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Abstract 1 Introduction

This paper describes a parallel Abstract Network
Machine (ANM) which uses DI-structure (dynamic
incomplete structures) and associative networks for
representation of information. A computational process
consists of asynchronous local transformations of the
network with a single mechanism -network unification. Aff
computational mechanisms are oriented towards the
processing of incomplete information. The ANM is able to
perform partial evaluation when given input is incomplete
and to automaticaffy synthesize a residual paraffel program
as a result of the transformation. The technique for

transforming, optimizing, specializing multipurpose
programs to particular problems, and for paraffelizing
programs is described. Some general problems of
declarative paraffel computation without concepts of a
shared memory, value assignment, sequential or paraffel
control jlow are discussed.

Keywords:DI-structure, implicit parallelism, declarative
programming, partial evaluation, incomplete information
processing, graph reduction.

Parallelism has become a standard technique in the
design of high performance computers. Despite the
impressive progress achieved in the design of sequential
von Neumann machines, their computing power is limited
in the light of certain applications. Parallel computing
emerged as an altemative and viable medium for the
solution of many important problems. As a matter of fact,
many conventional machines such as PCs and workstations
contain some degree of paralellism. Such a tendency
represents a departure from the sequential model of
computation. On other hand, parallel computing itself has
not been a big success. The difficulty lies with a gap
beween the view needed to use a particular machine
effectively and the view needed to develop parallel
software successfully, that is between a model of parallel
computation and a parallel machine model (Skillicom,
1994).

Though the motivations and emphasis of individual
research in parallel processing vary , most research work is
quite focused. We attempt here to emphasize several
aspects associated with the data-parallel paradigm; the
control-parallel paradigm based on a sequential control
flow with explicit concurrence, the explicit asynchronous
control with shared memory, the implicit data-driven
parallel computations, and the processing of incomplete
information.

The most traditional and obvious way is to consider
these paradigms as different ways to utilize concurrency to
increase a computer performance, to exploit very large
scale integration in the design of computers, to create new
classes of very high level programming languages, and so
on. We consider the concepts and relationships that exist
both within and between these areas of research as different
ways to depart from von Neumann principIes of
computation (Von Neumann, 1946).
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improvement or substitution of any of von Neumann
principIes demands reconsideration of all aspects of
computation: organization of computation process,
computer architecture, language, style and method of
programming (Backus 1978).

1.1 Data Parallelism

In the data parallel approach, the paradigm of
parallelism is squeezed into the base frame of the von
Neumann conception. A data-parallel program derives its
parallelism from executing the same instructions on many
processors at the same time, but on different data. Regular
data structures such as vectors and matrixes, and parallel
operations on them are added to sequential computations. A
sequential control-flow (one global control unit), a shared,
with a single address space, memory inherited from
common ancestors are not changed.

One of the greatest advantages of data-parallel
programming is its reduced need for synchronization. The
parallelism becomes possible only as a result of
independent processing of the data elements. Data-parallel
programs are naturally suited to SIMD computers. This
paradigm is typically associated with fine-grained
parallelism and is available on a wide variety of computers.
Even so, data-parallelism does not solve all the problems of
parallel computing. A main drawback of SIMD computers
is that different processors cannot execute different
instructions in the same clock. cycle.

The von Neumann model includes three basic principIes:
simple operations on elementary operands, linear common
memory , and sequential centralized control. In its simplest
form such a computer has a CPU, a store, and a connecting
tube (bus) that can transmit a single word between CPU and
memory .The program is stored in memory as a serial
sequence of instructions. The program is executed by
fetching successive instructions from memory and
executing them in the processor. The course of computation
is given by the flow of control in the program. It is not
possible to execute any instruction until all previous
instructions in the program have been executed. If operands
are available, some program instruction could be executed,
but is not executed until their tum comes in the program.
This is the main obstacle in the utilization of the natural
parallelism of algorithms.

Just those principIes determined the main features of
computers: organization of computation, architectures,
advantages and shortcomings of languages, the style of
programming with word-at-a-time thinking, mentality of
programmers and so on. In a sequential programming
environment, the different actions occur in a strict single-
instruction-executioQ fashion. Flynn (Flynn, 1972) in his
taxonomy viewed the von Neumann model as a Single
stream of Instructions controlling a Single stream of Data

(SISD).
The simplicity, lucidity, flexibility of those prin.ciples

provided a swift development of computers. For sequential
computation, the model and conventional architectures,
complex versions of the von Neumann computer, are very
close. At the same time, they become a hindrance for
computer development. Memory interleaving, cache
memory , instruction and execution pipelining, branch
prediction, speculative execution are common hardware

Table I. Models of computation

optimizations intended to overcome the limitations of the
von Neumann machine. At a more abstract level, however ,
they can be viewed as a single stream of information. An
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1.2 Control Parallelism. A Sequential- Parallel
Approach with Synchronization

