI-10, cluster comput.

ing.

In the last few years grid computing became very pop-
ular. Approaches like Globus[Bester et al., 1999], Net-
Solve, SETI@home attracted more and more people to
join. The basic idea behind these projects is to solve
large problems by harnessing the CPU cycles of par-
ticipating machines over the internet. This approach
is followed in the small by so called Beowulf cluster
type systems [Sterling et al., 1995]. Off-the-shelf work-
stations are connected by an affordable network inter-
connect (Fast-Ethernet, Giganet), and suitable operat-
ing and programming environments allow to exploit the
cumulative processing power to solve grand challeng-
ing problems. Due to their low price (compared to the
classic supercomputers) these clusters became very pop-
ular and representatives can now even be found in the
list of the 500 worlds most powerful computer systems
(http://www.top500.org).

Parallel to this development applications in high per-
formance computing shifted from being CPU-bound to
be I/O bound. That means that performance cannot be
scaled up by increasing the number of CPUs any more,
but by increasing the bandwidth of the I/O subsystem.
This situation is known as the I/O bottleneck in high
performance computing.

Besides the cumulative processing power, a cluster
system provides a large data storage capacity as well.
Usually each workstation has at least one attached disk,
which is accessible to the system. Using the network in-
terconnect of the cluster, these disks build a huge com-
mon storage resource.

This situation stimulated the development of the Vi-
enna Parallel Input Output System (ViPIOS), which
represents a fully-fledged parallel I/O runtime system
focusing on workstation cluster systems. It is avail-
able both as runtime library and as I/O server con-
figuration; it can serve as I/O module for high per-
formance languages (e.g. High Performance FOR,-
TRAN (HPF)) and supports the standardized MPI-
IO[Message-Passing Interface Forum, 1997] interface.

.This work was carried out as part of the special research pro-
gram " AURORA: Advanced Models, Applications and Software
Systems for 1Iigh Performance Computing" funded by the Aus-
trian Science Fund

124

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek : Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

The remainder of this paper is organized as fol-
lows. SectiQn 2 presents the state of the art of paral-
lel/distributed 1/0 for clusters. Section 3 describes the
overall system architecture and section 4 the novel ex-
tension of ViPIOS for harnessing distribituted 1/0 re-
sources. Section 5 gives an overview of all interfaces
provided by ViPIOS. Conclusions and prospects for fu-
ture work are given in section 6.

2.1.2 1/0 Level Methods

The 1/0 level methods try to reorganize the disk access
requests of the application programs to achieve better
performance. This is done by independent 1/0 node
servers, which collect the requests and perform the ac-
cesses. Therefore, the disk requests (of the applica-
tion) are separated from the disk accesses (of the 1/0
server). A typical representative of this group is the
Disk-directed 1/0 method [Kotz, 1997].

2 State of the Art
2.1.3 Access Anticipation Methods

Extending the 1/0 framework into the time dimen8ion
deliver8 a third group of parallel 1/0 method8: access
anticipation methods. Thi8 group can be 8een as an ex-
ten8ion to data prefetching. The8e method8 anticipate
data acces8 pattern8 which are drawn by hint8 from the
code advance to it8 execution. Hint8 can be placed on
pUrpO8e by the programmer into the code or can be
delivered automatically by appropriate tool8 (e.g. com-
piler).

Example8 for thi8 group are informed prefetch-
ing [Patter80n et al., 1995], the PANDA project
[Chen et al., 1996a] or the Two-Phase data admini8tra-
tion [Schikuta et al., 1998].

In the last few years we saw a strong stim-
ulus on research in the area of parallel 1/0.
The lessons learned can be summarized by the
following characteristic goals for efficient 1/0
operations[Schikuta y Stockinger, 1999]:

.Maximize the use of available parallel 1/0 devices
to increase the bandwidth.

.Minimize the number of disk read and write opera-
tions per device.

.Minimize the number of 1/0 specific messages be.

2.2 Parallel 1/0 systems

Parallel 1/0 Systems can be classified into three groups,
1/0 libraries, file systems, and dedicated 1/0 server sys-
tems [Stockinger, 1998a].

Maximize the hit ratio (the ratio between accessed
data to requested data) to avoid unnecessary data
accesses.

This led to the development of both abstract abstract
methods and real systems. We will give a survey of both
separately.

Parallel 1/0 Methods

The parallel 1/0 methods can be grouped into appli-
cation level, 1/0 level and access anticipation methods
(see [Schikuta y Stockinger, 1999]).

2.2.1 Runtime 1/0 Libraries

These li braries are highly merged with the language
system by providing a call library for efficient par-
allel disk accesses. The aim is that it adapts gra-
ciously to the requirement8 of the problern character-
istics specified in the application program. Typical rep-
resentatives are PASSION [Thakur et al., 1996a], Gal-
ley [Nieuwejaar y Kotz, 1996], or the MPI-IO initia-
tive, which defined a parallel file interface for the Mes-
sage Passing Interface (MPI) 8tandard [MPIO, 1996,
Corbett et al., 1995a]. The MPI-I/O standard has been
widely accepted as a programmers interface to parallel
I/O. A portable implementation of this standard is the
ROMIO library [Thakur et al., 1997].

Runtime libraries aim for being tools for the applica-
tion programmer. Therefore the executing application
can hardly react dynamically to changing sy8tem 8itu-
ations (e.g. number of available disks or processors) or
problem characteristics (e.g. data reorganization), be-
cause the data acce8S decisions were made during the
programming and not during the execution phase.

Another point which has to be taken into account is
the often arising problem that the CPU of a node has to

2.1.1 Application Level Methods

These methods try to organize the main memory ob-
jects by mapping the disk space (e.g. buffer) to make
disk accesses efficient. Therefore, these methods are also
known as b'UJJering algorithms. Commonly these meth-
ods are realized by runtime libraries, which are linked
to the application programs. Thus, the application pro-
gram performs the data accesses itself without the need
for dedicated 1/0 server programs.

Examples for this group are the Two-Phase
method [Bordawekar et al., 1993], the Jovian frame-
work [Bennett et al., 1994], and the Extended Two-
Phase method [Thakur y Choudhary, 1996].

125

tween processes to avold unnecessary COStly com-

munication.

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek Meta-ViPIOS: Harness Distributed 1/0 Res!?!!rce~ with ViPIOS

2.2.3 1/0 Server Systemsaccomplish both the application processing and the 1/.0
requests of the application. Due to a missing dedicated
1/0 server the application (linked with the runtime li-
brary) has to perform the 1/0 requests as well. It is
often very difficult for the programmer to exploit the
inherent pipelined parallelism between pure processing
and disk accesses by interleaving them.

AII these problems can be limiting factors for the 1/0
bandwidth. Thus optimal performance is nearly impos-
sible to reach by the usage of runtime libraries.

These systems follow a data engineering approach found
in database systems. This results in a dedicated,
smart, concurrent executing runtime system, gathering
all available information of the application process both
during the compilation process and the runtime execu-
tion, shaping gracefully to static and dynamic behavior
of the application.

Representatives are ViPIOS and
Panda[Chen et al., 1996b].