In the sequentiaI-paralleI approach explicit paralleI
control operators augment the sequentiaI control flow.
These operators allow more than one thread of the control
to be active at the same time, and provide the possibility of
independent calculations. An aIgorithm may consist of a
number of tasks or processes which themselves are purely
sequentiaI, but which are executed concurrently on many
processors, and which comrnunicate through shared
variables. Explicit synchronization facilities are introduced
to provide thread synchronization and regulate shared
memory cell accesses. It is the common and widely used
soIution ofparallelizing problems. AIgorithms for problems
requiring control parallelism usually map well onto MIMD
paralleI computers because control parallelism requires
multiple instruction streams. In programming Ianguages for
shared address space computer paradigm that kind of
parallelism is represented by well-known primitives, such
as fork-join, parbegin-parend, primitives for mutual
exclusion and synchronization, parallelloops, pragmas, and
many others. Such paralleI Ianguages are successors of
traditionaI sequentiaI Ianguages. Extensions of C, Fortran,
PascaI and others have been developed for various paralleI
computers. AIso message-passing computers are typically
programmed in conventionaI sequentiaI Ianguages
augmented by message-passing primitives such as, for
instance MPI-Send; MPI-Recv. Accordingly it is possibI6
to keep principIes and a style of a sequentiaI programming
unchanged, corresponding compilers can be enhanced by
parallelizing preprocessors and so on. However the IeveI of
such paralleI programming Ianguages decreases in
comparison with their precursors. It is necessary to control
and to describe in an explicit form not only a sequence of
operators but their parallelism as well. This approach has
some shortcomings especially when one tries to reveaI the
maximaI inner parallelism of problems for massively
paralleI computers. Programs may be efficient, but tend to
be difficult to understand, debug, and maintain, especially
when a program is tumed into a dish of spaghetti by side
effect and goto. The main problem concems the gap
between paralleI control and shared memory conception on
one hand, and soIving the resource contention problems on
the other.

modifications of asynchronous computation involve
different organization of the data exchange between
program fragments. In explicit asynchronous computation
the notions of a single address space and execution of
operators with operands remain unchanged. The data is
exchanged through a common memory shared by a given
group of statements. The control is implicitly asynchronous
and explicit control operators are used for establishing
dependencies between operations. Each informational
operator (guarded operator) has one or two control
operators associated with it. The first one is the trigger
operator, which is a Boolean function may be rather
complicated that determines the "readiness" of the
informational operator .

The model assumes that trigger operators are executed
concurrently in waiting mode. When the value of a trigger
operator becomes "true" the correspondiQg informational
operator is activated. When the execution is finished the
second control operator generates a "true" value and writes
it into the memory .So, the information about the
termination of the operation becomes available for the other
trigger operators. Thus, though potentially the computations
are considered to be independent and parallel, conditions
for readiness of operations have to be explicitly determined.

The use of such an asynchronous computation was
formally introduced and tackled by Dijkstra, Kotov, and
Narinyani and many others in the $eventieth and eighties
(Dijkstra, 1975, Kotov, Narinyani, 1969).

f.4 Data-Flow

1.3 Explicit Asynchronous Computation

In contrast to the above control parallelism where the
sequential control is augmented by parallel one, in
asynchronous computation the sequential control is
substitutedby the asynchronous control. Program fragments
are initially regarded as parallel, independent, and
unordered. Any constraint on their execution is formulated
as explicit or implicit readiness conditions. Various

The data flow (DF) parallel computation (Gao, Bic, and
Gaodiot, 1995) is also based on the asynchronous principie,
with one essential distinction. The exchange of information
between program fragments is performed through isolated
direct paths, which are usually queues. Control is
decentralized, each statement determining independently its
degree of readiness to initiate computation. Notice that all
concepts of the von Neumann model, except of an
operation and operand, are substituted, in this model (Table
1 ). Distributed memory allows to simplify the readiness
conditions of the operations, and to dó them implicitly. The
operation is triggered automatically when all its operands
are available. Data availability is achieved by channeling
results from previously executed instructions into the
operands of waiting instructions. This channeling forms a
flow of data, triggering instructions to be executed. Many
instructions are executed simultaneously, that leads to the
possibility of a highly concurrent computation.

The data flow model of computation is closely
associated with the principie of single assignment. In
traditional computer systems one memory location
(memory cell) is assigned to each variable and different
values can be assigned to a variable during the
computation. In the principie of single assignment a
variable (name) may only take a single value during
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calculated. This scheme seems much less attractive in
comparison with the process of computation Ín an analog
device. One could see that the process of formÍng the
potential of the Ínput signal x forces formÍng, after a short
delay, the potentials of G(x), K(x), and they, in their tum,
force forming H(x). The functions G, K, and H work in

parallel.
This example shows that there is one more approach for

increasing the level of the parallelism, namely a
manipulation with an incomplete information. We already
mentioned that most parallel models (Skillicom, 1991)
leave unchanged two von Neumann concepts of sequential
computation: an operator and operand (Table 1), and a
principIe of so-called computational act or strict semantics.
The latter means that to start the execution of an operator or
a function all operands required by it must be fully
computed and be accessible, all components have to be
evaluated before a structure is used. We know that the value
is usually determined gradually durÍng its calculation. For
example, Ín an arithmetic unit a sign of a number is usually
calculated first, then its order, and its mantissa. The main
restriction is that the number can be used only after the
moment when it is fully computed and is written to a
memory cell, to a data-flow token, or, for example, when
the bit of readÍness or flag i~ set. Though in a conditional
expression if F(x»O then Fl else F2 we are Ínterested only

computation. So, during the use of one variable in the
program there exist two periods. The first period is when
one location is reserved for the variable in the memory, but
it has not acquired a value, hence it cannot be read from the
memory , but its value can be written. During the second
period the variable has already taken the value and has been
written in the reserved memory location. The value can be
read many times, but it cannot be changed any more.

These models have many attractive properties for the
parallel processing and solve many problems of parallel
computation (Table 2). The program writing is clear. There
is no side effect. In the same way it is possible to write a
"high level" as well as a "low level" program. DF programs
express in a simple manner the natural parallelism of
algorithms, allow the exploitation of parallelism at different
levels, ánd expose various forms of parallelism.

However, an absence of a shared memory concept
allows no satisfactory description of the complex parallel
processes based on the conception of a common resource.
Moreover, the pure data flow execuiion sche~e employs a
b)L-value data access mechanism and this causes explicit
data copying, hence the complicated data structures are
difficult in use. This problem is eliminated by introducing
by-reference data-access that overcomes that shortcomings
and allows to use matrices, vectors, lists and others more
efficient (Amamiya et al., 1983).

--Model

Basic

Definition

-con¡roTFlów(coRtrol driveR) Data-tlow (data-driven) Reduction (demand-driven)

Conventional computation
control indicates what and
when a operator should ge
executed

Eager evaluation;
operators are executed
when all oftheir operalids

are available

Lazy evaluation;-~
operators are executed when their
result is required for another

computation

Advantages Full control
Complex data and control
structures are easily

implemented

-Only required instructions are
executed

High degree ofparallelism
Easy manipulation of data
structures

very-hTg¡¡¡¡¡¡¡en¡¡¡rfui
parallelism
High throughput
Free from side effects

~mprogramming
Difficult in preventing run-time
error

Does not support sh;¿ringof-
objects with changing local state
Time needed to propagate demand
tokens

Disadvantages Time lost waiting for
unneeded arguments
High control overhead
Difficult in manipulating
data structures

Table 2. Control, data and demand driven models

1.5 Parallelism Based on the Processing oí
Incomplete Iníormation

in the sign but not in the value of F(x), to start evaluation of
F 1 or F2 we have to wait the termination of calculation of
the value F(x).

In conventional computers the value becomes available
instantly as a result of one indivisible computational act.
This principie forces the computation to be sequential in
this point. The value becomes one more bottleneck of
parallel computing. To overcome the limitation of this
principie, and to widen this neck it is necessary to introduce
into practice both incomplete operands and facilities for
using them in calculations. For instance, nonstrict, lazy,

Let us consider parallel evaluation of the function
F(x)=H(G(x).K(x)). The evaluation ofthe function Hcarí be
started only after both values G(x) and K(x) are fully
computed. For given x, G andK can be processed
concurrently. Notice that it is impossible for the value F(x)
to be used in another evaluation before it has been fully
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The atom represents an object that has no an intemal
structure at a programmer level of consideration. For
example, the atom can be integer, character, or Boolean
value. The atom is defined completely by its representation.
In Figure 1 the atoms are shown in circuits. Two atoms
with the same representation are not distinguished. The
atom is a static object ofthe network, its description can not
be changed in the course of computation. It is sufficient to
have only two atoms T(true) and F (false). In this case the
characters, numbers, and other atoms niight be represented
by their binary codes, and therefore become DI-structures.

The DI-structures (DIS) and empty objects are referred
to as dynamic objects. A description ofthe DI-structure is a
set of elements (associative memory). Each element is a
pair {A XJ, where A is the element's name (some identifier,
or a positive integer that is used for a key of the associative
memory), and X is the element's value (some other object of
the network).

2 2
-:J.( NIL~

1
-:Joi

2

~{+ ~

-&
2

~ ?s'

1 x
x 6

(a) List (a b) (b) Matrix (c) List ( X, X, ...]

~ "1 .+

w:A y= z2

(e) Logical object

Figure Associative network exarnple~

lenient semantics (Wei and Gaodiot, 1988, Amamiya and
Hasegawa, 1984, Amamiya et al., 1983) or I-structures
(Arvind et al., 1989) are approaches to increase parallelism
in such a way.

An l-structure is a conventional structure with some
constrains on its construction and destruction. Each element
of the structure can be in three states: empty, when data has
not been requested, and no data is available; deferred, when
data has been requested, but is not available yet, and
present, when data is available. " Presence bits" are

associated with each cell of storage. According the single
assignment semantics writing into a cell with presence bit
set causes an error. Reading when presence bit is off causes
a "deferred read". I-structures may be consumed before
they are entirely produced. This allows increased
parallelism via IIpipelining" between the producer and the
consumer, between G and H in the above example. Latency
is tolerated via split-phase operations. I-structures are
appropriate for the case when the structure is not updated.

In this paper we focus on the issue of dynamic
incomplete structures (DI-structures) used in the Abstract
Network Machine (Stepanov et al., 1993). We show that
incomplete values, relations (functions) with unknown
(flexible) arity, and incomplete structures with unknown
numbers of elements can be represented and manipulated in
the ANM as DI-structures. The machine follows the
transformational style for the fme grain parallel
computation that is similar a graph reduction widely known
in a functional prograrnming.

The incomplete-data-driven strategy of the associative
network transformation with a single rule of the
transformation is introduced. The decision to undertake
computation is based on the increment or giving a more
precise description to elements of DI-structures rather than
on the availability of fully complete data as in a data-flow.
Each new portion of information increasing the DI-structure
description forces the computation that follows a data-
driven computation (Treleaven et al., 1982).

The paper is organized as follows. The next section
briefly describes the main concepts of the ANM,
representation of information by DI-structures, and a basis
of parallel computation on associative networks. Section 3
discusses the ANM model, operations, and the process of
computation. Sections 4 and 5 review some experiments
with the ANM in the declarative parallel programming
system PARNET.

In Figure 1 the DI-structures are shown by squares and
their elements are shown by arrows. The name of the
element is written on the arrow, and the object,
corresponding to the element's value, .is located at the end
of the arrow. There is a limitation on the DI-structure
description: it cannot contain elements with the same name.
No other limitation exists, in particular, loops and cyclic
structures are allowed.

An empty object cannot be classified as the atom or DI-
structure, because there is no any information about it,
except the fact of its existence. Objects and elements of a
special kind intended for the implementation of some built-
in mechanisms such as arithmetic or logic are introduced.
For instance, a logical object X in Figure le has two
elements with the build-in names "+" and "-". The value of
"+" ("-") element is a set of declarations about network
objects that are valid if X is true (false ).