2.2.2 File System~ 3 System Architecture

File systems are a solution at the other end ofthe system
architecture, i.e. the operating system is enhanced by
special features that deal directly with 1/0. All impor-
tant manufacturers of parallel high-performance com-
puter systems provide parallel disk access via a (mostly
proprietary) parallel file system interface. They try to
balance the parallel processing capabilities of their pro-
cessor architectures with the 1/0 capabilities of a par-
allel 1/0 subsystem. The approach followed in these
subsystems is to decluster the files among a number of
disks, which means that the blocks of each file are dis-
tributed across distinct 1/0 nodes. This approach can
be found in the file systems of many super-computer
vendors, as in Intels CFS (Concurrent File System)
[Pierce, 1989], Thinking Machines' Scalable File System
(sfs) [LoVerso et al., 1993], nCUBEs Parallel 1/0 Sys-
tem [DeBenedictis y del Rosario, 1992] or IBM Vesta
[Corbett y Feitelson, 1996]. .

In comparison to runtime libraries parallel file SYS-
tems have the advantage to execute independently frqm
the application. This makes them capable to provide
dynamic adaptability to the needs of the application re-
quests. Further the notion of dedicated 1/0 servers (I/O
nodes) is directly supported and the processing node can
concentrate on the application program and is not bur-
dened by the 1/0 requests.

However due to their proprietary status parallel file
systems do not support the capabilities (expressive
power) of the available high performance languages di-
rectly. They provide only limited disk access function-
ality to the application. In most cases the application
programmer is confronted with a black box subsystem.
Many systems even disallow the programmer to coor-
dinate the disk accesses according to the distributi~n
profile of the problem specification. Thus it is hard or
even impossible to achieve an optimal mapping of the
logical problem distribution to the physical data layout,
which prohibits an optimized disk access profile.

Therefore parallel file systems also can not be con-
sidered as a final solution to the disk 1/0 bottleneck of
parallelized application programs.

The ViPIOS architecture is built upon a set of coop-
erating server processes, which run independently on
an arbitrary number of network nodes and accomplish
the requests of client applications. In massively parallel
processing (MPP) environments the server processes are
generally executed on the system's 1/0 nodes. For dis-
tributed and cluster computing any network node with
access to secondary storage can be used to run a ViPIOS
server process.

Each application process is linked with the ViPIOS
interface, which transfers the client requests and addi-
tional information supplied into request and hint mes-
sages to ViPIOS servers (see Figure 1). The interface
also manages data transfer between client and servers
and translates acknowledge messages from the server
processes into appropriate return values for the request
function called by the client process.

In order to keep the size of the interface small and
to minimize its runtime overhead the interface does not
keep any information about which server process man-
ages which disks and files. Therefore it can not choose
the server process best suited for a particular task but
sends all the request message to one specific server,
which is called the buddy server to the respective client.
The buddy server is assigned to a client process at the
time when the application connects to ViPIOS and nor-
mally remains the same until the termination of the con-
nection. Internal optimizations and data redestribution
may force a change of the buddy server for an open con-
nection, but this is an infrequent event. At any point in
time each client process is linked to exactly one buddy
server but a ViPIOS server can serve any number of
client processes (i.e. there exists a many-to-one rela-
tionship between clients and servers).

Any server process, which is not the buddy server for
a specific client is called a foe server to that client. Be-
cause different client processes generally have different
buddy servers the terms 'buddy' and 'foe' are always
relative to a client process. So in figure 1 server 1 is
buddy to application process A and foe to B and C. On
the other hand server 2 is buddy to B and C and foe to

126

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

A
Server processes may run on dedicated or non dedi-

cated nodes. A node is dedicated if the ViPIOS server
process is the only program running on that processor .
Otherwise the node is non dedicated.

On non dedicated nodes the server process has to
share the processor and other system resources with con-
currently running tasks (which may also be processes
of the client applications) and therefore the processing
time consumed for optimizations of 1/0 operations has
to be kept to a minimum.

However the use of dedicated nodes allows for exten-

sive optimizations.

applicalion processes

~

, "'\ /

3.1 Data Access Modes

Naturally every server process can directly access only
the disks connected to the processor node that it is run-
ning on. Since an application sends all I/O requests
to its buddy server but can access data on any disk in
the system two different types of data access have to be
treated by a ViPIOS server.

app.B app.Capp.A

.Local data access stands for the case where the
buddy server can resolve a request from the client
application on its local disks. We call it also buddy
access. (Examples for local accesses in the system
depicted in figure 1 are requests from application
A affecting disk a, or requests from applications B
and C affecting disks b,c and d.)

.Remote data access denotes the access scheme
where the buddy server can not resolve the request
on its local disks but has to forward the request to
other ViPIOS servers. The respective server (foe
server) accesses the requested data and sends it di-
rectly to the application via the network. We call
this access also foe access. (Examples for remote
access in the system depicted in figur~ 1 are re-
quests from application A affecting disks b,c and d
and requests from applications B and C affecting
disk a.)Figure 1: ViPIOS architecture

Note that the terms local and remote refer to the fact
that disks are local or remote to the processor on which
the buddy server process is running, not the processor
on which the application process is running. (In case of
non dedicated servers this may be the same processor
b\lt it does not have to be.)

If a request affects.data on the local disks of the buddy
server as well as data on remote disks, the request is bro-
ken into several parts in a way that each of the resulting
subrequests can either be resolved by a local or by a re-
mote data access. A more detailed description of this
request fragmentation can be found in chapter 3.5.

ViPIOS servers do not use special services like NFS
to process remote access requests but rely on internal

127

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek : Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

3.4 ViPIOS Servercommunication between Vi
speeds up the data access (
also increases portability (
oí remote access services) .

A ViPIOS server process consists oí severa! íunctiona!
units as depicted in figure 2, namely:

Data Locality3.2

Intuitively a remote access is slower than a local access
because of the additional overhead for the communica-
tion between the server processes. As a consequence
data should be layout on disks so that the local accesses
are maximized whereas the remote data accesses are
minimized in order to gain optimal performance. This
Data locality principIe can be further refined as follows.

.Logical data locality denotes the choice of the
best suited buddy server for an application pro-
cess. This server is defined by the topological dis-
tance and/or the process characteristics. In gen-
eral the access time is proportional to the topolog-
ical distance of the application process to the ViP-
lOS server in the system network. It is also pOS-
sible that special process characteristics can influ-
ence the ViPIOS server performance (e.g. available
memory, number and characteristics of disks con-
nected to the underlying node). Therefore it is also
possible that a more distant ViPIOS server tould
provide better performance than a closer one.

.The Interface provides the connection to the
" outside world" (i.e. applications, programmers,

compilers, etc.). Different interfaces are sup-
ported by interface mod'Ules to allow flexibility
and extendibility. Up to now we implemented
an HPF interface module (suitable for the VFC,
the HPF implementation of Vienna FORTRAN
[Chapman et al., 1994]) a (basic) MPI-IO inter-
face module, and the ViPIOS proprietary interface,
which is in turn the interface for some specialized
modules.

Technically the interface is not really a part of the
server process but linked to the client application.

.The Message manager is responsible for the ex-
ternal (to the applications via the interface) and the
internal (to other ViPIOS servers) communication.

.The Fragmenter can be regarded as "ViPIOS's
brain". It represents a smart data administration
tool, which models different distribution strategies
and makes decisions on the effective data layout,
administration, and ViPIOS actions.

.The Directory Manager stores meta information
like file names, data distribution, data access logs
and so on. In general the directory manager only
holds the information for the (part of) data that
resides on the local disks. For performance rea-
sons specific ViPIOS server processes can be des-
ignated as directory controllers for different sets of
files. This means that the directory manager ofthat
server additionally caches the meta information of
data related to those files, which is stored on remote
disks. (See chapter 3.5 for further details.)

.Physical data locality aims at determining the
disk set which provides the best (mostly the fastest)
data access for a server process. Generally this set
contains all the local disks. But due to the network
and disk characteristics this set niay contain remote
disks too.

.The Disk Manager provides the access to sup-
ported disk sub-systems. This layer is modularized
in order to allow extendibility and to simplify the
porting of the system. Currently the Disk Manager
supports modules for ADIO [Thakur et al., 1996b],
MPI-IO, and Unix style file systems.

3.5 Requests and Messages

3.3 Parallelizing 1/0

There are two sources of 1/0 parallelism inherent in the
ViPIOS design.

An application according to the SPMD programming
paradigm can connect each single application process (or
subsets of application processes) with different buddy
servers. This way each buddy server just performs se-
quential disk access. For the application as a whole
the 1/0 operations are executed in parallel, since each
buddy server can read from or write to its local disks
autonomously.

In addition to that a ViPIOS server can write to sev-
eral local disks in parallel if allowed by the underlying
hardware. Furthermorethe data layout can be chosen
in a way that remote disks are accessed. Since remote
accesses are served by processes, which run on different
processors they effectively can be processed in parallel
to the local accesses.

The following explains in detail how the various compo-
nents of ViPIOS collaborate to process an 1/0 request.
The example deals with a write request. Readrequests
are processed similarly except where noted. For the
sake of clarity the 1/0 operation is performed in several
phases, which are depicted in figure 2 cont. In reality
all these phases may overlap whenever possible.

128

PIOS server processes. This
no additional overhead) and
independence oí availability

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

Figure 3: The Message Protocol: Phase 2.

For each phase the figure only depicts the servers ac-
tually involved in the processing of the request. Each
server holds some part of the file's data, which is rep-
resented by small geometrical symbols (circle, triangle,
square, diamond and trapezium).

F\¡llline arrows denote the flow of request messages.
The request arrows are also marked with the geometrical
symbols indicating the data which is actually requested.
The dotted line arrows show the flow of meta informa-
tion (directory information).

.Phase 1: Request. A write. request is issued by
an application via a call to one of the functions of
the ViPIOS interface, which in turn translates this
call into a request message. Finally, this request
message is sent to the buddy server .

Figure 2: The Message Protocol: Phase 1.

.Phase 2: Request Fragmentation. The direc-
tory manager of the buddy server holds all the in-
formation necessary to map a client's reque8t to
the phy8ical file8 on the local di8ks. The fragmenter
U8es this information to decompose the reque8t into
two 8ub-requests. One of which can be re8o1ved 10-
cally. The other (the remote part) has to be com-
municated to other ViPIOS 8erver8 (foe 8ervers).

If a directory controller (DC) exist8 for the file ac-
ce88ed, the 8ub-reque8t for the remote part is for-

129

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek : Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

/ /
m""3'mm...~
""",,"rn...

W77 a

m~'m ~
",...,II,",....~- ~-

oo..plk"...

4¡4
"'

/
n~'- n~"'I"

,"..pl.,,"'

Figure 4: The Message Protocol: Phase 3. Figure 5: The Message Protocol: Phase 4.

130

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

.Phase 5: Directory Update and function re-
turn. After the disk accesses have been performed.
all the directories (local and directory controller)
are updated and the function initially called by the
client returns indicating the success of the write op-
eration. (This phase is not depicted in the figure.)

warded to it. Otherwise the remote part is broad-
cast to all the other ViPIOS servers and phase 3
can be skipped.

Only for write accesses some part of the data may
not be stored on any disk yet (data is appended
to the file). The fragmenter then has to distribute
this data over the available disks. To find an ap-
propriate distribution generally turns out to be a
non trivial optimization problem. The fragmenter
applies a modified blackboard method, which is
an Al method suitable to solve this kind of prob-
lems. After the fragmenter has decided, on which
servers to store the data it can send corresponding
request messages to these servers. In the example
the trapezium symbolizes some data appended to
the file.

Meta- ViPIOS: Extending ViP-

lOS for distributed 1/0

4

Introduction4.1

The basic concepts oí ViPIOS described thus íar need
some extensions in order to harness 1/0 resources dis-
tributed over the internet. The main challenges in this
context are

.Phase 3: Directory Controller Access. The
fragmenter of the directory controller once again
breaks down the remaining part of the request ac-
cording to information retrieved by its directory
manager. In the example at hand one part (the
square) can be resolved locally. For another part
(the triangle) the directory manager can deliver in-
formation. This means tha.t the fragmenter knows
on which server this part of the data is stored and
can therefore send this sub-request directly to the
appropriate server. The rest is broadcast to the
remaining servers in the system.

.The message protocol described in chapter 3.5 uses
broadcasts in some situations. Since it is clearly im-
possible to broadcast across the internet some no-
tion of locality is needed, which ensures that broad-
cast messages only have to be sent to a (small) well
defined subset of all the ViPIOS server processes

running.

.Name spaces have to be provided to avoid file nam-

ing conflicts.

.Client grouping ensures that collaborating client
processes can use shared filepointers or access a file
exclusively (i.e. only processes belonging to a spe-
cific group can use the file concurrently, whereas all
other processes are denied access) .

.Hard- and software environments across the inter-
net are very inhomogenous. Hence the adaptability
of ViPIOS is a major issue. Administrators should
be able to tailor the system to their needs.

.Users accessing 1/0 resources over the internet gen-
erally are unable to overcome errors and faults on
the server side (for instance they do not have the
rights to restart the server process if it crashes) .
Therefore some basic automatic failure recovery has
to be implemented in order to increase the availabil-
ity of ViPIOS services.

.To make persistent data accessible for a wide range
of possible users it is generally not sufficient to just
store the data alone. Meta information like for in-
stance the datatypes and file formats used has to
be supplied too. This is not only valuable for hu-
man users it is also vital to enable automatic post
processing of the data using OLAP and data ware-

housing techniques.

.Phase 4: Disk Access and Data transfer .
At this point each affected server has received the
request for the part of the data it administers.
Note that messages that have been sent directly
to a server can bypass the fragmenter (it is already
known, that this server holds the part of the data
in question) but messages that have been broad-
cast once again are filtered by the fragmenter. This
time however only the part that can be resolved 10-
cally is of interest. Any other part can be safely
ignored without triggering any additional messages
(the request already has been broadcast to all pOS-
sible servers).

The 1/0 subsystems actually perform the necessary
disk accesses for the local request and the transmis-
sion of data to/from the client process. For perfor-
mance reasons each server communicates directly
with the client bypassing the buddy server (indi-
cated in the figure by the lines without arrows) .

Note that the part of the data symbolized by the
trapezium is new and the appropriate server there-
fore has no meta data for this file on its disks at
the start of the write operation. This is indicated
by the lack of the symbol in the disk subsystem.

131

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

~

/ , ,
(""li,,"oo

application

Figure 7: ViPIOS islands.

then sends a connect message to that connection con-
troller, which in turn selects a buddy server for the client
process (based on information about network topology,
datalayout and so on). The address ofthe buddy server
is sent back to the ViPIOS interface. The interface con-
verts this address into a buddy handle and returns this
handle to the calling client process. The client has to
use this handle for further requests to the respective
ViPIOS island.

A client process may connect to an arbitrary number
of ViPIOS islands concurrently (like indicated in figure
7). Since there is a different buddy server to the applica-
tion in each island the many-to-one relationship between
applications and buddy server (see chapter 3) holds no
more. Each application has exactly one buddy server in
each island it is connected to.