2 Abstract Network Machine

2.1 Network Representation ofInformation

An associative network is a directed graph of a special
kind with labeled edges. Nodes of the network are called
objects. Three types of the objects narnely atoms, DI-
structure, and empty objects are introduced.
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The elements of the DI.structure can be interpreted in
different ways, related with such terms as a property ,

inclusion, relation, parameter, octant, role, slot, element of
structure etc. (Stepanov et al., 1996). For the ANM all these
interpretations are indistinguishable, since all of them are
united by one property, which is the only that is used: the
name of the element unambiguously determines the
elemeni's value. An important feature of the system is its
homogeneity in respect to the representation of the objects
and relations between them: on formal level they are not

distinguished.

structures, such a gluing leads to pooling their elements.
The very simple transformation rule is correctness
preserving. If in a resulting set of elements two elements
have the same name, one of these elements is removed and
a new operation of the n-unification of the values of these
elements is generated.

In Figure 2 shows two examples of the n-unification of
objects x andy.

x[A x1 , B x2, C x3];
y[A y1 , C y2];
x = y;

x[A x1 , B x2, C x3]
x1 =y1 ; x3=y2;=>

2.2 The Representation of Incomplete
Information

(a)

x(x1,x2,x3)

y(y1,y2,y3);

X = y;

x(x1,x2,x3);
x1 =y1 ; x2=y2; x3=y3;=>

(b)

Atoms are considered to be complete static values,
whereas DI-structures are considered as incomplete
dynamic values. The concept of fully complete DIS makes
sense only on the programmer leveJ of consideration. The
number of the elements can be increased in the course of

c(1fnputation. Hence, the description of the DIS is
considered to be incomplete in any moment.

Several degrees ofthe DI-structure incompleteness could
be distinguished. We mention three of them. (1) The fact
that -the object exists is only known. (2) Some elements are
available, but the full description from the programmer
point of view is incomplete, for. instance some rows of the
matrix could be unavailable. (3) The total structure is
known, while some of its elements are unknown. Latter is a
similar to the I-structure.

DI-structure keeps some amount of information about a
single "real" object of a problem to solve. This information
can not be "replaced" by another one in the course of
computation, the object can only accumulate it by adding
new elements. Elements ofDI-structures cannot be updated.
DI-structures are never supposed to be completely defined.
The ANM does not know the maximum number of
elements. Hence, it is impossible to make conclusions,
based on the fact that some element is last among those of
the current DI-structure. There is no such last element, at
any moment one more can be added.

Figure 2. Examples ofthe transformation rule for n-unificationl.

To n-unify an object with a copy of other object the s-
similarity is introduced.

The s-similarity X:S declares that the object X is an
instance ofthe scheme s. The scheme is a description ofthe
DI-structure S, thereto it can contain local declarations
about other objects of this scheme. S-similarity leads to
copy of the DI-structure S, its n-unification with X; and
execution of the local declarations. Any network (DI-
structure) can be extracted from the main memory and later
be used as a scheme.

A scheme is an analogue of a functional defmition, and
s-similarity resembles a functional call. The essential
difference of the transformation by s-similarity in
comparison with a graph reduction lies in the manner of the
parameter updating.

In functional programming a program is represented by a
directed graph, nodes are functional calls or data items, and
edges represent the arguments to that function. Execution
proceeds by reductions, which transform the graph to a
simpler (normal) form, with no more function calls, and
amounts to repeatedly rewriting the function representation.
Arguments of the copy of the functional definition are
updated by arguments of the functional call in a graph
reduction, whereas s-similarity leads to the n-unification of
the copy of elements of DI-structure S with the appropriate
elements' values of the object x. It gives such features as a
more deep processing of incomplete information,
evaluation with partially completed parameters and bi-
directional flow of information: from input to output and

2.3 N-Unification, S-Similarity

There are three kinds of declarations: those describing
Dl-structures by elements [A XJ, those stating the identity
of two objects X=Y (n-unification), and those stating the
similarity of an object to a scheme X:S (s-similarity). It is
possible to express recursive declarations, and to make
conditional declarations like if X=nil then Y:S, Z=Welse
X=Z.

The n-unification X= y is considered as a statement that
two objects X and y are in fact one object, or X is identical
with Y. The n-unification leads to the reduction of the
network "gluing" these two objects. If objects are Dl-

I The simplified version ofthe DI-structure notation

x[l xl, 2 x2, 3 x3] is x(xl,x2,x3), when elements with

integer names are used. The name of the element
corresponds to its position number in a list of elements.
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from output to input. Moreover, elements of S and X can be

mutually complementary (Tchernykh et al., 1997).
3.2 Process of Computation

3 ANM Model

3.1 Operations

In Figure 3 several snapshots of the main network
memory in the course of the unification of objects A and B
are shown.

The DI-structure A could be interpreted as a relation of
the transposition oftwo 2x2 arbitrary matrices AJ, A2, and
B as a description of some relation between given matrix
BJ((J, 2),(3,4)) and B2.

The ANM model includes the main network memory,
scheme memory, operation memory, and mechanisms to
execute operations. The process of computation consists in
executing the operations from the operation memory .The
execution of an n-unification leads to gluing of two objects
that, in its tum, may generate several operations of the n-
unification and s-similarity that are placed at the operation
memory .The s-similarity forces a copying of a scheme
from the scheme memory into the network memory
followed by the n-unification between the object and the
copy of the entry of the scheme. Besides, all operations
from the local scheme memory are copied and added to the
contents ofthe operation memory.
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Figure 3 (a, b). Transformation principIe of
computation (2x2 Matrix Transposition) ¡I~

I
!