4.2.2 Name Space of ViPIOS
Figure 6: Four steps to connect to a ViPIOS island

4.2 The ViPIOS Island

A ViPIOS island is defined to be a closed system with
its own name space consisting of a number of ViPIOS
servers and a connection controller, which assigns appli-
cation processes to their buddy servers on request.

The idea is to segment the distributed I/O services
into domains (islands). To reach such an island the
client needs to know the hostname (or IP-address) of
the connection controller responsible for that island.

4.2.1 The Connection Controller

At any given time, a client or a group of clients can con-
nect/disconnect t0/from a ViPIOS island. To connect
the client calls an interface function and specifies the
hostname (or IP-address) of the targeted island's con-
nection controller (see figure 6). The ViPIOS interface

Each ViPIOS island ha.s its own name space, i.e a file
name is unique within an island, but on the other hand
the same file name can occur in different islands.

All parts of a single file are stored on one dedicated is-
land. Therefore it is not possible that for any file some
bytes have to be retrieved from one island and other
bytes have to be retrieved from another island. If a part
of the file is located on an island, the rest can be found
on the same island. This simple rule restricts the range
of broadca.st messages to one single island. Whenever a
server process searches a part of a file, which can nei-
ther be found locally nor by the directory controller, it
suffices to broadca.st the request to all the other servers
on the island. One of them ha.s to hold the data.

To distinguish between files on different islands with
the same name, the buddy handle must be specified
when opening a file. The call to the open function re-
turns a file handle, which is used by the application to
identify the file in all further 1/0 function calls.

132

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek : Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

4.3 Shared File Pointers and Exclusive
Access

using the same group tag are considered to be mem-
bers of that group. It is the responsibility of the
application programmer to avoid name clashes with
other application groups on the same island. This
can for example be done by using a GUID as the
group tag. Note that the range of a group tag is
only a single ViPIOS island. The same tag may be
used for different islands producing different and
independent groups. Furthermore an application
process can connect to different groups on different
ViPIOS islands, though it only can be a member of
a single group on a specific ViPIOS island at any
point in time.

The decentralized way ViPIOS handles 1/0 requests
minimizes synchronization overhead but poses some
problems for operations, which implicitly need some
knowledge about the global context. Assume for in-
stance a situation, where two applications with different
buddy servers try to exclusively access a file. The two
requests to open the file are sent to different servers but
only one request may be successful. The other must be
rejected in order to guarantee exclusive access. So the
servers must somehow find out that there are multiple
exclusive requests and resolve the situation.

A similar difficulty arises with shared file pointers.
The current state of the file pointer must be stored in
some central position, which can be accessed by all the
different server processes receiving requests for that file.

To overcome all these trouble each file is assigned a
specific ViPIOS server process which is called the sync
controller of that file. Each file has exactly one sync
controller but a sync controller can serve multiple files.
Generally the sync controller is chosen to be the same
server process that is also the directory controller for
that file. If no directory controller exists for the file then
the sync controller is the serve.r process, which holds the
first byte of the file on its local disks. (Even if the file
is empty the distribution strategy chosen by the frag-
menter at file creation determines the server which will
hold the fist byte of the file and thus the sync controller .)

Now each open request has to contact the sync con-
troller of the file to verify that there are no access con-
flicts. The current state of a shared file pointer is stored
on the sync controller of the file and is thus available to
all the servers in the system.

.The number of group members. To assure cor-
rect handling of access rights the number of the
members in the group has als9 to be specified.
Imagine two application processes building a group
and having exclusive access to a file. Clearly ac-
cess for other applications can only be granted after
both processes have closed the file. If the processes
are not or only loosely synchronized it can happen
that the first one already closes the file before the
second one even has opened it. In that case the
ViPIOS system has to know that there will be a
second process that also belongs to the group and
will access the file. Or else closing the file would al-
low other applications to access the file before the
group has completed all its file operations.

To know the number of group members in advance
also facilitates some of the optimization tasks of
the ViPIOS system (like assigning the best buddy
server to each application process or finding the
data distribution for a specific file).

4.5 Customizing the System
4.4 Group tagging

In parallel computation it is quite common that a num-
ber of application processes collaborate to complete a
certain task. Under that perspective exclusive access
means that only processes belonging to that specific
group may access the file but no other processes. Since
application processes are executed independently they
connect to the ViPIOS system at different points in time
and there is no way for ViPIOS to find out, which pro-
cesses belong together in a group. Each application pro-
cess therefore must specify the group it belongs to when
it connects to a ViPIOS island.

This is done by specifying two additional parameters
in the call to the connect function.

.A user defined group tag. The application pro-
grammer defines a custom group tag, which is a
name unique for the ViPIOS island to which the
application connects. All the application processes

ViPIOS offers the adjustment of system parameters (like
sizes of buffers, number of server processes etc.) to the
system administrator who can set these parameters in
external configuration files.

These files are interpreted by ViPIOS in a hierarchical
manner. A global config'Uration file is used to specify the
defaults for all the server processes of a ViPIOS island.
For specific servers these values can be overridden in the
local configuration file of that server .

If any parameter can not be found (because both of
the files are missing or there is no entry in either of the
files) ViPIOS uses some predefined parameter values,
which are hard coded into the system.

Currently a graphical interface is being developed
that eases the management of these configuration files
and enables simple editing of system parameters.

I~~

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

4.6 Failure Recovery

The aim of the failure recovery component of ViPIOS
is to provide the stability needed to ensure the avail-
ability of the 1/0 services in a distributed environment.
Users accessing the system remotely g~nerally can not
kill or restart server processes that have failed for any
reason. In this context there is no intent to recover from
hardware failures like a head crash on the hard disk or
something similar severe. But the system is designed to
survive minor failures like temporary unavailability of
servers, network congestion, buffer overrun or memory
exhaustion.

The Access Descriptor5.1

ViPIOS hag to administer the layout of the stored data
on disks and hag to provide appropriate mapping func-
tions for all files. Thus an internal structure is needed
for the descri ption of the data layout specifications of the
application programs. We denote that structure Access
Descriptor, an internal data structure stored together
with the file, which hag to fulfill the following two re-
quirements:

.Regular patterns should be represented by a small
data structure.

.The data structure should allow for irregular pat-
terns too.

4.6.1 Spawning of Server Processes

The connection controller plays the major role in failure
recovery. It uses periodic keep alive requests to ensure
that all servers on the island are still running. If any of
the servers has terminated unexpectedly, the connection
controller tries to restart it. If the restart fails some files
may become inaccessible (i.e. the files local to the server
process, which can .not be restarted). The applications
are informed of that fact and open requests to those files
are canceled gracefully.

The connection controller itself is monitored by a
watchdog process, which will restart it immediat!:!ly, if

necessary.

Interfaces5

ViPIOS offers a wide variety oí (externa!) interíaces íor

different purposes.
The main interfaces are:

A native ViPIOS interface, which is functionally
viewed a superset of the traditional Unix interface,
with extensions similar to MPI-IO and PVFS. It is
used internally, but can also be used for application

programming.

ViMPIOS: a MPI-IO interface, which is an almost
complete implementation of chapter 9 of the MPI2

draft.

.ViPIOS/HPF: a HPF /VFC FORTRAN interface,
which is developed jointly with the Vienna FOR-
TRAN Compiler [Chapman et al., 1994]. ViPIOS
offers a FORTRAN interface to the VFC compiler,
so that ViPIOS is called directly out of HPF code
via regular FORTRAN I/O statements hidden from
the application programmer .

A data structure was implemented which both allows
the desctiption of r~gular access patterns and also is
suitable for irregular access patterns with little over-
head. Note however that the overhead for completely ir-
regular access patterns may become considerably large.

Figure 8 gives a C declaration for the data structure
representing a mapping function.

The Access-Desc structure basically describes a num-
ber (no-blocks) of independent basic-blocks where ev-
ery basic-block defines a regular access pattern. The
skip-header gives the number of bytes by which the file
pointer is incremented, before the first data block is
read/written. It is useful, if there is an introductory
header, which describes the content of the data blocks
(i.e meta data information). The skip entry gives the
number of bytes by which the file pointer is incremented
after all the blocks have been read/written.

The pattern described by the basic-block is used as fol-
lows: If subtype is NULL then we have to read/write sin-
gle bytes otherwise every read/write operation transfers
a complete data structure described by the Access-Desc
block to which subtype actually points. The offset field
increments the file pointer by the specified number of
bytes before the regular pattern starts. Then repeatedly
count subtypes (bytes or structures) are read/written
and the file pointer is incremented by stride bytes after
each read/write operation. The number of repetitions
performed is given in the repeat field of the basic-block
structure.

Chapter 5.3.2 shows an example of the the access de-
scriptor for a regular and a not regular data layout.

The Native ViPIOS Interface5.2

The native interface of ViPIOS is the main interface
to ViPIOS. It provides functions for connecting to and
disconnecting from the system, file manipulation and
data access and various administrative tasks. Due to
its proprietary status it is usually transparent to the

.ViPFS: a file system interface, which implements a
file system with its common tools on top of ViPIOS
delivering persistence and a canonical view for the

distributed files.

134

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

application programmer, but builds the basis for the
standardized interfaces, as HPF and MPI-IO.

The native interface comprises functions for

.ViPIOS administration, connecting to and discon-
necting írom ViPIOS,

.basic file administration and manipulation, as cre-
ation, opening, closing, querying and deletion oí

files,

typedef struct {

int skip-header;
/* How many header bytes

should be skipped */

int no-blocks;
/* How many different

strides do we expect */

struct basic-block *basics;
/* description of a stride */

int skip; /* How many bytes should be

skipped after the data

} Access-Desc; block */

.file access in blocking and non-blocking mode sup-
porting the various data layout patterns.

To explain how to apply the ViPIOS native interface
we use as example a simple application program written
in the MPI/MPICH framework. It is assumed that the
vip-serv program has been precompiled and the ViPIOS
native interface library libvipios.a resides in the same
directory as the example program.

First, the application program must be compiled and
linked with the ViPIOS library. The syntax is the same
as for an usual C or FORTRAN compiler. For example,

mpicc -o vip-client applicationl.c
libvipioS.a

Thus, the application program applicationl.c is com-
piled as a client process called vip-client.

Next, the application schema must be written. This
is a text file which describes how many server and client
processes are used and on which host they run. A pOS-
sible application schema app-schema for one server and
one client process is:

vipios2 O /home/usrl/vip-serv

vipiosl l/home/usrl/vip-client

In that example the server process vip-serv is started
on the host called vipios2 whereas the client process
vip-client is started on the host vipiosl.

The simple example program connects to the island
"vipios.pri.univie.ac.at", opens a file called infile, reads
the first 1024 bytes of the file and stores them in a file
called outfile and disconnects from ViPIOS.

struct basic-block {
int offset; /* How many should be skipped

from the starting point of

the current basic-block */
int repeat; /* How often should the block

be read/written */
int count; /* How many items of this

subtype are read/written */

int stride; /* stride in terms of bytes */

Access-Desc *subtype;
/* if type is not byte */

int sub-count;
/* for internal purposes */

int sub-actual;
/* for internal purposes */

1-

The client prograrn applicationl.c looks like follows:Figure 8: A respective C declaration

#include <stdio.h>

#include "mpi.h"

#include "vip-func.h"

void main (int argc, char **argv) {

int i,fh1, fh2;
char outfile [15] , buf[1024];

GA-ID bh;

MPI-Init (&argc, &argv);

ViPIOS-Connect (Ilvipio5.pri.univie.ac.at"

135

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

HPF itself is an extension to FORTRAN 90 and SUp-
plies the programmer with the functionality needed to
generate SPMD programs. The programmer has to SUp-
ply the sequential version ofthe program (in FORTRAN
90) and defines how the data is to be distributed among
the various processors. The HPF compiler then auto-
matically generates the parallel program by inserting
the communication statements necessary to distribute
the data and to coordinate the different processes.

The HPF specific statement (i.e. the ones which are
not FORTRAN 90 statements) are denoted within the
program by a leading string ! HPF$. Thus all HPF spe-
cific statements are treated as a comment by a FOR-
TRAN 90 compiler and the sequential version of the
program can be easily compiled and tested. Following
the ! HPF token the HPF compiler expects an HPF di-
rective. The most important directives are those for the
definition of data dÍstribution, which are discussed in
the following.

&bh);

ViPIOS-File-open (bh, "infile",
VIP-MODE-RDONLY, &fh1);

ViPIOS-File-read (fh1, -1, (void *) buf,

1024);

ViPIOS-File-close(fh1);

ViPIOS-File-open (bh, outfile,
VIP-MODE-WRONLY I

VIP -MODE-CREATE, &fh2) ;

ViPIOS-File-write (fh2, -1, (void *) buf,

1024);

ViPIOS-File-close(fh2);

ViPIOS-Disconnect(bh);

}

HPF-directives

The following HPF -code example shows how data parti-
tioning and distribution can be implemented using HPF:

!HPF$ PROCESSORS PROCS(3,4)
INTEGER, DIMENSION (14,17) :: B

!HPF$ DISTRIBUTE (CYCLIC(3),BLOCK) ONTO

PROCS :: B

Data mapping and distribution directives only effect
the program's performance but not its meaning.

The next step is to specify e.g the number of servers
(2) and clients (4) which should be involved in the com-
putation. Thus, a text file has to be defined called e.g.
appll-schema, which contains the following lines:

vipiosl0 /home/usrl/vip-serv
vipios21 /homé/usrl/vip-serv
vipios24 /home/usr2/kurt/vip-client
The server and the client program reside in the specified
directories, and the server process vip-sertJ is started
once on vipiosl(the O denotes the machine, where
this scheme is started from with mpirun -p4pg appll-
schema) and on vipios2; the four client processes on vip-

ios2.
Note: If you use PVM as the underlying messaging

system, you don't need such schemes. Processes (server
and clients) are spawned directly from the PVM console.

ViPIOS /HPF , the HPF /VFC Inter-
face

5.3

This chapter describes the interface between High Per-
formance FORTRAN (HPF) and ViPIOS. First a quick
introduction to the relevant HPF features is given. Then
the implementation of the interface is discussed in de-

tail.

The PROCESSORS Directive. The first line of
the example uses the processor directive to define an
abstract processor array. The number of processors de-
fined in such an array is independent of the number of
available physical processors. It represents a logical view
of the physical parallel machine.

An advantage of using PROCESSORS is that the mech-
anism of mapping the logical view onto the actual phys-
ical parallel machine is accomplished by the underlying
operating system and thereby improves the portabilityc'
of parallel programs.

5.3.1 High Performance FORTRAN

HPF has been developed to support programmersin the
development of parallel applications. It uses the SPMD
paradigm for transferring a sequential program to a par-
allel one, which can be executed on cluster and MPP
architectures. Within the SPMD framework parallelism
is reached by executing basically the same (sequential)
program on every processor available on different sub-
sets of the original input data. This approach is also
known as data parallelism. The result of the whole com-
putation has to be composed from all the results of the

single processors.