5

The operations are executed until the operation memory
contains no more operations. It is possible to execute the
operations in any order, including concurrently. Any
operation can be postponed for any interval.

(e)

Figure 3 (c, d, e). Transformation PrincipIe ofComputation (2x2
Matrix Transposition)
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The n-unification A =B declares that A and B represent
the same relation. The object marked by the question mark
is expected to be a result of the matrix Bl transposition.
The process consists of five steps. Notice that one n-
unification is executed on the first step, two on the second,
and four operations can be executed in parallel on the
fourth step.

ofthe n-unification W=WJ is put in the operation memory.
It initiates the process of the network transformations
shown in Figure 3.

One can see that the TRANSP is not an algorithm for
yielding A2 by AJ. Both matrices take part in the relation
symmetrically, so it is not necessary to give a complete
matrix as its first argument, and the empty object, as its
second one. With equal success BJ can be calculated if B2
is complete. More than that: both matrices may be
completed partially. The system will make all inference it
can, based on the supplied information. For instance, given
BJ ( ('2', '5J) (the second row is unknown), B2( ('2', -),
('-5', -) ), and (BJ, B2):TRANSP, the structures of both
matrices are evaluated completely, supplement each other.
Nothing wrong happen if we even provide both complete
matrices. Successful termination of the process confirms
that the matrices are in this relation. If they are not in the
relation, .computation will be stopped because of a
contradiction. Contradiction occurs if, for instance, two
different atoms are trying to be unified. In this case we will
know that the declaration (BJ, B2);TRANSP is invalid for a
given matrices.

3.3 Programming

To calculate matrix transposition of different matrices a
corresponding scheme, say TRANSP, to be applied. The
scheme should describe a relation between two matrices A 1
and A2. For simplicity we consider only matrices of flXed
range, say again 2x2. The matrices are described by means
of DI-structures. The object Al has two elements (as many
as there are rows ), and each element in their tum has two
elements: Al((al¡' alz}, (a2¡' a2z}). The element aij is
represented by an empty object. In the process of
computation it may tum out to be an atom (in our example )
or a DI-structure, for instance, if it is submatrix. The matrix
A2 is described as A2((al¡' a2¡}, (al]' a2z}).

sch TRANSP(Al, A2);

Al«all, au), (a2l, a22));
A2«all, a2J, (aU, a22));,
end

4 Partial Evaluation and Optimization

To transpose a given matrix BJ(('2', '5~, ('8', 'J~) we
have to declare that the objects BJ and B2 is in the relation
TRANSP by (BJ, B2);TRANSP. In this example all elements
of BJ are known and B2 is an empty object (marked as a
result). To solve the task, DI-structure W(BJ, B2) (Figure 4)
has to be placed into the main network memory, and the s-
similarity W;TRANSP into the operatio:n memory. The DI-
structure W together with this operation serves as a request
for the ANM to transpose the matrix B J .

SORT TRANSP

~APP
ffi

Network Memory

-E
W:TRANSPti 2

I Z Z

2 S 8 I

~?
Result

(unknown)

Partial evaluation (Jones. 1996) is an automatic program
transformation technique to partially execute a program,
when only some of its input data are available, and to
specialize it with respect to partial knowledge ofthe data. It
provides a unifying paradigm for a broad spectrum of work
in program optimization, compiling, and interpretation
(Jones et al., 1993, Bjomer et al., 1988).

Consider a program p with two inputs, inp J and inp2.
When specific values are given for the two inputs, we can
run the program, producing a result. When only one input
value inpJ is given, we cannot run p, but can partially
evaluate it, producing a version PinpJ of P specialized for the
case where inp J is given. The specialized version PinpJ of p
is called a residual program.

The motivation for doing partial evaluation is speed:
program PinpJ is often faster than p. Specialization is clearly
advantageous if inp2 changes more frequently than inpJ.
Each time inp J changes one can construct a new specialized
PinpJ that faster than p, and then run it on various inp2 until

inpJ changes again.
The partial evaluation includes two kinds of activity:

partial execution of a program when a part of its inputs is
not given ("dynamic") and forming .'a residual program"
consisting of .'delayed operators.'. When partial evaluation
terminates the residual program is ready for processing the
dynamic part ofthe inputs.

The transformational style of computation in ANM,
together with incomplete-oriented style of information
processing, leads to the "effect" of partial evaluation.
Computation ANM performs can be considered to be

Figure 4. Matrix transposition invocation

The scheme TRANSP is copied from the scheme
memory into the main network memory , and the operation
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for the moment when the evaluation of the list z is
completed. Hence evaluations of F and Q can be done in
parallel. Evaluation of the elements of the list z in F(x)
overlaps with the evaluation of Q(z). This kind of
parallelism is frequently referred as pipeline parallelism to
distinguish the parallelism of the data structures.

The next additional source of parallelism originates from
evaluating several arguments of a function ( or relation) in
parallel. For instance, for the function F( G(x), H(x) ) the
corresponding schemes F, G and H are copied and
evaluated in parallel. Thereto pipeline parallelism can be
detected in, because the function F is able to operate on
data partially generated by G and H.

The ANM allows a program to be specialized not only
with given values of its input or partially complete values,
but also with respect to some knowledge about them. For
instance, a typical partial evaluator wiU return the term if
z=ni/ then G(y) else Q(y) unchanged, if the list z is
dynamic. Partially static information such as "z is a list with
unknown length and/or unknown elements, but not empty"
can be represented and manipulated in the ANM. For such
the case the term can be reduced to Q(y) .Programs in the
ANM can be specialized with respect to any more complete
description of dynamic input. Likewise, Consel and Khoo
have implemented the parameterized partial evaluation that
allow a program to be specialized also with respect to some
abstract properties ofan input (Consel and Khoo, 1991).