DIMENSION Directive. The next instruction de-
fines an array oí integers labeled as B. This array be-

comes distributed onto the abstract processor array.

The DISTRIBUTE Directive. Depending on the
distribution of each dimension of the array the directive
DISTR1BUTE maps the array B onto the abstract pro-
cessor array (see figure 9). The distribution proceeds
according to the logical view of the parallel machine.

136

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

-2oxid;m GEN .BLOCK Distribution. Each processor gets
agsigned a designated number of elements. This kind
of distribution is similar to BLOCK. The only difference
is that the blocklength of each block is prescribed by the
user and may vary.

H

3[0
~

~J3
~~l..!?J~

:::!;]001a

~00~

~0~G3

~00B

G!J[f!J[f?J~

¡:e]~~[p:1

~~~~

2
H

0}
H

2[0

Figure 9: pracessar-array and data mapping anta pro-
cessars.

I 2 3 4 , 6 7 .9 lO 11 12 13 14 l' 16

~~~~~~~~~~~~~~~~

I 2 3 4 , 6 7 .9 10 II 12 13 14 IS 16 17

~~~~~~~~~~~~~~~~~

5.3.2 ViPIOS/HPF interface

The VFC-Sy8tem perform8 a 80urce-to-80urce tran8la-
tion from HPF code to FORTRAN 90/95 SPMD 80urce
code. A 80 called runtime descriptor contain8 all neces-
8ary information to prepare the data di8tribution corre-
8ponding to the SPMD model through the ViPIOS-HPF
interface. Based on the runtime descriptor the ViPIOS-
HPF interface calculates the mapping of each block to
the corre8ponding proce880r .

The parameters of thi8 data structure are depicted
graphically by figure 12 and the respective ACCes8 de-
8criptor i8 8hown in figure 13. The picture 8hoW8 a
two-dimen8ional array B divided into a regular and an
irregular block formed by element8 as8igned to proces-
80r p5. The element8 that form the regular block in
dimen8ion 1 con8i8t of three element8 according to the
block8ize 8pecified in the di8tribution directive. The ir-
regular block i8 composed of the remaining two element8
of thi8 dimen8ion. The other parameter8 de8cribe how
many element8 have to be 8kipped for each dimension to
acce88 the element8 allocated to the current proce88or .
Parameter8 8uch as 8kip, Off8et and 8tride are 8pecifically
Ii1ade available to all proces80r8 to determine which data
i8 mapped to which proce880r .

Figure 10: BLOCK distribution

BLOCK / BLOCK(blocksize). Using this kind of
distribution the data in focus is partitioned into blocks.
These are distributed onto processors 1...P.

If the number of data elements can be divided into
commensurate blocks of size N / p each block belongs
to one processor. If it is not possible to create blocks
of exactly equal number of elements for all processors,
the blocksize is calculated in the following manner:
Each block consists of blocksize = r N / Pl elements
which are assigned to LN/blocksizeJ processors. The
last processor P gets assigned the remaining N mod P
elements.

Figure 10 shows two examples how data elements are
assigned to processors. In the first case N is divisible
by P. In the case where N = 17 the last processor (P4)

gets assigned the remaining N mod p elements.

CYCLIC / CYCLIC(blocksize). Without specify-
ing any blocksize each element is allocated to one proces-
sor in ascending order (see figure 11). If the number of
elements exceeds the number of processors the elements
are allocated to processors cyclically. Given a particular
blocksize causes formation of data as it is done in the
BLOCK distribution plus that elements wrap around in
cyclic fashion (see figure 11).

.) Cyclic(l)

N=14 P=

b) CycLic(3)

N=IS ?=3

2 3 4 S 6 7 8 9 lO 11 12 13 14

~~~w~~w~~[f!!~~[f!!~

1 2 3 4 S 6 7 8 9 10 11 12 13 14 lS

:1!][f!!w~~~~~~[f!![f!!w~~~

5.4 ViMPIOS, the MPI-IO Interface

ViMPIOS (Vienna Message Passing/Parallel Input Out-
put Sy8tem) [Stockinger y Schikuta, 2000] i8 a portable,
client-8erver based MPI-IO implementation on ViPIOS.
The whole functionality of ViPIOS plu8 the functional-
ity ofMPI-IO can be e:xploited. However, the advantage
of ViMPIOS i8 the po88ibility that each 8erver proces8
can acce88 a file 8cattered over 8everal di8k8 rather than
residing on a 8ingle one. Thu8, the 1/0 can actually be
done highly parallel. The application programmer need
not care for the phy8ical location of the file and can
therefore treat a 8cattered file as one logical contiguou8
file.

At the moment ROMIO[Thakur et al., 1997] is
the widest 8pread MPI-IO implementation, which
i8 part of the MPICH 8oftware package. Of
les8 importance are 3 further MPI-IO implemen-
tations, namely PMPIO[Fineberg et al., 1996],
MPI-IO/PIOFS[Corbett et al., 1995b], and
HPSS[Jones et al., 1996].

ViMPIOS implement8 (8imilar to ROMIO) all rou-
tine8 defined in the MPI-2 1/0 chapter except 8hared file
pointer function8, 8plit collective data acce88 functions,Figure 1 CYCLIC / CYCLIC(blocksize) distributioa

137

T. Fuerle, O. Jorns, E. Schikuta. H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

Dimension 2:

Oimension I'

support for file interoperability, error handling, and 1/0
error classes. Since shared file pointer functions are
not supported, the MPI.MODE-SEQUENTIAL mode
to MP I-File-open is also not available.

In addition to the MPI-IO part the derived datatypes
MPI-Type-subarray and MPI-Type-darray have been
implemented. They are useful for accessing arrays
stored in files [Thakur et al., 1997].

In the near future file hints will be supported by ViM-
PIOS. Using file hints yields the following advantages:
The application programmer or the compiler system (as
the VFC) can inform the server about the 1/0 work-
load and the possible 1/0 patterns. Thus, complicated
1/0 patterns where data is read according to a partic-
ular view and written according to a different one can
be analyzed and simplified by the server. The server
can select the 1/0 nodes which suit best for the 1/0
workload. In particular , if one 1/0 node is idle whereas
the other deals with great amount of data transfer, this
unbalanced situation can be solved. Due to the situa-
tion that MPI-IO is also a disk-side interface for ViPIOS
it can get MPI-IO request from the application via the
ViMPIOS interface, rearranges and optimizes (by the
fragmenter) them according to the underlying system
characteristics and accesses the disk system by newly
generated MPI-IO requests. Thus ViPIOS can yield as
an "MPI-IO" optimizer, which is extremely useful in a
changing system environment, which is typical for clus-
ters.

For more information on the ViMPIOS system refer
to [Stockinger, 1998b].

stride:Ox4=O

skip repl. by offset of irreg. block

ViPFS, the Filesystem Interface5.5
Figure 12: processor 5 ViPFS is a filesystem on top of ViPIOS. It provides a

set of the common file system (POSIX standard) calls
mapping them transparently to respective ViPIOS calls.
This allows on one hand the persistent storage of dis-
tributed files viewed in a logical canonical form, on the
other hand the use of ViPIOS inherent parallelism to
speed up file accesses.

Summing up ViPFS is aiming at
I~ Aa:cssl:)coc

no-bl;;ks I
.b..;.S
skip 392

.providing tools to manage files on ViPIOS similar
to the Unix commands e.g. cp, mv, rm, ls, ...

DinrnlÍon" I
~
~ ¡:.,., no-bl;;kS 2

-basics [0, I)
skip 0 [O]

I basic-block

I offxt \2
I
\2
0

-..btype
..b-counl 0
..b ~wal "

basic-block

offsct ~

..peat 1

coont S

I ~ride O

.g¡btype

g¡b-CDUrn O

g¡b acwal O

~
basic-bl",k

off~t 2.¡

repeM 1

count 8

"ride O

.S(1btype
S(1b-coun! O

~b ~'u,1 O

.delivering a C-Interface far applicatian develap-
ment similar ta existing IO-functians e.g. apen,
write, read, clase, fprintf, ...

repea.
coun

S(ridl

.viewing files as continuous data -at the file layer -

and hiding the physical distribution from the user.
The user can however specify the physical distribu-
tion at file creation and change the distribution of
an existing file,

Figure 13: Access Descriptor for processor 5.

138

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViP10S: Harness Distributed 1/0 Resources with ViP10S

.taking advantage of parallelism due to the underly-
ing physical distribution

However ViPFS does not support logical file views
at the problem layer. Thus files are always handled as
continuous data at the file layer. Low level services such
buffering and caching, prefetching, synchronization, and
data distribution are not provided by ViPFS itself, but
by the functionality of the underlying ViPIOS. ViPFS
is only an interface that allows users to use easily and
efficiently services provided by ViPIOS in a well-known
standardized environment.

cerning the base functionality, the ViPFS function calls
for accessing files show the same synopsis as standard C
function calls. Thus the programmer has only to replace
stdio.h by the ViPFS header file, compile the program,
link it to the ViPFS library and run the new program
with ViPIOS parallel reads and writes.

The native interface base functionality is derived from
the POSIX standard (and the ANSI standard which is a
subset ofthe POSIX standard). The following functions
will be supported:

.fclose, feof, ferror, fHush, fgetc,fgetpos, fgets, fopen,
fprintf, fputc, fputs, fread, freopen, fscanf, fseek,
fsetpos, ftell

.getc, putc, rewind, setbuf, setlinebuf, setbuffer ,
setvbuf, apen, clase, read, write

Conclusions and future work6

Design of ViPFS

ViPFS implements a command-line interface and a C
language interface providing basic functionality similar
to the equivalent Unix commands or Unix C-interface.
Further it delivers extended functionality, allowing the
user or application to make use of special features pro-
vided only by ViPIOS, as choosing the data layout, giv-
ing hints etc.

ViPFS consists basically of a library, which maps
the well-known POSIX file routines (as openO, writeO,
readO etc.) to equivalent ViPIOS calls if applicable.
Thus programs linked with this library use ViPIOS
transparently bypassing the conventional POSIX calls.
Thus it is simple to realize a command line interface
to manage files on ViPIOS similar to the Unix Com-
mands. The programs (e.g. for cp, mv, etc.) have to
be simply re-linked with the new library. In case of a
dynamic loadable library this is done during the call of
the respective command by the operating system auto-
matically.

Even more the library can be linked to any applica-
tion using the POSIX calls, which accesses ViPIOS files
automatically.

We presented ViPIOS and its extensions for address-
ing the needs of distributed 1/0. For performance
tests of ViPIOS refer to [Stockinger et al., 1999] and
[Stockinger y Schikuta, 2000]. Performance tests of dis-
tributed ViPIOS will be done in the near future, when
connecting some of the departments here at the Univer-
sity of Vienna. The results of this tests are important
for the design of the fragementer modules for the dis-
tributed version of ViPIOS. We are also interested in
investigating in a comparison between the fault toler-
ance version with PVM and the all-or-nothing version
with LAM/MPI.

A new project for the future is the integration of Meta
data into ViPIOS, which will be a XML based approach.
The idea is to store a file not just as a byte stream,
but with the info of its content. This enables a new
granularity of optimization possibilities.

Another idea is to store all configuration parameters
into a LDAP server, which also would be responsible for
authorization and other issues like locating the connec-
tion controller for different islands.

Acknowledgement

On this occasion we would like to thank all people
who took part in the ViPIOS project, especially Pe-
ter Brezany, Christoph L6ffelhardt, Rene Puchas, Heinz
Stockinger, Kurt Stockinger and Thomas Tauchner .

Command-line Interface. The following commands
are supported by ViPFS:

cp (copy files to ViPIOS, copy files from ViPIOS, copy
files within ViPIOS), mv (move files to ViPIOS, move
the files from ViPIOS, move the files within ViPIOS),
rm (remove files from ViPIOS), Is (list ViPIOS files),
cat (concatenate ViPIOS files), more (list the contents
of a file), od (octal dump), vi (edit a file)

AII file management commands can be called with
additional parameters to define or change the disk layout
of the file in focus.

When installing ViPIOS, a Unix directory (default:
/vipios) is specified which contains the ViPFS file space.
Files copied to this directory are transparently dis-
tributed and managed by ViPIOS.

References

[Bennett et al., 1994] Bennett, R., Bryant, K., Suss-
man, A., Das, R., y Saltz, J. (1994, October). Jovian:C-Ianguage Interface. ViPFS provides a POSIX-

type C library which can be linked to applications. Con-

139

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek .Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

IEEE International Phoenix Conference on Comput-
era and Communicationa, pp. 0117-0124, Scottsdale,
AZ. IEEE Computer Society Press.

A framework for optimizing parallel 1/0. En Proceed-
ings of the Scalable Parallel Libraries Conference, pp.
10-20, Mississippi State, MS. IEEE Computer Soci-
ety Press.

[Fineberg et al., 1996] Fineberg, S. A., Wong, P.,
Nitzberg, B., y Kuszmaul, C. (1996, October).
PMPIO- a portable implementation of MPI-IO. En
Proceedings of the Sixth Symposium on the Fron-
tiers of Massively Parallel Computation, pp. 188-195.
IEEE Computer Society Press.

[Bester et al., 1999] Bester, J., Foster, I., Kesselman,
C., Tedesco, J., y Tuecke, S. (1999, May). GASS: A
data movement and access service for wide area com-
puting systems. En Proceedings of the Sixth Workshop
on Input/Output in Paral'el and Distributed Systems,
pp. 78-"88, Atlanta, GA. ACM Press.

[Jones et al., 1996] Jones, T ., Mark, R., Martin, J .,
May, J., Pierce, E., y Stanberry, L. (1996, Septem-
ber). An MPI-I0 interface to HPSS. En Proceedings
of the Fifth NASA Goddard conference on Mass Stor-
age Systems, pp. 1:37-50.

[Bordawekar et al., 1993] Bordawekar, R., del Rosario,
J. M., y Choudhary, A. (1993). Design and evaluation
of primitives for parallel 1/0. En Proceedings of Su-
percomputing '99, pp. 452-461, Portland, OR. IEEE
Computer Society Press.

[Kotz, 1997] Kotz, D. (1997, February). Disk-directed
1/0 for MIMD multiprocessors. ACM Transactions
on Comp'Uter Systems, 15(1), 41-74.

[Chapman et al., 1994] Chapm~, E., et al. (1994). Vi-
enna FORTRAN compilation system. User's Guide,
Vienna.

[LoVerso et al., 1993] LoVerso, S. J., Isman, M.,
Nanopoulos, A., Nesheim, W ., Milne, E. D., y
Wheeler, R. (1993). sfs: A parallel file system for the
CM-5. En Proceedings of the 1993 S'Ummer USENIX
Technical Conference, pp. 291-305.