Specialization. Let us consider example of a program
specialization of with respect to a partial knowledge of the
input data. The set of schemes for three TRM 1, TRM2, and
TRM3 versions of NxN matrix transposition are shown in
Figure 5.

The programs are different enough in style and the codes
seem at first sight to be less elegant and efficient than
equivalent imperative parallel programs on a high level
language. Here, it should be emphasized that we do not
discuss the syntax of the P ARS language, its convenience
and expressive power for this domain. ,We have
intentionally chosen "poor'. assembler-level PARS version
to illustrate the internal network representation of programs
and a computation process. For instance we use a lower
level build-in relation (x,i,y):*A1TR/B instead a common

operator y=x[iJ.

sch TRM1(I,J,N,M1,M2);

(M1,I,M1i):*ATTRIB, (M1i,J,M1ij):*ATTRIB,
(M2,J,M2J):~ATTRIB, (M2J,I,M1ij):*ATTRIB,
J+1=J1 1+1=11., ,
if N >J then (I,J1,N,M1,M2):TRM1 ;
if N >1 then (11,J,N,M1,M2):TRM1;

end
(a) TRM1

partiaI. Any network obtained is a residual network ready
for further. transforrnations when the incomplete
inforrnation becomes more complete or dynamic inputs
become static. Three computation mechanisms: evaluation,
partiaI evaluation, and generation of a residual program are
based on a mechanism of n-unification. Moreover in the
ANM the incompleteness of inforrnation is not restricted to
dynamic inputs but is understood as DI-structure
incompleteness.

PartiaI evaluation is shown to be a universal technique
for a transforrning, optimizing, translating, and even

program parallelization (Ershov, 1982, Tchemykh et al.,
1997). Although simple in concept, it has important
applications to scientific computing, Iogic and functionaI

programming, compilation, computer graphic, pattem
matching and others (Bjomer et al., 1988; Jones et al.,
1989; ConseI and Danvy, 1991; Jorgensen, 1992; Jones et
al., 1993; Sesyoft and Sondergaard, 1995).

Parallelism. The ANM bridges partiaI evaluation and
paralleI computation by means of the transforrnationaI style
of computation. In this paper two issues of a partiaI
evaluation parallelism are underlined, namely the
parallelism of a partiaI evaluation process, and the
parallelism of a residual program.

P ARS, as a declarative Ianguage (Stepanov and
Lupenko, 1991), is based on the principIe ofrepresenting a
program in terrns of what is to be evaluated rather than how
the evaluation is to be perforrned. A PARS program seems
to be a data description only, not a program description in
traditionaI sense. The program is a set of declarations where
their order is not important; relations represented by DI-
structures are essentially multi-directionaI. Their arguments
can become defmite in arbitrary order, inforrnation flows
through a relation in aII directions.

Programs are not annotated to denote neither parallelism
nor sequence. Nevertheless severaI known kinds of
parallelism can be distinguished in ANM in an implicit
forrn: pipeline parallelism, functionaI parallelism
(parallelism of s-similarities), parallelism of structures,
function (scheme) argument parallelism, and data-flow

parallelism (Stepanov, 1991).
Let us evaluate the following expressions in the network

representation:
z:F(x); ifz=nil then y:G(z) else y:Q(z),

where the Iist x is statically bound. The sequentiaI partiaI
evaluator evaluates the program in three steps and yields
the value of y equaIs G(z) or Q(z). Function F(x) is
evaluated on the fist step. The evaluation ofthe conditionaI
expression z=nil can be started on the second step, only
after z has been fully evaluated. In such an evaluation the
Iist z is considered as a monolithic coarse grain value.

ANM. is able to evaluate fine-grained structures and
incomplete structures (in the example, Iists x, z and y can be
represented as Iists of DI-structures). Hence, in the
beginning ofthe F(x) evaluation, when we get to know that
z is not the empty Iist, y:Q(z) can be evaluated not waiting

sch TRM2(M1 ,M2,N); (N,'TRM21',(M1 ,M2)):Dcycle

end
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In the last case MI has a structure MI ((-,-,.J,(-,-,.J,
(-,-,.J) that represents an empty 3x3 matrix. The processes
of the programs' evaluation for the case when N is only
available is shown in Figure 7.

In general, operations of a task could be virtually
"divided" into two subsets. The first one includes
operations perfonned useful actions for a specific problem.
The second subset includes the rest operations that are the
operations, needed to organize computation (iterations,
functional calls, argument substitutions, and so on) and to
access the elements of data structures, that is, they are
preparatory operations for useful calculations. For instance,
in matrix multiplication we consider operations of the
multiplication, addition, related to the calculation of the
elements of the resulting matrix as useful, and operations of
incrementing indexes and their comparison with N in
iterations as preparatory .