[Chen et al., 1996a] Chen, Y., Winslett, M., Kuo, S.,
Cho, y ., Subrama.niam, M., y Seamons, K. E. (1996,
Novembera). Performance modeling for the Panda
array 1/0 library. En Proceedings o! Supercomputing
'96. ACM Press and IEEE .Computer Society Press.

[Message-Passing Interface Forum, 1997] Message-
Passing Interface Forum (1997, June). MPI-2.0:
Extensions to the message-passing interface, (chap-
ter 9. MPI Forum.

[Chen et al., 1996b] Chen, y ., Winslett, M., Seamons,
K. E., Kuo, S., Cho, y ., y Subramaniam, M. (1996,
Mayb). Scalable message passing in Panda. En Pro-
ceedings of the Fo'Urth Workshop on Inp'Ut/O'Utp'Ut
in Parallel and Distrib'Uted Systems, pp. 109-121,
Philadelphia. ACM Press.

[MP10, 1996] MP10 (1996, April). MP1-10:
a parallel file 1/0 interface for MP1. The
MP1-10 Committee. Version 0.5. See WWW

http:/ /lovelace.nas.nasa.gov /MP1-10 /mpi-io-
report.0.5.ps.

[Corbett et al., 1995a] Corbett, P., Feitelson, D.,
Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J.-P.,
Snir, M., Traversat, B., y Wong, P. (1995, Aprila).
Overview of the MPI-IO parallel I/O interface.
En Proceedings of the IPPS '95 Workshop on In-
put/Output in Parallel and Distributed Systems, pp.
1-15.

[Nieuwejaar y Kotz, 1996] Nieuwejaar, N., y Kotz, D.
(1996, May). The Galley parallel file system. En Pro-

ceedings of the lOth ACM International Conference
on S'Upercomp'Uting, pp. 374-381, Philadelphia, PA.

ACM Press.(Corbett y Feitelson, 1996] Corbett, P. F ., y Feitelson,
n. G. (1996, August). The Vesta parallel file system.
ACM 7ransactions on Computer Systems, 14 (3),
225-264.

[Patterson et al., 1995] Patterson, R. H., Gibson, G. A.,
Ginting, E., Stodolsky, D., y Zelenka, J. (1995, De-
cember). Informed prefetching and caching. En Pro-
ceedings of the Fifteenth ACM Symposi'Um on Operat-
ing Systems Principies, pp. 79-95, Copper Mountain,
CO. ACM Press.

[Corbett et al., 1995b] Corbett, P. F ., Feitelson, D. G.,
Prost, J.-P" Almasi, G. S., Baylor, S. J., Bolmarcich,
A. S., Hsu, Y., Satran, J., Snir, M., Colao, R., Herr,
B., Kavaky, J ., Morgan, T. R., y Zlotek, A. (1995,
Januaryb). Parallel file systems for the IBM SP com-
puters. IBM Systems Joumal, :J4(2), 222-248.

[Pierce, 1989] Pierce, P. (1989, March). A concurrent
file system for a highly parallel mass storage sys-
tem. En Proceedings of the Fourth Conference on
Hypercube Concurrent Computers and Applications,
pp. 155-160, Monterey, CA. Golden Gate Enterprises,
Los Altos, CA.

[DeBenedictis y del Rosario, 1992] DeBenedictis, E., y
del Rosario, J. M. (1992, April). nCUBE parallel
1/0 software. En Proceedings of the Eleventh Annual

140

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

[Stockinger et al., 1999] Stockinger, K., Schikuta, E.,
Fuerle, T ., y Wanek, H. (1999, August). Design and
analysis of parallel disk accesses in vipios. En Proc.
of the PCS'1999, Ensenada, Mexico. IEEE Computer
Society Press.

[Schikuta et al., 1998] Schikuta, E., Fuerle, T ., y
Wanek, H. (1998, September). ViPIOS: The Vi-
enna Parallel Input/Output System. En Proc. of
the E'Uro-Par'98, Lecture Notes in Computer Science,
Southampton, England. Springer- Verlag.

[Schikuta y Stockinger, 1999] Schikuta, E. , y
Stockinger, H. (1999). High performance cl'Uster
computing: Architectures and systems, (chapter Par-
allel 1/0 For Clusters: Methodologies and Systems,
pp. 439-462). Prentice-Halllnternational.

[Sterling et al., 1995] Sterling, T., Becker, D. J.,
Savarese, D., Dorband, J. E., Ranawake, U. A., y
Packer, C. V. (1995, August). Beowulf: A parallel
workstation for scientific computation. En Proceed-
in9s, Intemational Conference on Parallel Comp'Ut-
in9, 1995, Vol. 1, pp. 11-14.

[Stockinger,1998a] Stockinger, H. (1998, Februarya).
Dictionary on parallel i/o. Tesis de maestría, Uni-
versity of Vienna.

[Thakur y Choudhary, 1996] Thakur, R., y Choudhary,
A. (1996, Winter). An Extended Two-Phase Method
for Accessing Sections of Out-of-Core Arrays. Scien-
tific Programming, 5(4),301-317.

[Thakur et al., 1996a] Thakur, R., Choudhary, A., Bor-
dawekar, R., More, S., y Kuditipudi, S. (1996, Junea).
Passion: Optimized 1/0 for parallel applications.
IEEE Computer, 29(6), 70-78.

[Thakur et al., 1996b] Thakur, R., Gropp, W., y Lusk,
E. (1996, Octoberb). An abstract-device interface
for implementing portable parallel-I/O interfaces. En
Proceedings of the Sixth Symposium on the Frontiers
of Massively Parallel Computation, pp. 180-187.

[Thakur et al., 1997] Thakur, R., Lusk, E., y Gropp,
W. (1997, October). Users guide for ROMIO: A high-
performance, portable MPI-IO implementation (Tech.
Rep. ANL/MCS-TM-234). Mathematics and Com-
puter Science Division, Argonne National Laboratory.

[Stockinger, 1998b] Stockinger, K. (1998, Decemberb).
ViMPIOS -a portable, client-server based implemen-
tation of MPI-IO on ViPIOS. Master's Thesis, Dept.
of Data Engineering, Univ~rsity of Vienna.

[Stockinger y Schikuta, 2000] Stockinger, K., y
Schikuta, E. (2000, January). ViMPIOS: A truly
portable MPI-IO implementation. En Proc. of the
PDP'2000, Rhodos, Greece. IEEE Computer Society
Press.

141

T. Fuerle, O. Jorns, E. Schikuta, H. Wanek : Meta-ViPIOS: Harness Distributed 1/0 Resources with ViPIOS

Thomas Fuerle is a Ph.D student in Computer Science at the University of
Vienna. His Ph.D theses concentrates on implementing the ViPIOS kernel and
creating a file system interface for ViPIOS, which can be treated as a

global filesystem for general and scientific purposes.

Oliver Jorns is a student in Computer Science at the University of Vienna.
His master thesis comprises the development of a interface between our HP F

compiler (VFC Vienna Fortran Compiler) and the ViPIOS system.

Er;ch Sch;kuta is Associate Professor for Computer Science at the University

of Vie1:1na. His research interests comprise parallel and distributed

computing, database systems and neural networks. He is the coordinator for

//Parallel 10// ofthe IEEE Task Force on Cluster Computing.

Helmut Wanek is a Ph.D student in Computer Science atthe University of

Vienna. His Ph.D theses focuses on formalization and optimization of
parallel disc accesses. He also builds a cost model which is implemented in

and used by ViPIOS.

142