--TRM2 -TRM3 --TRM1

sch TRM21 (I,J,(M1 ,M2));

(M1 ,1,M1 i):*ATTRIB,(M1 i,J,M1 ij):*ATTRIB,

(M2,J,M2J):*ATTRIB,(M2J,I,M1 ij):*A TTRIB;
end

sch DCycle(N,S,C); (N,'DC',*Entry):Cycle
end
sch Cycle(I,S,C);

((I,C),S):*UNFLDBR,I-1=11;
if 1>1 then (11,S,C):Cycle;

end

sch DC(II(N,S,C)); (N,'DC1',(I,S,C)):Cycle end

sch DC1(J,(I,S,C)); ((I,J,C),S):*UNFLDBR end

(b) TRM2

sch TRM3(M1,M2,N,K);

(K,'1',N,M1 ,M2):TRM31 ;
if N>Kthen (M1,M2,N,K1):TRM3, K+1=K1;

end

sch TRM31 (I,J,N,M1 ,M2);
(M1 ,1,M1 i):*ATTRIB,(M1 i,J,M1 ij):*ATTRIB,
(M2,J,M2J):*A TTRIB,(M2J,I,M1 ij):*A TTRIB;
if N>J then (I,J1 ,N,M1 ,M2):CTRM31 , J+1=J1

end

E 40

.~ 30

~ 20

~ 10

~ 0

(c) TRM3

Figure 5. Schemes for Matrix Transposition
Figure 6. Operation level parallelism profile for matrix

transposition parallel process

--TRM2opt --TRM3opt --TRM1 opt

E 40
.~ 30
~ 20
E 10
~ 0

Figure 7. Operation level parallelism profile for matrix
transposition parallel process when N is given only

Though the task is far from the domain that deals with
complicated data structures, and can be t:fficiently solved in
a base frame of imperative paradigm this example
demonstrates a programming style of calculation M2 by MJ
without algorithmic description.

Operation level parallelism profiles of evaluation
processes of the programs TRM 1, TRM2, and TRM3 for
the case when all 3x3 matrices are static are shown in
Figure 6. Note that unit execution time operations without
communication and memory access delay is considered.
The processes are not very mach alike. They are different in
a number of operations, speedup and other characteristics.
Completion times of the tasks are 16, 27, 17 unit time slices
for the TRM1, TRM2, and TRM3 respectively. The total
number of executed operations is 254, 230, and 129, and
the maximum number of operations executed in parallel is
equal 36, 20, 18 for TRM1, TRM2, and TRM3

respectively.
A partial evaluation can be applied to optimize these

processes. Let us consider their specialization with respect
to partial knowledge of the input matrices. Several degrees
of the incompleteness of the matrix are considered: a) The
only fact of the matrix existence is known; b) Some
elements of the matrix are defined, but the matrix as a
whole structure is unknown; c) The complete structure or N
is known, while some of its elements or all elements are not
given.

The processes shown in Figure 7 include the execution
of preparatory operations only because elements of the
input matrices are not given. When the processes are
terminated, the residual schemes are synthesized. These
schemes are networks "touted" on incomplete elements of
input matrix and elements of a matrix-result. These
schemes yield the result as soon as the concrete elements of
matrices are given. Figure 8 shows the parallelism profile
of the execution of these residual schemes. Figure 9 shows
the code of these schemes. Notice that the residual schemes
and their profiles obtained are equal in all experiments.

The data of evaluation and their performance analysis
are shown in Table 3.
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computer executing the same parallel program on p
processors is considered.

TRMres

E
.~

~
E
cv

Do

sch TRMOpt(Ml,MRes);

Ml((all, a12, aI3),(a21, a22, a23), (a31, a32, a33»;

MRes((all, a21, , a31),(aI2, a22, a32), (aI3, a23, a33»;
end5 9 13

Time

17 21 25

Figure 9. Residual scheme

Figure 8. Operation level paral!elism profile for matrix

transposition paral!el process by residual program

The size ofa scheme, time ofits sequential execution TJ,
time of execution on p processors T p, are estimated for
original and residual programs. To measure the quality of
programs Sp (the parallelizability), Ep (the efficiency), Cp
(the cost) are used.

Execution of the program is analyzed for unbounded
parallelism on a machine where the number of processors
can grow as the size ofthe problems grows.

From the Table 3 one can see that these very simple
examples demonstrate a high level of fine grain parallelism.
The yielding speedups of the programs ' are substantial
15.87, 8.52, and 7.59 times for the TRMl, TRM2, and
TRM3 respectively. Hence the ANM can expose a vast
amount of a fme grain parallelism of declarative programs,
which are free of any explicit description of a parallel or
sequential control structure. Especially it gains when a
problem involves complicated irregular data structures
(such as lists, trees, graphs, etc.) and detection and
description ofthe parallelism manually makes difficulties.

Partial evaluation can optimize programs by
considerable reduction of calculations. In the examples the
number of operations in the residual programs is decreased
in as much as 16.9 times for TRMl, l5.3 times for TRM2,
arid 8.6 times for TRM3. A hidden inherent parallelism
irrespective of a style of an algorithm description and a
sequence of declarations in a program code is revealed. For
these programs the same optimal scheme shown in Figure 9
is synthesized after partial evaluation. Reducing
computational resources can be yielded by this technique
too. The maximum number of processors used for
evaluation of the original programs is reduced in the
residual program in 4 times for TRM1, 2.22 times for
TRM2, and 2 times for TRM3.

5 Experiments

Table 3. TRM parallelization and performance analysis

The parallelizability is used to refer to a particular case
of speedup when the ratio between the time TJ, taken by a
paraIIel computer executing a paraIIel program on one
processor, and the time T p taken by the same paraIIel

An experimental programming system P ARNET
(Stepanov et al., 1996) provides facilities to conduct
experiments with DI-structures. It includes: an ANM
emulator, parallel garbage collector, scheme synthesis
facilities, declarative programming language P ARS
(Stepanov and Lupenko, 1991 ), parallel computation
process emulation facilities, scheduler, subsystem for the
collection and visualization of modeling data, monitoring
subsystem, archives of schemes support subsystem, and
integrated development environment.

Experiments for tasks from various fields were carried
out. These domains include LISP paradigms, operations on
matrices, linear equations, sorting and combinatorial
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problems, graphs, electronic circuit's simulation (Stepanov
et al., 1993), automatic program parallelization, and others.

Table 4 shows ratios between the TJ, T P' P, Cp of original
programs and residual programs for several algorithms: two
variant of insertions sort InsSortJ and InsSort2, matrix
multiplication Mmult, quick QSort and merge MsortJ sorts.

The results show the reduction ofwaste calculations. For
instance, the number of operations in the residual programs
is decreased in as much as 24.39 times for InsSortl, and
31.62 times for InsSort2. Such an optimization impacts on
the decrease of parallelism, and hence, on an economy of
computational resources. The number ofprocessor elements
is decreased in 27.20 and 12.55 times for InsSortl and
InsSort2 respectively, without limitation of their
parallelism. However, the speedup of the programs is
increased in 2.25 and 2.68 times, and the cost is decreasé'd
by 61.20 and 33.60 times.

6 Conclusions and Related Works

We describe the Abstract Network Machine based on
parallel computation with DI-structures, and the declarative
program parallelism extraction method based on parallel
dynamic partial evaluation.

We show that partial evaluation plays an important role
in the parallel computation process. This approach is
intended for a broad spectrum of activity such as automatic
transforming, optimizing, specialization of programs with
respect to the partial knowledge of the input, and for their

parallelization.
We demonstrate through the analysis of the program

examples the way to partially overcome some shortcomings
and non-effectiveness of declarative programs, and show
that the method is particularly effective on numerically

PARS

Program
InsSortl

(N=24)

InsSort2

(N=24)

Mmult

(N=3)
QSort

(L=24)

Msortl

(N=24)
R
A
T

~n95 24.39

2.25

27.20

61.20

11.86 31.61 2.68

12.55

33.60

1 °.276 -

15.49

4.57

4.44

20.32

W.21 1.16 1.46

0.79

1.15

0.038
---,

29.98 ¡

~

~38.33 ,

size

operation
time

processor
cost()

Table 4 Parallelization and performance analysis

oriented scientific prograrns, since they tend to be mostly
data-independent. It is also suitable for the problems where
irregular data structures such as lists, trees, graphs etc. are
involved and manual optimization and revealing of the
parallelism makes difficulties. In some cases the technique
provides for reduction of waste computation, and exposes
"the hidden natural parallelism" of the programs
irrespective of a prograrnming style and a sequence of
declarations in a prograrn.

As in many declarative languages the concepts of a
variable, value assignment, explicit seq~ential or explicit
parallel control tlow are not used (Cole, 1992, Skillicom,
1994). The network transformation resembles a parallel
graph reduction (Darlington et al. 1987) known in
functional prograrnming.
Many authors consider graph reduction machines and
mechanisms for implementation of functional languages,
lazy evaluation, lambda calculus (Peyton et al. 1987,
Kumar et al., 1995). Known reduction models represent a
prograrn as a A-graph (Gupta et al., 1989), task, or partial
task graph (Kumar et al., 1995). In the ANM a program is
represented as a graph of DI-structures named an
associative network. The essential difference of the
transformation of the associative network in comparison
with graph reduction lies in the network-unification but not
substitution of the argument with the appropriate value in a
course ofthe reduction.

Notice th-at paraJlelism of residual programs is revealed
automatically and no pointed out by a programmer. It
should be emphasized that the process of partial evaluation
is also parallel.

The partial evaluatiol1 can be used for the specialization
of programs with respect to knowledge of a problem to be
solved and part of the input data. Given programs are
specialized with respect to the size ofthe problems.

The strategy is expected to help to avoid unnecessary
computation and to make computation more effective.

We have considered the programs, which are special, in
that they are for the most part data-independent, meaning
that the parallelism of operations to be evaluated is
independent of the actual values being manipulated. The
programs are "well specialized" because they tend to be
mostly size dependent. In a given examples a parallelization
is mostly depended on a vector or matrix range that is static

(known) input.
Table 4 demonstrates also results for the specialization

and parallelization of the list quick sort algorithm. Qsort is
well-known data-dependent algorithm. For such programs
partial evaluatiori can not eliminate waste computations in a
great degree. The program is specialized with actual value
of list length, but mostly computation of the task depends of
"pivot" values: The number of operations is decreased only
in 1.16 times, speedup is increased in 1.46 times, the cost is
decreased in 1.15 times.
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The incomplete-data-driven strategy of the associative
network transformation progresses an idea of the data-
driven computation (Treleaven et al., 1982) for the case of
fme grain data structures. The decision to undertake
computation is based on the increment of the number of
elements of the DI-structure or getting a more precise
elements' description rather than on the availability of
complete data as in a data-flow. Each new portion of
information increasing the DI-structure description forces
the computation.

The uniform representation of data and programs
resembles functional programming. The implementation of
the arithmetic resembles data-flow. Dealing with
incompleteness increases parallelism, in a similar way as in
nonstrict function, /azy eva/uation, /enient cons (Amamiya
and Hasegawa, 1984, Amamiya et al., 1983, Wei
and.Gaodiot, 1988) or I-structures (Arvind etc., 1989). The
changeable direction of the information flow (an argument
of a relation becomes input or output depending on which
information is ready flfSt) is also used in logical

programming.
Described approach to automatic program parallelization

by means of dynamic partial evaluation fundamentally
differs from the approaches taken by parallelizing
compilers or partial evaluators (Surati and Berlin, 1994,
Tchemykh, 1986). Our work bridges partial evaluation and
parallel computation through the- transformational approach
to computation. It should be emphasized that all useful
features of the ANM result from the single mechanism of
the network-unification usingjust few concepts.

Work on modeling ofthe ANM with resource, topology,
timing, and other constraints is in progress so that the actual
parallelism, efficiency, overhead and other performance
factors may be assessed. Many problems remain to be
solved before such a machine can be of practical use in real
environment.
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